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Abstract

Brooks’ Theorem states that a connected graph G of maximum
degree ∆ has chromatic number at most ∆, unless G is an odd cycle
or a complete graph. A result of Johansson [6] shows that if G is
triangle-free, then the chromatic number drops to O(∆/ log ∆). In this
paper, we derive a weak analog for the chromatic number of digraphs.
We show that every (loopless) digraph D without directed cycles of
length two has chromatic number χ(D) ≤ (1− e−13)∆̃, where ∆̃ is the
maximum geometric mean of the out-degree and in-degree of a vertex
in D, when ∆̃ is sufficiently large. As a corollary it is proved that there
exists an absolute constant α < 1 such that χ(D) ≤ α(∆̃+1) for every
∆̃ > 2.

Keywords: Digraph coloring, dichromatic number, Brooks theorem,
digon, sparse digraph.

1 Introduction

Brooks’ Theorem states that if G is a connected graph with maximum de-
gree ∆, then χ(G) ≤ ∆ + 1, where equality is attained only for odd cycles
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and complete graphs. The presence of triangles has significant influence on
the chromatic number of a graph. A result of Johansson [6] states that if
G is triangle-free, then χ(G) = O (∆/ log ∆). In this note, we study the
chromatic number of digraphs [3], [8], [11] and show that Brooks’ Theorem
for digraphs can also be improved when we forbid directed cycles of length
2.

Digraph colorings and the Brooks Theorem

Let D be a (loopless) digraph. A vertex set A ⊂ V (D) is called acyclic if
the induced subdigraph D[A] has no directed cycles. A k-coloring of D is a
partition of V (D) into k acyclic sets. The minimum integer k for which there
exists a k-coloring of D is the chromatic number χ(D) of the digraph D. The
above definition of the chromatic number of a digraph was first introduced by
Neumann-Lara [11]. The same notion was independently introduced much
later by the second author when considering the circular chromatic number
of weighted (directed or undirected) graphs [8]. The chromatic number of
digraphs was further investigated by Bokal et al. [3]. The notion of chromatic
number of a digraph shares many properties with the notion of the chromatic
number of undirected graphs. Note that if G is an undirected graph, and
D is the digraph obtained from G by replacing each edge with the pair of
oppositely directed arcs joining the same pair of vertices, then χ(D) = χ(G)
since any two adjacent vertices in D induce a directed cycle of length two.
Another useful observation is that a k-coloring of a graph G is a k-coloring
of a digraph D, where D is a digraph obtained from assigning arbitrary
orientations to the edges of G. Mohar [9] provides some further evidence for
the close relationship between the chromatic number of a digraph and the
usual chromatic number. For digraphs, a version of Brooks’ theorem was
proved in [9]. Note that a digraph D is k-critical if χ(D) = k, and χ(H) < k
for every proper subdigraph H of D.

Theorem 1.1 ([9]). Suppose that D is a k-critical digraph in which for
every vertex v ∈ V (D), d+(v) = d−(v) = k − 1. Then one of the following
cases occurs:

1. k = 2 and D is a directed cycle of length n ≥ 2.

2. k = 3 and D is a bidirected cycle of odd length n ≥ 3.

3. D is bidirected complete graph of order k ≥ 4.

A tight upper bound on the chromatic number of a digraph was first
given by Neumann-Lara [11].
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Theorem 1.2 ([11]). Let D be a digraph and denote by ∆o and ∆i the
maximum out-degree and in-degree of D, respectively. Then

χ(D) ≤ min{∆o,∆i}+ 1.

In this note, we study improvements of this result using the following
substitute for the maximum degree. If D is a digraph, we let

∆̃ = ∆̃(D) = max{
√
d+(v)d−(v) | v ∈ V (D)}

be the maximum geometric mean of the in-degree and out-degree of the
vertices. Observe that ∆̃ ≤ 1

2(∆o + ∆i), by the arithmetic-geometric mean
inequality (where ∆o and ∆i are as in Theorem 1.2). We show that when
∆̃ is large (roughly ∆̃ ≥ 1010), then every digraph D without digons has
χ(D) ≤ α∆̃, for some absolute constant α < 1. We do not make an attempt
to optimize α, but show that α = 1− e−13 suffices. To improve the value of
α significantly, a new approach may be required.

It may be true that the following analog of Johansson’s result holds for
digon-free digraphs, as conjectured by McDiarmid and Mohar [7].

Conjecture 1.3. Every digraph D without digons has χ(D) = O( ∆̃
log ∆̃

).

If true, this result would be asymptotically best possible in view of the
chromatic number of random tournaments of order n, whose chromatic num-
ber is Ω( n

logn) and ∆̃ >
(

1
2 − o(1)

)
n, as shown by Erdős et al. [4].

We also believe that the following conjecture of Reed generalizes to di-
graphs without digons.

Conjecture 1.4 ([12]). Let ∆ be the maximum degree of (an undirected)
graph G, and let ω be the size of the largest clique. Then

χ(G) ≤
⌈

∆ + 1 + ω

2

⌉
.

If we define ω = 1 for digraphs without digons, we can pose the following
conjecture for digraphs.

Conjecture 1.5. Let D be a ∆-regular digraph without digons. Then

χ(D) ≤
⌈

∆

2

⌉
+ 1.

Conjecture 1.5 is trivial for ∆ = 1, and follows from Lemma 3.2 for
∆ = 2, 3. We believe that the conjecture is also true for non-regular digraphs
with ∆ replaced by ∆̃.
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Basic definitions and notation

We end this section by introducing some terminology that we will be using
throughout the paper. The notation is standard and we refer the reader to
[2] for an extensive treatment of digraphs. All digraphs in this paper are
simple, i.e. there are no loops or multiple arcs in the same direction. We use
xy to denote the arc joining vertices x and y, where x is the initial vertex
and y is the terminal vertex of the arc xy. We denote by A(D) the set of
arcs of the digraph D. For v ∈ V (D) and e ∈ A(D), we denote by D − v
and D − e the subdigraph of D obtained by deleting v and the subdigraph
obtained by removing e, respectively. We let d+

D(v) and d−D(v) denote the
out-degree (the number of arcs whose initial vertex is v) and the in-degree
(the number of arcs whose terminal vertex is v) of v in D, respectively. The
subscript D may be omitted if it is clear from the context. A vertex v is
said to be Eulerian if d+(v) = d−(v). The digraph D is Eulerian if every
vertex in D is Eulerian. A digraph D is ∆-regular if d+(v) = d−(v) = ∆
for all v ∈ V (D). We say that u is an out-neighbor (in-neighbor) of v if vu
(uv) is an arc. We denote by N+(v) and N−(v) the set of out-neighbors and
in-neighbors of v, respectively. The neighborhood of v, denoted by N(v), is
defined as N(v) = N+(v) ∪ N−(v). Every undirected graph G determines
a bidirected digraph D(G) that is obtained from G by replacing each edge
with two oppositely directed edges joining the same pair of vertices. If D is a
digraph, we let G(D) be the underlying undirected graph obtained from D by
“forgetting” all orientations. A digraph D is said to be (weakly) connected if
G(D) is connected. The blocks of a digraph D are the maximal subdigraphs
D′ of D whose underlying undirected graph G(D′) is 2-connected. A cycle
in a digraph D is a cycle in G(D) that does not use parallel edges. A directed
cycle in D is a subdigraph forming a directed closed walk in D whose vertices
are all distinct. A directed cycle consisting of exactly two vertices is called
a digon.

The rest of the paper is organized as follows. In Section 2, we improve
Brooks’ bound for digraphs that have sufficiently large degrees. In Section
3, we consider the problem for arbitrary degrees.

2 Strengthening Brooks’ Theorem for large ∆̃

The main result in this section is the following theorem.

Theorem 2.1. There is an absolute constant ∆1 such that every digon-free
digraph D with ∆̃ = ∆̃(D) ≥ ∆1 has χ(D) ≤

(
1− e−13

)
∆̃.
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The rest of this section is the proof of Theorem 2.1. The proof is a
modification of an argument found in Molloy and Reed [10] for usual coloring
of undirected graphs. We first note the following simple lemma.

Lemma 2.2. Let D be a digraph with maximum out-degree ∆o, and suppose
we have a partial proper coloring of D with at most ∆o+1−r colors. Suppose
that for every vertex v there are at least r colors that appear on vertices in
N+(v) at least twice. Then D is ∆o + 1− r-colorable.

Proof. The proof is easy – since many colors are repeated on the out-
neighborhood of v, there are many colors that are not used on N+(v). Thus,
one can greedily “extend” the partial coloring.

Proof of Theorem 2.1. We may assume that c1∆̃ < d+(v) < c2∆̃ and c1∆̃ <
d−(v) < c2∆̃ for each v ∈ V (D), where c1 = 1− 1

3e
−11 and c2 = 1 + 1

3e
−11.

If not, we remove all the vertices v not satisfying the above inequality and
obtain a coloring for the remaining graph with

(
1− e−13

)
∆̃ colors. Now, if

a vertex does not satisfy the above condition either one of d+(v) or d−(v) is
at most c1∆̃ or one of d+(v) or d−(v) is at most 1

c2
∆̃. Note that 1− e−13 >

max{c1, 1/c2}. This ensures that there is a color that either does not appear
in the in-neighborhood or does not appear in the out-neighborhood of v,
allowing us to complete the coloring.

The core of the proof is probabilistic. We color the vertices of D ran-
domly with C colors, C = b∆̃/2c. That is, for each vertex v we assign v a
color from {1, 2, ..., C} uniformly at random. After the random coloring, we
uncolor all the vertices that are in a monochromatic directed path of length
at least 2. Clearly, this results in a proper partial coloring of D since D
has no digons. For each vertex v, we are interested in the number of colors
which are assigned to at least two out-neighbors of v and are retained by
at least two of these vertices. For analysis, it is better to define a slightly
simpler random variable. Let v ∈ V (D). For each color i, 1 ≤ i ≤ C, let Oi

be the set of out-neighbors of v that have color i assigned to them in the
first phase. Let Xv be the number of colors i for which |Oi| ≥ 2 and such
that all vertices in Oi retain their color after the uncoloring process.

For every vertex v, we let Av be the event that Xv is less than 1
2e
−11∆̃+1.

We will show that with positive probability none of the events Av occur.
Then Lemma 2.2 will imply that χ(D) ≤ (c2 − 1

2e
−11)∆̃ ≤ (1 − e−13)∆̃,

finishing the proof. We will use the symmetric version of the Lovász Local
Lemma (see for example [1]). Note that the color assigned initially to a
vertex u can affect Xv only if u and v are joined by a path of length at
most 3. Thus, Av is mutually independent of all except at most (2c2∆̃) +
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(2c2∆̃)2 +(2c2∆̃)3 +(2c2∆̃)4 +(2c2∆̃)5 +(2c2∆̃)6 ≤ 100∆̃6 other events Aw.
Therefore, by the symmetric version of the Local Lemma, it suffices to show
that for each event Av, 4 ·100∆̃6P[Av] < 1. We will show that P[Av] < ∆̃−7.
We do this by proving the following two lemmas.

Lemma 2.3. E[Xv] ≥ e−11∆̃− 1.

Proof. Let X ′v be the random variable denoting the number of colors that
are assigned to exactly two out-neighbors of v and are retained by both of
these vertices. Clearly, Xv ≥ X ′v and therefore it suffices to consider E[X ′v].

Note that color i will be counted by X ′v if two vertices u,w ∈ N+(v) are
colored i and no other vertex in S = N(u)∪N+(v)∪N(w) is assigned color
i. This will give us a lower bound on E[X ′v]. There are C choices for color i

and at least
(
c1∆̃

2

)
choices for the set {u,w}. The probability that no vertex

in S gets color i is at least (1− 1
C )|S| ≥ (1− 1

C )5c2∆̃. Therefore, by linearity
of expectation, we can estimate:

E[X ′v] ≥ C

(
c1∆̃

2

)(
1

C

)2(
1− 1

C

)5c2∆̃

≥ c1(c1∆̃− 1) exp(−5c2∆̃/C − 1/C)

≥ ∆̃

e11
− 1

for ∆̃ sufficiently large.

Lemma 2.4. P
[
|Xv − E[Xv]| > log ∆̃

√
E[Xv]

]
< ∆̃−7.

Proof. Let ATv be the random variable counting the number of colors as-
signed to at least two out-neighbors of v, and Delv the random variable that
counts the number of colors assigned to at least two out-neighbors of v but
removed from at least one of them. Clearly, Xv = ATv−Delv and therefore
it suffices to show that each of ATv and Delv are sufficiently concentrated
around their means. We will show that for t = 1

2 log ∆̃
√

E[Xv] the following
estimates hold:

Claim 1: P [|ATv − E[ATv]| > t] < 2e−t
2/(8∆̃).

Claim 2: P [|Delv − E[Delv]| > t] < 4e−t
2/(100∆̃).

6



The two above inequalities yield that, for ∆̃ sufficiently large,

P[|Xv − E[Xv]| > log ∆̃
√
E[Xv]] ≤ 2e−

t2

8∆̃ + 4e−
t2

100∆̃

≤ ∆̃− log ∆̃

< ∆̃−7,

as we require. So, it remains to establish both claims.
To prove Claim 1, we use a version of Azuma’s inequality found in [10],

called the Simple Concentration Bound.

Theorem 2.5 (Simple Concentration Bound). Let X be a random variable
determined by n independent trials T1, ..., Tn, and satisfying the property that
changing the outcome of any single trial can affect X by at most c. Then

P[|X − E[X]| > t] ≤ 2e−
t2

2c2n .

Note that ATv depends only on the colors assigned to the out-neighbors
of v. Note that each random choice can affect ATv by at most 1. Therefore,
we can take c = 1 in the Simple Concentration Bound for X = ATv. Since
the choice of random color assignments are made independently over the
vertices and since d+(v) ≤ c2∆̃, we immediately have the first claim.

For Claim 2, we use the following variant of Talagrand’s Inequality (see
[10]).

Theorem 2.6 (Talagrand’s Inequality). Let X be a nonnegative random
variable, not equal to 0, which is determined by n independent trials, T1, . . . , Tn
and satisfyies the following conditions for some c, r > 0:

1. Changing the outcome of any single trial can affect X by at most c.

2. For any s, if X ≥ s, there are at most rs trials whose exposure certifies
that X ≥ s.

Then for any 0 ≤ λ ≤ E[X],

P
[
|X − E[X]| > λ+ 60c

√
rE[X]

]
≤ 4e

− λ2

8c2rE[X] .

We apply Talagrand’s inequality to the random variable Delv. Note that
we can take c = 1 since any single random color assignment can affect Delv
by at most 1. Now, suppose that Delv ≥ s. One can certify that Delv ≥ s
by exposing, for each of the s colors i, two random color assignments in
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N+(v) that certify that at least two vertices got color i, and exposing at
most two other color assignments which show that at least one vertex colored
i lost its color. Therefore, Delv ≥ s can be certified by exposing 4s random
choices, and hence we may take r = 4 in Talagrand’s inequality. Note
that t = 1

2 log ∆̃
√
E[Xv] >> 60c

√
rE[Delv] since E[Xv] ≥ ∆̃/e11 − 1 and

E[Delv] ≤ c2∆̃. Now, taking λ in Talagrand’s inequality to be λ = 1
2 t, we

obtain that P[|Delv−E[Delv]| > t] ≤ P[|Delv−E[Delv]| > λ+ 60c
√
rE[X]].

Therefore, provided that λ ≤ E[Delv], we have the confirmed Claim 2.

It is sufficient to show that E[Delv] = Ω(∆̃), since λ = O(log ∆̃
√

∆̃).
The probability that exactly two vertices in N+(v) are assigned a particular

color c is at least c1∆̃2

2 C−2(1 − 1/C)c2∆̃ ≈ 2e−10, a constant. It remains to
show that the probability that at least one of these vertices loses its color
is also (at least) a constant. We use Janson’s Inequality (see [1]). Let u
be one of the two vertices colored c. We only compute the probability that
u gets uncolored. We may assume that the other vertex colored c is not a
neighbor of u since this will only increase the probability. We show that
with large probability there exists a monochromatic directed path of length
at least 2 starting at u. Let Ω = N+(u) ∪ N++(u), where N++(u) is the
second out-neighborhood of u. Each vertex in Ω is colored c with probability
2
∆̃

. Enumerate all the directed paths of length 2 starting at u and let Pi

be the ith path. Clearly, there are at least (c1∆̃)2 such paths Pi. Let Ai

be the set of vertices of Pi, and denote by Bi the event that all vertices
in Ai receive the same color. Then, clearly P[Bi] = 1

(b∆̃/2c)2
≥ 4

∆̃2
. Then,

µ =
∑

P[Bi] ≥ 4
∆̃2
· (c1∆̃)2 = 4c2

1. Now, if δ =
∑

i,j:Ai∩Aj 6=∅ P[Bi ∩ Bj ] in
Janson’s Inequality satisfies δ < µ, then applying Janson’s Inequality, with
the sets Ai and events Bi, we obtain that the probability that none of the
events Bi occur is at most e−1, and hence the probability that u does not
retain its color is at least 1 − e−1, as required. Now, assume that δ ≥ µ.
The following gives an upper bound on δ:

δ =
∑

i,j:Ai∩Aj 6=∅

P[Bi ∩Bj ] =
∑

i,j:Ai∩Aj 6=∅

1

(b∆̃/2c)3

≤ (c2∆̃)2 · 2c2∆̃ · 8

(∆̃− 2)3
< 32,

for ∆̃ ≥ 100. Now, we apply Extended Janson’s Inequality (again see [1]).
This inequality now implies that the probability that none of the events Bi

occur is at most e−c
2
1/4, a constant. Therefore, by linearity of expectation

E[Delv] = Ω(∆̃).
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Clearly, since E[Xv] ≤ c2∆̃, Lemmas 2.3 and 2.4 imply that P[Av] < ∆̃−7.
This completes the proof of Theorem 2.1.

3 Brooks’ Theorem for small ∆̃

The bound in Theorem 2.1 is only useful for large ∆̃. Rough estimates
suggest that ∆̃ needs to be at least in the order of 1010. The above approach
is unlikely to improve this bound significantly with a more detailed analysis.
In this section, we improve Brooks’ Theorem for all values of ∆̃. We achieve
this by using a result on list colorings found in [5]. List coloring of digraphs is
defined analogously to list coloring of undirected graphs. A precise definition
is given below.

Let C be a finite set of colors. Given a digraph D, let L : v 7→ L(v) ⊆ C
be a list-assignment for D, which assigns to each vertex v ∈ V (D) a set of
colors. The set L(v) is called the list (or the set of admissible colors) for v.
We say D is L-colorable if there is an L-coloring of D, i.e., each vertex v
is assigned a color from L(v) such that every color class induces an acyclic
subdigraph in D. D is said to be k-choosable if D is L-colorable for every
list-assignment L with |L(v)| ≥ k for each v ∈ V (D). We denote by χl(D)
the smallest integer k for which D is k-choosable.

The result characterizes the structure of non L-colorable digraphs whose
list sizes are one less than under Brooks’ condition.

Theorem 3.1 ([5]). Let D be a connected digraph, and L an assignment
of colors to the vertices of D such that |L(v)| ≥ d+(v) if d+(v) = d−(v)
and |L(v)| ≥ min{d+(v), d−(v)} + 1 otherwise. Suppose that D is not L-
colorable. Then D is Eulerian, |L(v)| = d+(v) for each v ∈ V (D), and every
block of D is one of the following:

(a) a directed cycle (possibly a digon),

(b) an odd bidirected cycle, or

(c) a bidirected complete digraph.

Now, we can state the next result of this section.

Lemma 3.2. Let D be a connected digraph without digons, and let ∆̃ =
∆̃(D). If ∆̃ > 1, then χl(D) ≤ d∆̃e.

Proof. We apply Theorem 3.1 with all lists L(v), v ∈ V (D) having cardinal-
ity d∆̃e. It is clear that the conditions of Theorem 3.1 are satisfied for every
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Eulerian vertex v. It is easy to verify that the conditions are also satisfied
for non-Eulerian vertices. Now, if D is not L-colorable, then by Theorem
3.1, D is Eulerian and d+(v) = d∆̃e for every vertex v. This implies that
D is d∆̃e-regular. Now, the conclusion of Theorem 3.1 implies that D con-
sists of a single block of type (a), (b) or (c). This means that either D is a
directed cycle (and hence ∆̃ = 1), or D contains a digon, a contradiction.
This completes the proof.

We can now prove the main result of this section, which improves Brooks’
bound for all digraphs without digons.

Theorem 3.3. Let D be a connected digraph without digons, and let ∆̃ =
∆̃(D). If ∆̃ > 1, then χ(D) ≤ α(∆̃ + 1) for some absolute constant α < 1.

Proof. We define α = max
{

∆1
∆1+1 , 1− e

−13
}

, where ∆1 is the constant in

the statement of Theorem 2.1. Now, if ∆̃ < ∆1 then by Lemma 3.2, it
follows that χ(D) ≤ d∆̃e ≤ α(∆̃ + 1). If ∆̃ ≥ ∆1, then by Theorem 2.1 we
obtain that χ(D) ≤

(
1− e−13

)
∆̃ ≤ α(∆̃ + 1), as required.

An interesting question to consider is the tightness of the bound of
Lemma 3.2. It is easy to see that the bound is tight for d∆̃e = 2 by consid-
ering, for example, a directed cycle with an additional chord or a digraph
consisting of two directed triangles sharing a common vertex. The graph
in Figure 1 shows that the bound is also tight for d∆̃e = 3. It is easy to
verify that, up to symmetry, the coloring outlined in the figure is the unique
2-coloring. Now, adding an additional vertex, whose three out-neighbors are
the vertices of the middle triangle and the three in-neighbors are the remain-
ing vertices, we obtain a 3-regular digraph where three colors are required
to complete the coloring.

Another example of a digon-free 3-regular digraph on 7 vertices requiring
three colors is the following. Take the Fano Plane and label its points by
1,2,...,7. For every line of the Fano plane containing points a, b, c, take a
directed cycle through a, b, c (with either orientation). There is a unique
directed 3-cycle through any two vertices because every two points line in
exactly one line. This shows that the Fano plane digraphs are not isomorphic
to the digraph from the previous paragraph. Finally, it is easy to verify that
the resulting digraph needs three colors for coloring.

Note that the digraphs in the above examples are 3-regular tournaments
on 7 vertices. It is not hard to check that every tournament on 9 vertices has
d∆̃e = 4, and yet is 3-colorable. In general, we pose the following problem.
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Figure 1: Constructing a 3-regular digraph D with χ(D) = 3.

Question 3.4. What is the smallest integer ∆0 such that every digraph D
without digons with d∆̃(D)e = ∆0 satisfies χ(D) ≤ ∆0 − 1?

Note that this is a weak version of Conjecture 1.5. By Theorem 2.1,
∆0 exists. However, we believe that ∆0 is small, possibly equal to 4. The
following proposition shows that the above holds for every d∆̃e ≥ ∆0.

Proposition 3.5. Let ∆0 be defined as in Question 3.4. Then every digon-
free digraph D with d∆̃(D)e ≥ ∆0 satisfies χ(D) ≤ d∆̃(D)e − 1.

Proof. The proof is by induction on d∆̃e. If d∆̃e = ∆0 this holds by the
definition of ∆0. Otherwise, let U be a maximal acyclic subset of D. Then
d∆̃(D − U)e ≤ d∆̃(D)e − 1 for otherwise U is not maximal. Since we can
color U by a single color, we can apply the induction hypothesis to complete
the proof.

As a corollary we get:

Corollary 3.6. There exists a positive constant α < 1 such that for every
digon-free digraph D with d∆̃(D)e ≥ ∆0, χ(D) ≤ αd∆̃e.

Proof. Let α = max
{
d∆1e
d∆1e+1 , 1− e

−13
}

, where ∆1 is the constant in the

statement of Theorem 2.1. Now, applying Theorem 2.1 or Proposition 3.5
gives the result.
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