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Abstract

A global offensive alliance in a graph G = (V, E) is a subset S of V' such that for
every vertex v not in S at least half of the vertices in the closed neighborhood of
v are in S. We give an upper bound on the global offensive alliance number of a
graph in terms of its degree sequence. We also study global offensive alliances of
random graphs.
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1 Introduction

The study of alliances in graphs was first introduced by Hedetniemi, Hedet-
niemi and Kristiansen [7]. They introduced the concepts of defensive and
offensive alliances, global offensive and global defensive alliances and studied
alliance numbers of a class of graphs such as cycles, wheels, grids and com-
plete graphs. Haynes et al. [5] studied the global defensive alliance numbers
of different classes of graphs. They gave lower bounds for general graphs,
bipartite graphs and trees, and upper bounds for general graphs and trees.
Rodriquez-Velazquez and Sigarreta [12] studied the defensive alliance number
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and the global defensive alliance number of line graphs. A characterization of
trees with equal domination and global strong defensive alliance numbers was
given by Haynes, Hedetniemi and Henning [6].

Offensive alliances were first studied by Favaron et. al [3], where they de-
rived some bounds on the offensive alliance number. Rodriguez-Velazquez and
Sigarreta [9] gave bounds for offensive and global offensive alliance numbers
in terms of the algebraic connectivity, the spectral radius, and the Laplacian
spectral radius of a graph. They also gave bounds on the global offensive
alliance number of cubic graphs in [10] and the global offensive alliance num-
ber for general graphs in [11]. Some bounds on the global offensive alliances
were given in [4]. Balakrishnan et al. [2] studied the complexity of global
alliances. They showed that the decision problems for global defensive and
global offensive alliances are both NP-complete for general graphs.

This paper further studies the global offensive alliance number of a graph.

Given a simple graph G = (V, E) and a vertex v € V, the open neighbor-
hood of v, N(v), is defined as N(v) = {u : uv € E}. The closed neighborhood
of v, denoted by Nv], is N[v] = N(v) U {v}. Given a set X C V, the bound-
ary of X, denoted by 0(X), is the set of vertices in V' — X that are adjacent
to at least one member of X. A set X C V is called a dominating set if
I(X)=V-X.

Definition 1.1 A set S C V is an offensive alliance if for every v € 6(5),
|IN[v] N S| > |N[v] — S|. An offensive alliance S is called a global offensive
alliance if S is also a dominating set.

Definition 1.2 A global offensive alliance S is called a global strong offensive
alliance if for every v € §(S), |[N[v]N S| > |N[v] = S|.

Definition 1.3 The global (strong) offensive alliance number of G is the car-
dinality of a minimum size global (strong) offensive alliance in G, and is de-
noted by 7,(G)(75(G)). A minimum size global offensive alliance is called a
Yo (G)-set.

In this paper, we study the global (strong) offensive alliance numbers of
general graphs. We give an upper bound on the global (strong) offensive
alliance number of general graphs. Additionally, we study the global (strong)
offensive alliance number of random graphs.

The rest of the paper is organized as follows. In Section 2, we give an upper
bound on the global (strong) offensive alliance number of a general graph in
terms of its order and degree sequence. Using this bound, we obtain a second
upper bound on the global (strong) offensive alliance number in terms of the



minimum degree of the graph. In Section 3, we study the global (strong)
offensive alliance number of the random graph G(n, 1/2).

2 Global Offensive Alliances in Graphs

In this section we give an upper bound on ~,(G) for any graph G. Our result
derives an upper bound on v,(G) in terms of the degree sequence of the graph
G. The method of the proof is probabilistic. All the required probabilistic
tools can be found in [1]. Note that exp(x) is the exponential function e”.

Theorem 2.1 Let G = (V, E) be a graph of order n. Let deg(v) denote the
degree of vertex v. Then for all 1/2 > o > 0,

(@) = (g+a)nt (5-a) Do (125 - desto)
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Proof. We put every vertex v € V in a set S with probability p, indepen-
dently. The value of p will be determined later. The random set S is going
to be part of the global offensive alliance. For every vertex v € V, let X,
denote the number of vertices in the neighborhood of v that are in S. Let
Y={veV:iv¢gSand X, < LdegT(”)J }. Clearly, SUY is a global offensive

alliance. Note that E[|S|] = np. Now, we estimate E[|Y|].

It is not hard to see that X, is a Binomial(deg(v),p) random variable.
We use the Chernoff Bound(see, for example, Alon and Spencer [1]) to bound
PIX, < degT(v)]. The Chernoft Bound states that for any positive € < 1 and
random variable X that has binomial distribution with probability p and mean
mn,

(1) P[|X — pn| > epn] < 2e~< P2

Let e =1— 2ip. Then, by the Chernoff Bound,

deg(v)

P[X, <
2

| =P[X, < (1 - €)p(deg(v))]
< ¢~ deg(v)p/2
_ o~ (1=5;) deg(v)p/2.
Chernoft’s bound holds whenever 0 < € < 1, or equivalently when p > %
Now,

Plo e Y]=P[{v ¢ S} N{X, < deg(v)/2}]
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by independence. By linearity of expectation, we get that
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Now, we have that

(2) E[SUY[ <np+ Y (1—ple 7o)t
veV

Therefore, there exits a global offensive alliance in G of size at most
() ot Z(l — p)e (1= deg(v)p/2

veV
Thus, we have that

(4) ’Vo(G) < np + Z(l — p)e_(l_%)Q deg(v)p/Q.
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The only constraint we have on p is that p > % We set p = % + « for any
a > 0. This completes the proof.

O

A similar result can be derived for the global strong offensive alliance
number of a graph.

Theorem 2.2 Let G = (V, E) be a graph of order n. Then for all 1/2 > o >
0,
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Due to space restrictions, the proof of Theorem 2.2 is omitted. The proof
is in the same spirit as the proof of Theorem 2.1. Theorems 2.1 and 2.2 yield
the following corollaries.

Corollary 2.3 Let G be a graph of minimum degree d > 2. Then

1 log d 1/2 1 Vlogd
< | = _
PYo(G) = (2 + ( d ) + 2\/3 d n




Corollary 2.4 Let G be a graph of minimum degree d > 2. Then

1 [logd\'"* 1
R < |z — | n.
%(G>_(2+(d+1) il

Note that if the minimum degree d of a graph G tends to infinity, corollaries
2.3 and 2.4 imply that ~,(G) and 75(G) approach to n/2. For large minimum
degree d, our results improve the following sharp bounds found in [8].

Theorem 2.5 ([8]) For every connected graph G of ordern > 2, 7,(G) < %
If the minimum degree of G is at least 2, v5(G) < %”.

3 Global Offensive Alliances in Random Graphs

The random graph G(n,1/2) is the graph on n vertices where each possible
edge is present with probability 1/2, independently. It seems plausible that
the random graph G(n, 1/2) should have a global offensive alliance number of
approximately n/2. In this section, we provide some evidence that this is the
case. The main result of this section is the following theorem. The proof is
long and is omitted.

Theorem 3.1 Let ¢ < 1/2 be any fized constant. Then
Pu(G(n,1/2)) < en] = o(1).

Since a global strong offensive alliance in a graph G is also a global offensive
alliance in GG, Theorem 3.1 immediately implies the following.

Theorem 3.2 Let ¢ < 1/2 be any fized constant. Then
Pa(G(n.1/2)) < en] = o(1).

On the other hand, using corollaries 2.3 and 2.4, one can obtain that for
¢ > 1/2, the random graph has a global (strong) offensive alliance of size at
most cn almost surely.

Theorem 3.3 Let ¢ > 1/2 be any fized constant. Then
Plvs(G(n,1/2)) < en)=1—o0(1).
Theorem 3.4 Let ¢ > 1/2 be any fized constant. Then

Plv.(G(n,1/2)) < en] =1—o(1).
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