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Abstract

Neumann-Lara (1985) and Škrekovski conjectured that every planar digraph with
digirth at least three is 2-colorable, meaning that the vertices can be 2-colored with-
out creating any monochromatic directed cycles. We prove a relaxed version of this
conjecture: every planar digraph of digirth at least five is 2-colorable. The result also
holds in the setting of list colorings.

Keywords: Planar digraph, digraph chromatic number, dichromatic number, discharg-
ing.

1 Introduction

Let D be a digraph without cycles of length ≤ 2, and let G be the underlying undirected
graph of D. A function f : V (D)→ {1, . . . , k} is a k-coloring of the digraph D if Vi = f−1(i)
is acyclic in D for every i = 1, . . . , k. Here we call the vertex set Vi acyclic if the induced
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subdigraph D[Vi] contains no directed cycles (but G[Vi] may contain cycles). We say that D
is k-colorable if it admits a k-coloring. The minimum k for which D is k-colorable is called
the chromatic number of D, and is denoted by χ(D) (see Neumann-Lara [4]).

The following conjecture was proposed independently by Neumann-Lara [5] and Škrekovski
(see [1]).

Conjecture 1.1. Every planar digraph D with no directed cycles of length at most 2 is
2-colorable.

The digirth of a digraph is the length of its shortest directed cycle (∞ if D is acyclic). It
is an easy consequence of 5-degeneracy of planar graphs that every planar digraph D with
digirth at least 3 has chromatic number at most 3.

There seems to be a lack of methods to attack Conjecture 1.1, and no nontrivial partial
results are known. The main result of this paper is the following theorem whose proof is
based on elaborate use of the (nowadays standard) discharging technique.

Theorem 1.2. Every planar digraph that has digirth at least five is 2-colorable.

The proof of Theorem 1.2 is deferred until Section 3. Actually, we will prove an extended
version in the setting of list-colorings which we define next.

Let C be a finite set of colors. Given a digraph D, let L : v 7→ L(v) ⊆ C be a list-
assignment for D, which assigns to each vertex v ∈ V (D) a set of colors. The set L(v) is
called the list (or the set of admissible colors) for v. We say D is L-colorable if there is
an L-coloring of D, i.e., each vertex v is assigned a color from L(v) such that every color
class induces an acyclic set in D. A k-list-assignment for D is a list-assignment L such that
|L(v)| = k for every v ∈ V (D). We say that D is k-choosable if it is L-colorable for every
k-list-assignment L.

Theorem 1.3. Every planar digraph of digirth at least five is 2-choosable.

The rest of the paper is devoted to the proof of Theorem 1.3.

2 Unavoidable configurations

In this section we provide a list of unavoidable configurations used in the proof of Theorem
1.3. Orientations of edges are not important at this point, so we will consider only undirected
graphs throughout the whole section.

We define a configuration as a plane graph C together with a function δ : U → N, where
U ⊆ V (C), such that δ(v) ≥ degC(v) for every v ∈ V (U). A plane graph G contains the
configuration (C,U, δ) if there is a mapping h : V (C)→ V (G) with the following properties:

(i) For every edge ab ∈ E(C), h(a)h(b) is an edge of G.

(ii) For every facial walk a1 . . . ak in C, except for the unbounded face, the image h(a1) . . . h(ak)
is a facial walk in G.
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Figure 1: Configurations Q1 to Q5
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Figure 2: Configurations Q6 to Q9

(iii) For every a ∈ U , the degree of h(a) in G is equal to δ(a).

(iv) h is locally one-to-one, i.e., it is one-to-one on the neighbors of each vertex of V (C).

Configurations used in the paper are shown in Figures 1–4. The vertices shown as squares,
pentagons, or hexagons represent the vertices in U and their values δ(u) are 4, 5, and 6,
respectively. The vertices in V (C) \ U are shown as smaller full circles. The configurations
shown in these figures may contains additional notation that will be used in the proofs later
in the paper.

The goal of this section is to prove the following theorem.

Theorem 2.1. Every plane graph of minimum degree at least four contains one of the
configurations Q1, . . . , Q23 depicted in Figures 1–4.

It suffices to prove Theorem 2.1 for a connected graph G. In the proof, we will use the
following terminology. If v is a vertex of degree k in G, then we call it a k-vertex , and a
vertex of degree at least k (at most k) will also be referred to as a k+-vertex (k−-vertex ). A
neighbor of v whose degree is k is a k-neighbor (similarly k+- and k−-neighbor). The size
of a face f , denoted by deg(f), is the length of the facial walk bounding f . A face f that
has size at least five is called a major face; if f has size at most 4 it is called a minor face.
A k-face is a face of size k. By a triangle we refer to a face of size 3. An r-s-t triangle is a
triangle whose vertices have degree r, s and t, respectively. An r+-s+-t+ triangle is defined
similarly. A triangle is said to be bad if it is a 5-4-4 triangle that is adjacent to at most two
major faces.
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Proof of Theorem 2.1. The proof uses the discharging method. Assume, for a contradiction,
that there is a plane graph G that contains none of the configurations Q1, . . . , Q23 shown in
Figures 1–4. Let G be a counterexample of minimum order. To each vertex or face x of G,
we assign the charge of c(x) = deg(x)− 4. A well-known consequence of Euler’s formula is
that the total charge is always negative,

∑
x∈V (G)∪F (G) c(x) = −8. We are going to apply the

following discharging rules :

R1: A k-face (k ≥ 5) adjacent to r triangles sends charge of (k − 4)/r to each adjacent
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triangle.

R2: A 5-vertex v incident to exactly one triangle sends charge 1 to that triangle. A 5-
vertex incident to exactly three triangles, sends charge 1/3 to each triangle. A 5-vertex
incident to exactly two triangles sends charge 1/2 to each triangle unless (i) at least
one of the triangles is a bad triangle in which case v sends charge of 3/5 to each bad
triangle and charge of 2/5 to each non-bad triangle, or (ii) none of the triangles is bad,
one of them is incident to a 4-vertex and the other is not, in which case v sends charge
2/3 to the triangle with the 4-vertex and 1/3 to the other triangle.

R3: A 6-vertex v incident to a 6-4-4 triangle T sends charge (i) 4/5 to T if T is adjacent to
exactly one major face, (ii) 3/5 to T if T is adjacent to exactly two major faces, and
(iii) 2/5 to T if T is adjacent to three major faces.

R4: A 6+-vertex v incident to a 6+-5+-5+ triangle T sends charge 1/3 to T unless T is a
6+-5-5 triangle with a 6+-5 edge incident to a 4-face and the 5-5 edge incident to a
triangle, in which case v sends charge 7/15 to T .

R5: A 6-vertex v incident to a 6-5-4 triangle T sends charge 1− x− y to T , where x is the
total charge sent to T by the rule R1 and y is the charge sent to T by the rule R2.
Note that y ≥ 1/3 by Claim 2 (below), so that v sends charge of at most 2/3 to T .

R6: A 6-vertex v incident to a 6-4-7+ triangle T sends charge 1/3 to T .

R7: A 6-vertex v incident with a 6-6-4 triangle T sends charge (5 − k)/10 to T if T is
adjacent to exactly k major faces (k = 0, 1, 2, 3).

R8: A 7+-vertex v incident to a 7+-4-4 triangle T sends charge 4/5 to T .

R9: A 7+-vertex v incident to a 7+-5+-4 triangle T sends charge 2/3 to T .

R*: After rules R1–R9 have been applied, each triangle T with positive current charge
equally redistributes its excess charge among those adjacent 5-5-4 triangles that have
negative charge.

First, let us state two simple observations that will be used repeatedly.

Claim 1. A major face sends charge of at least 1/5 to every adjacent triangle.

Claim 2. A 5-vertex sends charge of at least 1/3 to every incident triangle.

We will make repeated use of Claims 1 and 2, which follow from R1 and R2, respectively,
since the exclusion of Q4 implies that a 5-vertex is incident with at most three triangles.

For x ∈ V (G) ∪ F (G), let c∗(x) be the final charge obtained after applying rules R1–R9
and R∗ to G. We will show that every vertex and face has non-negative final charge. This
will yield a contradiction since the initial total charge of −8 must be preserved.
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4+-faces: Since the charge of a 4+-face only changes by rule R1, it is clear that every
such face has a nonnegative final charge.

3-faces: Let T = uvw be a 3-face. Then c(T ) = −1. We will show that c∗(T ) ≥ 0.
There are several cases to consider.

Case 1: T is a 4-4-4 triangle. This case is not possible since Q3 is excluded.
Case 2: T is a 5-4-4 triangle. Let deg(u) = 5 and deg(v) = deg(w) = 4. We may

assume that u is incident to at least two triangles, for otherwise c∗(T ) ≥ 0. Since Q1 and
Q5 are excluded, u is incident to precisely one other triangle T ′. Since Q9 is excluded, there
is at least one major face incident with uv or uw. Since Q1 and Q2 are excluded, the face
incident with the edge vw is major. If T is bad then T is adjacent to exactly two major faces
and by R1 and R2, c∗(T ) ≥ −1 + 1/5 + 1/5 + 3/5 = 0. Otherwise, if T is not bad, then all
its adjacent faces are major and c∗(T ) ≥ −1 + 1/5 + 1/5 + 1/5 + 2/5 = 0.

Case 3: T is a 6+-4-4 triangle. Let deg(u) ≥ 6 and deg(v) = deg(w) = 4. Since Q1

and Q2 are excluded, T is adjacent to at least one major face. Since a major face always
sends charge at least 1/5 to an adjacent triangle, it follows by the rule R3 (if deg(u) = 6) or
R8 (if deg(u) ≥ 7) that c∗(T ) ≥ 0.

Case 4: T is a 5-5-4 triangle. Let deg(v) = 4 and deg(u) = deg(w) = 5. We consider
several subcases.

Subcase (a): T is adjacent to at least two major faces. In this case, by Claims
1 and 2, T receives total charge of at least 1/5 + 1/5 + 1/3 + 1/3 > 1, which implies that
c∗(T ) ≥ 0.

Subcase (b): T is adjacent to no major faces. First, suppose that all faces adjacent
to T are 4-faces. Since Q7 is excluded, each of u and w is incident to at most one other
triangle besides T . If u (or w) is incident to no other triangle, then T receives a charge of 1
from u (or w) and c∗(T ) ≥ 0. Therefore, we may assume that each of u and w is incident to
exactly two triangles. But now, the exclusion of Q9 implies that neither u nor w is incident
to a (bad) 5-4-4 triangle, so that each of them sends charge 1/2 to T by the rule R2. Hence,
c∗(T ) ≥ 0.

The remaining possibility (by exclusion of Q1) is that the face incident to uw is a triangle
and the faces incident to uv and vw are 4-faces. However, this gives the configuration Q6.

Subcase (c): T is adjacent to exactly one major face. Since Q1 is excluded, and
using symmetry, we may assume that the three faces adjacent to T along edges uv, vw,wu
have, respectively, one of the following three descriptions:

(D1) a 4-face, a 4-face, a major face;

(D2) a 4-face, a major face, a 4-face;

(D3) a 4-face, a major face, a triangle T ′.

Recall that a 5-vertex is incident with at most three triangles, since Q4 is excluded. If
neither u nor w is incident with three triangles, then by rules R1 and R2, T receives charge
of at least 1/5 + 2/5 + 2/5 = 1, which implies that c∗(T ) ≥ 0. So we may assume that at
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least one these vertices is incident with three triangles. If the other is incident with at most
two triangles neither of which is bad, then T receives charge of at least 1/5 + 1/3 + 1/2 > 1,
and c∗(T ) > 0. In cases (D1) and (D2), we will show that this holds.

In case (D1), we may assume by symmetry that u is incident with three triangles. By
the exclusion of Q19 and Q20, w is incident with at most two triangles neither of which is a
5-4-4 triangle, so that neither is bad. Thus, c∗(T ) ≥ 0 in this case.

In case (D2), if u is incident with three triangles then the exclusion of Q16 and Q17 implies
that w is incident with at most two triangles neither of which is bad; and if w is incident
with three triangles then the exclusion of Q16 and Q18 implies that u is incident with at most
two triangles neither of which is bad. In each case, c∗(T ) ≥ 0.

It remains to consider case (D3). Note that neither T nor T ′ is a 5-4-4 triangle so neither
is bad. So if one of u and w is incident with only these two triangles then c∗(T ) ≥ 0 as
before. Thus, we may assume that u and w are each incident with exactly one triangle in
addition to T and T ′, and T receives charge of at least 1/5+1/3+1/3 = 13/15 by R1 and R2.
Since Q21 and Q15 are excluded, it follows that G contains the configuration P1 contained in
Figure 5, where face F is not a triangle and face M is major. Clearly, deg(u3) ≥ 5 since Q1 is
excluded. Note that T is the only 5-5-4 triangle adjacent to T ′, either clearly (if deg(u3) ≥ 6)
or by the exclusion of Q13 (if deg(u3) = 5). Suppose first that F is a major face. Then T ′

receives in total a charge of at least 1/5 + 1/3 + 1/3 + 1/3 = 6/5 after rules R1-R9 have been
applied, and so T ′ sends charge of at least 6/5 − 1 = 1/5 to T by rule R∗; thus, T receives
a total charge of at least 13/15 + 1/5 > 1, and c∗(T ) > 0. So we may assume that F is a
4-face. In this case, deg(u3) 6= 5 since Q14 is excluded, and so deg(u3) ≥ 6. By R4, u3 sends
charge of 7/15 to T ′. Hence T ′ receives total charge of at least 1/3 + 1/3 + 7/15 = 17/15
after rules R1-R9 have been applied, and so T ′ sends charge of at least 17/15− 1 = 2/15 to
T by rule R∗; thus T receives total charge of at least 13/15 + 2/15 = 1, and c∗(T ) ≥ 0.

Case 5: T is a 6-5-4 triangle. By the rule R5, T receives a total charge of 1 after the
discharging rules have been applied. Hence, c∗(T ) ≥ 0.

Case 6: T is a 6-6-4 triangle.
Then T receives charge of at least k/5 in total from its k adjacent major faces by Claim

1, and 1− k/5 in total from its two 6-vertices by R7. Hence, c∗(T ) ≥ 0.
Case 7: T is a 7+-5+-4 triangle. By rule R9, the 7+-vertex incident to T sends charge

of 2/3 to T . By rules R2, R6 and R9, the 5+-vertex sends charge of at least 1/3 to T . Thus,
T receives a total charge of at least 1, and c∗(T ) ≥ 0.

Case 8: T is a 5+-5+-5+ triangle.
By rules R2 and R4, each 5+-vertex incident with T sends charge of at least 1/3 to T .

Hence c∗(T ) ≥ 0.
4-vertices: If v is a 4-vertex, then c(v) = 0. Since v neither receives nor gives any

charge, we have c∗(v) = 0.
5-vertices: Let v be a 5-vertex, so that c(v) = 1. Assume the neighbors of v are v1, ..., v5,

ordered counter-clockwise. It follows from R2 that c∗(v) ≥ 0 unless v is incident with exactly
two triangles T1 and T2, each of which is bad, meaning that each is a 5-4-4 triangle adjacent
to at most two major faces. Since Q1 is excluded we may assume that T1 = vv1v2, T2 = vv3v4,
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Figure 5: Discharging analysis

and each of T1 and T2 is adjacent to at least one 4-face. Since Q2 is excluded, either the face
containing the vertices v2, v, v3 is a 4-face or the faces containing the vertices v4, v, v5 and
v5, v, v1 are both 4-faces. These are ruled out by the exclusion of Q9 and Q8, respectively.

6-vertices: We first use introduce some terminology, which we will also use for 7+-
vertices.

Let v be a d-vertex (d ≥ 6). We will denote the neighbors of v by v1, ..., vd in counter-
clockwise order, fi will denote the face with edges vvi and vvi+1 in its boundary (subscripts
modulo d), and if fi is a triangle then f ′i will denote the other face incident with the edge
vivi+1. Since Q1 is excluded, if v is incident with d triangles then every neighbor of v is a 5+-
vertex and so v gives charge of 1/3 to each incident triangle by R4; thus c∗(v) ≥ d−4−d/3 ≥
0. So we may assume that v is incident with at least one non-triangular face.

If fi, ..., fi+l−1 are triangles and fi−1 and fi+l are not, then we say that F = (fi, ..., fi+l−1)
is an (l)-fan at v, and call l + 1 the edge-count of F . If vvi is an edge incident with no
triangle, then we call (vvi) a (0)-fan with edge count of 1. With this convention, the edge-
counts of all fans at v sum to d. We say that an (l)-fan F is good if v gives charge of at most
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(l+ 1)(d− 4)/d in total to the l triangles of F , and bad otherwise. If every fan at v is good,
then v gives out charge of at most d− 4 in total and c∗(v) ≥ 0. Thus, we may assume that
there exists at least one bad fan at v.

Now assume that v is a 6-vertex, so that d = 6, c(v) = d− 4 = 2, and (d− 4)/d = 1/3.
Note that a (0)-fan cannot be bad. We consider two cases.

Case 1: There is a bad (1)-fan at v. Let F = (f1) be a bad (1)-fan. This implies
that v gives charge of more than 2/3 to f1. This can only happen when v gives charge of
4/5 to f1 by rule R3. This implies that f1 is a 6-4-4 triangle incident with exactly one major
face, which is necessarily f ′1 since Q1 and Q2 are excluded, and f6 and f2 are 4-faces since
Q1 is excluded. If v is incident with at most two triangles, then v gives total charge of at
most 4/5 + 4/5 < 2, and c∗(v) > 0. So we may assume that v is incident with at least
three triangles. Since Q11 is excluded, f3 and f5 are not both triangles. Therefore, we may
assume, without loss of generality, that f3 and f4 are triangles, which are adjacent along the
edge vv4. Since Q1 is excluded, v4 is a 5+-vertex. Thus, R3 does not apply to f3 and f4.
The charge sent to each of f3 and f4 by rule R5 is at most 2/3, and at most 1/2 by any
other rule. Since 4/5 + 2/3 + 1/2 < 2 = c(v), c∗(v) is always positive unless v gives charge
of more than 1/2 to both f3 and f4 by R5. This implies that deg(v3) = deg(v5) = 4 and
deg(v4) = 5. Since Q10 is excluded, f5 is a major face. Thus, by Claim 1, f5 sends charge of
at least 1/5 to f4, and by Claim 2, v4 sends charge of at least 1/3 to f4. Thus, v sends total
charge of at most 1 − 1/5 − 1/3 = 7/15 to f4 by R5. Thus, the final charge sent by v is at
most 4/5 + 2/3 + 7/15 < 2.

Case 2: There is a bad (l)-fan at v, for some l ≥ 2. Let F = (f1, ..., fl) be a bad
(l)-fan. We may assume that v gives at least as much charge to f1 as to fl. Since Q1 is
excluded, the vertices v2, ..., vl are all 5+-vertices, and so if l ≥ 3 then v gives charge of 1/3
to each of the faces f2, ..., fl−1 by rule R4. Since F is bad, v must give charge of more than
1 to f1 and fl together. Thus, we may assume that v gives charge of more than 1/2 to f1.
Since f1 is not a 6-4-4 triangle, v gives charge of more than 1/2 to f1 by the rule R5. This
implies that deg(v1) = 4 and deg(v2) = 5.

If either f6 or f ′1 is a major face, then this face gives charge of at least 1/5 to f1 by Claim
1. As v2 gives charge of at least 1/3 by Claim 2, we have that v gives f1 charge of at most
1 − 1/5 − 1/3 < 1/2 by R5, a contradiction. Now, the exclusion of Q1 implies that f6 and
f ′1 are both 4-faces.

Note that since v is a 6-vertex, it cannot be incident to a bad triangle. If v2 is incident
with only two triangles, f1 and f2, then v2 gives charge of at least 1/2 to f1 by R2. Thus, v
gives to f1 charge of at most 1− 1/2 = 1/2 by rule R5, a contradiction. Thus, v2 is incident
with three triangles. Since f ′1 is a 4-face and Q21 is excluded, the face between f ′1 and f ′2 is
not a triangle. It follows that f ′2 is a triangle.

Since v gives charge of at most 2/3 to each of f1 and fl, v gives charge of at most (l+2)/3
to the triangles of F in total. Suppose there is a (0)-fan F0 at v. Then F and F0 use l + 2
edges between them, and they receive charge of at most (l+ 2)/3 from v since F0 receives no
charge. Since by Case 1 there is no bad (1)-fan at v, there cannot be another bad fan at v,
since there are only 6− l− 2 ≤ 2 unused edges. Thus, v gives charge of at most (6− l− 2)/3
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to the remaining good fan(s), and c∗(v) ≥ 2− 6/3 = 0.
Thus, we may assume that there is no (0)-fan at v, i.e., there are no two consecutive

non-triangular faces around v. Since f6 is a 4-face, it follows that f5 is a triangle. By the
exclusion of Q22, f3 is not a triangle. Therefore, f4 is a triangle.

Since f1 and f2 are triangles and f3 is not, we have that l = 2. Note that v gives charge
of at most 2/3 to f1, and recall that it gives charge of more than 1 to f1 and f2 together.
Thus, v gives more than 1/3 charge to f2. Since f2 and f ′2 are both triangles and Q1 is
excluded, v3 is not a 4-vertex, and so f2 = vv2v3 is a 6-5-5+ triangle. In order for v to give
charge of more than 1/3 to f2 by R4, it must be that f2 is a 6-5-5 triangle and the edge vv3
is incident with a 4-face. In other words, deg(v3) = 5 and f3 is a 4-face. But this gives the
forbidden configuration Q23, a contradiction. This completes the case when d = 6.

7+-vertices: Let v be a d-vertex where d ≥ 7. Then only the rules R4, R8 and R9 can
apply to v. Let F = (f1, ..., fl) be an (l)-fan at v. Recall that by the exclusion of Q1, v2, ..., vl
are all 5+-vertices. We now consider all the possible values of l.

If l = 0, then v gives no charge to F .
If l = 1, then v gives F charge of at most 4/5 = (2/5)(l + 1) by R8.
If l = 2, then v gives F charge of at most 2/3 + 2/3 = 4/3 = (4/9)(l + 1) by R9.
If l = 3, then v gives F charge of at most 2/3 + 1/3 + 2/3 = 5/3 = (5/12)(l + 1) by R4

and R9.
If l ≥ 4, then v gives F charge of at most (l + 2)/3 ≤ (2/5)(l + 1) by R4 and R9.

Since 2/5 < 5/12 < 4/9 and 4/9 < (d− 4)/d if d ≥ 8, there are no bad fans in this case
and hence c∗(v) ≥ 0. Thus, we may assume that d = 7, and c(v) = d−4 = 3, (d−4)/d = 3/7.
Since 5/12 < 3/7 < 4/9, only a (2)-fan can be bad. If there are two bad (2)-fans at v then
there is also a (0)-fan at v, and v gives charge of at most 4/3 + 4/3 + 0 < 3. If there is only
one bad (2)-fan, then v gives charge of at most 4/3 + 5/3 = 3, when the remaining edges at
v form a (3)-fan. In all cases, c∗(v) ≥ 0.

3 Reducibility

Let us first introduce some notation that will be used in the rest of the paper. If either uv or
vu is an arc in a digraph D, we say that uv is an edge of D. We will consider a planar digraph
D, its underlying graph G, and a 2-list-assignment L, where L(v) ⊆ C and |L(v)| = 2 for
every v ∈ V (D). Let φ : V (D) → C be a function such that φ(v) ∈ L(v) for each vertex v.
A color-i cycle is a directed cycle in D whose every vertex is colored with color i, for i ∈ C.
Recall that φ is an L-coloring if there is no color-i cycle for any i ∈ C. When we speak of
vertex degrees , we always mean degrees in G. For the digraph D, the out-degree and the
in-degree of a vertex v are denoted by d+(v) and d−(v), respectively.

If D is a digraph drawn in the plane and C is a configuration (which is an undirected
graph), we say that D contains the configuration C if the underlying undirected graph G
of D contains C. A configuration C is called reducible if it cannot occur in a minimum
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counterexample to Theorem 1.3. Showing that every planar digraph D of minimum degree
at least 4 and with digirth at least five contains a reducible configuration will imply that
every such digraph is 2-choosable.

Throughout this section, we assume that D is a planar digraph with digirth at least
five that is a counterexample to the theorem with a 2-list-assignment L such that every
proper subdigraph of D is L-colorable. In most statements, we will consider a special vertex
v ∈ V (D), and we will assume that L(v) = {1, 2}. The following lemma shows that the
minimum degree of D is at least four and that each vertex has in-degree and out-degree at
least two.

Lemma 3.1. Let v ∈ V (D). Then in every L-coloring of D− v, each color in L(v) appears
at least once among the out-neighbors and at least once among the in-neighbors of v. Conse-
quently, every v ∈ V (D) has d+(v) ≥ 2 and d−(v) ≥ 2; therefore, D contains no 3−-vertices
and every 4-vertex has d+(v) = d−(v) = 2.

Proof. Suppose that a color c ∈ L(v) does not appear among the outneighbors of v in an
L-coloring of D − v. Then coloring v with c gives an L-coloring of D since a color-c cycle
would have to use an outneighbor of v. The same contradiction is obtained if a color in L(v)
does not occur among the in-neighbors, and this completes the proof.

Having an L-coloring φ of a subdigraph D − u (u ∈ V (D)), we may consider coloring u
with a color i ∈ L(u). Since D is not L-colorable, this creates a color-i cycle; let Ci = Ci(u)
be such a cycle. Such cycles will always be taken with respect to a partial coloring φ that
will be clear from the context. If L(u) = {a, b}, then Ca(u) and Cb(u) are disjoint apart
from their common vertex u. Since D is drawn in the plane, these cycles cannot cross each
other at u, and we say that they touch.

Lemma 3.2. Let v be a vertex incident to a triangle T = vwu, let φ be an L-coloring of
D − v, and let i ∈ L(v). Then Ci(v) cannot contain both edges vu and vw.

Proof. Since Ci(v) is directed, we may assume that uv, vw ∈ E(D). Since D has digirth
greater than three, this implies that uw ∈ E(D). But then we have a color-i cycle in D − v
consisting of the path Ci(v)− v and the arc uw, a contradiction.

Lemma 3.3. Let v be a vertex incident to a 4-cycle S = vwux, let φ be an L-coloring of
D − v and let i ∈ L(v). Then Ci(v) cannot contain all three edges ux, xv and vw.

Proof. Suppose that Ci(v) contains the edges ux, xv and vw. Since Ci(v) is directed, we
may assume that ux, xv, vw ∈ E(D). Since D has digirth greater than four, this implies that
uw ∈ E(D), and we have a color-i cycle through the arc uw in D − v, a contradiction.

The next lemma shows some restrictions on the colors around a 4-vertex that is contained
in a triangle. Recall our assumption that L(v) = {1, 2}.
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Figure 6: Colors around a 4-vertex contained in a triangle

Lemma 3.4. Let T = vuw be a triangle in D and deg(v) = 4. Let φ be an L-coloring of
D − v such that φ(w) = 1.

(a) The colors of the neighbors of v are as shown in Figure 6(a).
(b) If deg(w) = 4, then L(w) = L(v) = {1, 2} and the colors of the neighbors of v and w

are as shown in Figure 6(b).
(c) If deg(w) = 5, the other face containing the edge vw is a 4-face, and the clockwise

neighbors of w are v, u, w1, w2, w3, then either (i) w1 ∈ V (C1(v)) and the colors of the
neighbors of v and w are as shown in Figure 6(c1), where d is the color in L(w) \ {1}, or
(ii) L(w) = L(v) = {1, 2}, and the colors of the neighbors of v and w are as shown in Figure
6(c2).

Proof. (a) By assumption, w ∈ V (C1(v)). By Lemma 3.2, u /∈ V (C1(v)). Since C1(v) and
C2(v) touch at v, the colors of the neighbors of v must be as claimed.

(b) By uncoloring w and coloring v with color 1, we obtain an L-coloring φ′ of G − w.
The claim follows by applying part (a) to D − w and φ′.

(c) By (a), colors around v are as claimed. By Lemma 3.3, the cycle C1(v) does not
contain w3. We are done if it contains w1, which gives Figure 6(c1). Thus, we may assume
that C1(v) contains w2. Let us consider the coloring φ′ of D−w as used in the proof of part
(b). Let d ∈ L(w) \ {1}. Clearly, C1(w) = C1(v). Since Cd(w) and C1(w) touch at w, the
cycle Cd(w) contains the edges uw and ww1. Since φ(u) = 2, we have d = 2 and the coloring
is as shown in Figure 6(c2).

Let Q1, . . . , Q23 be the configurations shown in Figures 1–4. Our goal is to prove that
each of these configurations is reducible. We will use the notation about vertices of each of
these configurations as depicted in Figures 1–4 and in additional figures in this section.

Lemma 3.5. Configurations Q1, Q2, and Q3 are reducible.

Proof. Assume D contains one of these configurations and let φ be an L-coloring of D − v.
Without loss of generality, L(v) = {1, 2} and φ(w) = 1. If D contains Q1, then Lemma
3.4(a) applied to the top triangle in Q1 shows that the cycle C1(v) uses two edges of the
bottom triangle, a contradiction to Lemma 3.2. Similarly, if D contains Q2, Lemma 3.4(b)
yields a contradiction to Lemma 3.3.

If D contains Q3, applying Lemma 3.4(b) twice (to edges vw and vu) determines the
colors of all neighbors of u, v, w, and we see that interchanging the colors of u and w gives
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an L-coloring of D− v that contradicts Lemma 3.4(a), since the new cycles C1(v) and C2(v)
cross at v instead of touching.

Lemma 3.6. Configurations Q4 and Q5 are reducible.

Proof. We may assume that vv3 ∈ E(D).
Let ψ be an L-coloring of D − vv3. Since D is not L-colorable, there is a color-i cycle C

in D using the arc vv3, where i = 1, say. Let φ be the L-coloring of D − v obtained from ψ
by uncoloring v; then C1(v) uses the arc vv3. By Lemma 3.2, C1(v) cannot use the arcs v2v
or v4v. Therefore, we may assume that C1(v) uses the arc v5v. Since C1(v) and the cycle
C2(v) touch at v, C2(v) uses the edges vv1 and vv2. In Q4, this yields a contradiction by
Lemma 3.2. So it remains to consider Q5.

The edge v1v5 is incident with two faces, vv1v5 and, say, · · ·uv1v5w · · · . Let φ′ be the
L-coloring of G − v1 obtained from φ by uncoloring v1 and coloring v with color 2. Note
that v1 has neighbors v5, v colored 1, 2, respectively. Lemma 3.4(b) applied to φ′ shows that
L(v1) = L(v5) = {1, 2} and φ(u) = φ′(u) = φ′(w) = 1. Now let φ′′ be the L-coloring of
G − v5 obtained from φ by uncoloring v5 and coloring v with color 1. The same argument
shows that φ(u) = φ′′(u) = φ′′(w) = 2, which is a contradiction.

2
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u

w w 1

(a) (b)

v2
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w1

w2

wt

c

c

d

d

Figure 7: Triangle T = vuw and its neighborhood

In the proofs of all of the subsequent lemmas, showing reducibility of particular configu-
rations, we have a common scenario. Let us describe the common notation and assumptions
that we will use.

We will always have a triangle T = vuw, where deg(v) = 4. We will assume that
L(v) = {1, 2} and will consider an L-coloring φ of D− v. This coloring will also be denoted
by φv if we would want to remind the reader that the vertex v is not colored. The neighbors of
the vertices of T are denoted as in Figure 7(a), v1, v2 being neighbors of v, u1, . . . , us neighbors
of u and w1, . . . , wt neighbors of w, where ui and wj are enumerated in the clockwise order.
It may be that us = w1. By Lemma 3.4(a), we may assume that φv(v2) = φv(w) = 1
and φv(v1) = φv(u) = 2. We will denote the unused colors in L(u) and L(w) by c and d,
respectively, i.e., c ∈ L(u) \ {2} and d ∈ L(w) \ {1}. Sometimes we will be able to conclude
that c = 1 or that d = 2, but in general this need not be the case.
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As discussed before, φv induces cycles C1(v) and C2(v) passing through v. Form an L-
coloring φu of D − u from φv by coloring v with color 2 and uncoloring u. This coloring
induces cycles C2(u) and Cc(u) that touch at u; note that we may assume that C2(u) = C2(v).
Similarly, form an L-coloring φw of D−w from φv by coloring v with color 1 and uncoloring w.
The corresponding cycles C1(w) and Cd(w) touch at w; we may assume that C1(w) = C1(v).
This situation is depicted in Figure 7(b), where the touching of the cycles at u and w may
be different than shown (e.g., the cycle Cc(u) could be in the exterior of C2(u)). Note that
if c = 1 and d = 2, it may happen that Cc(u) and Cd(w) share the edge uw (but they would
be disjoint elsewhere since c 6= d in this case).

Before we proceed to the next lemma, we need the following claim.

Claim 3. The cycles Cc(u) and Cd(w) can be chosen so that at least one of them does not
use the edge uw.

Proof. Suppose that every choice of Cc(u) and Cd(w) uses uw. Then c = 1 and d = 2, and
furthermore, interchanging the colors of u and w gives an L-coloring of D− v. This coloring
contradicts Lemma 3.4 (a).
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Figure 8: Configurations Q6 to Q9

Lemma 3.7. Configurations Q6, Q7, Q8, and Q9 are reducible.

Proof. We will use additional notation depicted in Figure 8. The cycle C2(v) = C2(u) uses
the edges v1v and vu, and it therefore cannot use the edge uu1 by Lemma 3.3. For the same
reason, in Q6 and Q7, the cycle C1(v) = C1(w) cannot use the edge ww3. In Q6, the cycle
C2(u) cannot use the edge uu2, as then the cycle Cc(u), which touches C2(u) at u, must use
the edges uu3 and uw, contradicting Lemma 3.2. For the same reason, in Q6, C1(w) cannot
use the edge ww2, and in Q7 and Q9, C2(u) cannot use the edge uu3. In Q8 and Q9, C1(w)
must use the edge ww2, by Lemma 3.4 (b). Finally,

if C2(u) uses edge uu2 then C1(w) cannot use edge ww2; (1)

for, if C2(u) uses edge uu2 and C1(w) uses edge ww2, then Cc(u) must use edges uu3 and
uw, and Cd(w) must use edges uw and ww1, contradicting Claim 3.

We now consider the four configurations separately, starting with the easiest ones.
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Q9 : By the above, C2(u) uses the edge uu2 and C1(w) uses the edge ww2, which contra-
dicts (1).

Q6 : By the above, C2(u) uses uu3 and C1(w) uses ww1, which is impossible since u3 = w1

and cannot have more than one color.
Q7 : By the above, C2(u) uses uu2 and C1(w) uses ww1 or ww2. By (1), C1(w) must use

ww1. Thus, Cd(w) uses edges ww2 and ww3. Since C2(u) uses uu2, Cc(u) uses uu3 and uw,
which implies c = 1; and Cc(u) also uses ww1, since φu(v) = 2 and φu(w2) = φu(w3) = d 6= 1.
But this contradicts Lemma 3.3.

Q8: By the above, C2(u) uses uu2 or uu3 and C1(w) uses ww2. By (1), C2(u) uses
uu3. Thus, Cc(u) uses edges uu1 and uu2. In the coloring φ = φv, all vertices of the cycle
C = Cc(u) have color c except for u, which has color 2. Form a coloring φ′ from φ by
coloring v with color 2 and uncoloring u3. Since C2(v) passes through u3, φ

′ is an L-coloring
of D − u3, and u3 has neighbors u, u2 with colors 2, c. By Lemma 3.4 (b) applied to φ′,
L(u3) = L(u2) = {c, 2}, and u2 has a neighbor u′2 of color 2 that is separated from u3 by
C. Now change φ′ by recoloring u2, u3 with colors 2, c, respectively. There can be no color-c
cycle through u3, which now has only one neighbor of color c. Also, any color-2 cycle through
u2 would have to use the edges vu, uu2 and u2u

′
2, and this is impossible since v and u′2 are

separated by C and all vertices of C except for u and u2 have color c 6= 2. Thus, we have
obtained an L-coloring of D, a contradiction.
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Figure 9: Configurations Q10, Q11, and Q12

Lemma 3.8. Configurations Q10, Q11, and Q12 are reducible.

Proof. We will use additional notation depicted in Figure 9. By Lemma 3.4 we see that
L(w) = {1, 2}. Let C = C2(v). We may assume that C contains the arcs uv and vv1. Also,
by Lemma 3.4 (b), we see that φ(w) = φ(w2) = φ(v2) = 1, and φ(u) = φ(w1) = φ(v1) = 2.
Let L(u) = {c, 2} and note that C = C2(v) = C2(u).

The cycle C must use one of the arcs u1u, u2u, u3u, or u4u. By Lemma 3.3, C cannot
use the arc u4u.

Next, suppose that C uses the arc u2u. Now, we claim that modifying φv by recoloring
u with color c and w with color 2, gives an L-coloring of D − v. Clearly, there is no color-2
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cycle through w since w has only one neighbor of color 2. Now, a color-c cycle C ′ through u
touches C, so it uses the arcs u3u and uu4, contradicting Lemma 3.2. Therefore, the modified
coloring is an L-coloring of D− v, and Lemma 3.4 (a) now implies that we can extend it to
an L-coloring of D. Thus, we may suppose that C uses the arc u1u or u3u.

Now, if we were to modify φv by recoloring u with color c and w with color 2, by Lemma
3.4 (a) the resulting coloring φ∗ cannot be an L-coloring of D − v, thus we must have a
color-c cycle C ′ through u.

First, suppose that C uses the arc u1u. By Lemma 3.2, C ′ either uses the edges u2u
and u4u or (in Q11 only) uses the edges u2u and uu3. Suppose first that C ′ uses the edges
u2u and uu4. This cannot happen in Q12 since in this case C ′ would use the edge u4x; this
would contradict Lemma 3.4(a) at the vertex u4 by considering the coloring φ′ of D − u4
obtained from φv by coloring v with color 2, recoloring u with color c, and uncoloring u4.
Now, consider the cycle C ′′ = C2(w) through w in the coloring φw. Then C ′′ must use the
arcs u1u, uw and ww1 since C ′ separates u3 from u1 and c 6= 2. This contradicts Lemma 3.3
in cases Q10 and Q11.

The remaining case is that C ′ uses edges u2u and uu3, which can happen only in Q11 (by
Lemma 3.3). The cycle C2(w), which uses edges w1w and wu, cannot use u1u by Lemma
3.3, so it must use the edge uu4.

Next, we distinguish two cases. First, assume that u4u, uw,ww1 ∈ E(D). Then u4v1 ∈
E(D). Clearly, C2(w) uses a vertex x 6= u on C (since C and C2(w) cross at u). But now,
the directed path from v1 to x on C, together with the arc u4v1 and the path from x to u4
on C2(w) create a directed color-2 closed walk in the original coloring φ, a contradiction.
Secondly, assume that uu4, wu, w1w ∈ E(D). Clearly, C2(w) uses a vertex y 6= u on C. But
now, the directed path from y to u1 on C, with the arcs u1u, uu4 and the directed path
from u4 to y on C2(w) creates a color-2 directed closed walk in the original coloring φ, a
contradiction.

It remains to consider the case when C uses the arc u3u. Consider again the coloring φ∗

defined above, and the color-c cycle C ′. Since C and C ′ touch, C ′ must use the edges u2u
and uu1, and hence φ(u1) = φ(u2) = c. By Lemma 3.2, this is not possible in Q11 and Q12,
so it remains to consider Q10. Since C ′ is a directed cycle, assume that we have the arcs
u2u and uu1 (similar argument works for the other possibility). Now, C ′ cannot use the arc
xu2 by Lemma 3.3. Therefore, C ′ uses the arc yu2. Considering C2(w), we also notice that
C2(w) separates u1 from w2. Now, modify φ by recoloring u with color c, color v with color
2, and uncolor u2. Since c 6= 2, there is no color-2 cycle through v in the resulting coloring,
and since C2(w) separates u1 from w2 and C2(v) separates u1 from u4 there is no color-1
cycle through w and color-c cycle through u. Thus, the resulting coloring is an L-coloring of
D − u2, contradicting Lemma 3.4(a). This completes the proof.

Lemma 3.9. Configurations Q13, Q14 and Q15 are reducible.

Proof. We will use additional notation depicted in Figure 10. By Lemma 3.4 we see that
L(w) = {1, 2}. We may assume that the cycle C2(v) uses the directed arcs uv and vv1. By
Lemma 3.3, C2(v) cannot use the arc u1u. If C2(v) uses the arc u2u, then Cc(u) uses the
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Figure 10: Configurations Q13, Q14, and Q15

edges u3u and uw, contradicting Lemma 3.2. Therefore, we may assume henceforth that
C2(v) uses the arc u3u and that, in particular, φ(u3) = 2. Therefore, the cycle Cc(u) uses
the edges u1u and uu2, and we have that φv(u1) = φv(u2) = c.

The cycle C ′′ = Cd(w) uses two of the incident arcs to w. Since two neighbors of w are
on C1(v) and u, u3 are on C2(v), we conclude that d = 2. By Lemma 3.2, C ′′ cannot use
both of the edges wu3 and uw. Since C1(v) and C ′′ touch at w, C1(v) contains w3 and C ′′

contains the edge ww2.
Note that u3 ∈ V (C ′′), since u3 is the only neighbor of u of color 2 in the coloring φw.

Let us first suppose that C ′′ contains the arc uw. Since D has no directed triangles, we
conclude that u3w ∈ E(D), so we may shorten C ′′ by eliminating vertex u, and thus we may
henceforth assume that C ′′ contains the edge u3w. Now, Lemma 3.2 yields a contradiction
in the case of the configuration Q15. So, we are left to consider Q13 and Q14.

Suppose that φv(x) = 2, where x is the neighbor of u3 as shown in the figure. Then we
modify the original coloring φ as follows: we recolor u3 with the color c′ ∈ L(u3)\{2}, recolor
w with color 2, and color v with color 1. We claim that this is an L-coloring of D. Clearly,
there is no color-1 cycle through v since v2 is the only neighbor of v with color 1. Similarly,
there is no color-2 cycle through w since u has no neighbor of color 2. Lastly, there is no
color-c′ cycle through u3, since such a cycle would need to use the edges u3u2 and u3y, thus
it would not touch C ′′. This contradiction shows that C2(v) and C ′′ use the edge yu3, and
consequently, φ(y) = 2. In particular, the cycle C ′′ = C2(w) uses the edges yu3, u3w, and
ww2. Lemma 3.3 yields contradiction in the case of the configuration Q14.

It remains to consider Q13. If we apply Lemma 3.4(a) to the coloring of D− u2 obtained
from φu by giving u color c and uncoloring u2, we see that φ(s) = c, so that φ(t) = φ(u3) = 2.

Now, let φ′ be the function obtained from the original coloring φ by giving v color 2 and
recoloring u3 with color c′ ∈ L(u3)\{2}. There is now no color-2 cycle through v, so there
must be a color-c′ cycle Q through u3, for otherwise φ′ is an L-coloring of D. Clearly, Q
and C2(v) touch at u3 which implies that Q uses edges u2u3 and u3x. Thus c = c′, and the
neighbors t and u of u2 are separated by Q. So recoloring u2 with the color c′′ ∈ L(u2)\{c}
turns φ′ into an L-coloring of D. This contradiction completes the proof.
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Figure 11: Configurations Q16, Q17, and Q18

Lemma 3.10. The configurations Q16, Q17, Q18 are reducible.

Proof. We will use additional notation depicted in Figure 11. By Lemma 3.4 we see that
L(w) = {1, 2}. Consider C2(v). We may assume uv, vv1 are arcs in D. By Lemma 3.3, C2(v)
cannot use the arc u1u. Therefore, C2(v) uses one of the arcs u2u and u3u.

Let us first assume that C2(v) uses the arc u3u. Then the cycle Cc(u) uses edges u1u
and uu2. Lemma 3.2 gives a contradiction in the case of configurations Q16 and Q17, so it
remains to consider Q18.

We can turn φv into an L-coloring of D−u3 by giving v color 2 and uncoloring u3. Thus,
Lemma 3.4(a) implies that φv(w1) = φv(u) = 2, and that φv(x) = φv(u2) = c.

Now, we consider the cycle C ′′ = C2(w). Since C ′′ and C1(w) touch at w, C ′′ cannot use
the edge ww3. By Lemma 3.2 applied to φw, C ′′ cannot use both edges ww1 and ww2, and
so C ′′ must use edge uw, which means that C ′′ must use arcs w1u3, u3u, uw and ww2 (as
using ww1 instead of ww2 would contradict Lemma 3.3). Since D has no directed 4-cycles
or triangles, w1w and w1w2 are arcs of D. Then the arc w1w2 followed by the segment of C ′′

from w2 to w1 is a color-2 cycle in the original coloring φv, a contradiction. This completes
the proof when u3u belongs to C2(v).

Suppose now that C2(v) uses the arc u2u. Then the cycle C ′ = Cc(u) uses the edges u3u
and uw, which implies that c = 1. By Lemma 3.3 applied to φw, C ′ cannot use the edge
ww1, and so C ′ must use the edge ww2 or ww3.

In either case, we can form an L-coloring φ′w of D − w from φv by giving v color 2,
recoloring u with color c = 1, and uncoloring w. We now consider the cycles C1(w) and
Cd(w) with respect to this coloring φ′v of D−w. Clearly, C ′ = C1(w). The cycle C ′′ = Cd(w)
touches C ′ at w. If C ′ used the edge ww2, then Cd(w) would have to use edges ww3, wv and
vv1, which is not possible since w3 and v1 are separated by C1(v) and every vertex of C1(v)
except v has color 1 6= d. Thus, C ′ uses the edge ww3, and C ′′ uses the edges w1w and ww2.
In cases Q16 and Q18 we have a contradiction to Lemma 3.2. This completes the proof for
Q16 and Q18.

It remains to consider Q17. Recall that C ′ must use the edge ww3 and Cd(w) must use
the edge ww2. Thus we can obtain an L-coloring of D−w3 from φ′w by coloring w with color
c = 1 and ucoloring w3, and we can obtain an L-coloring of D − w2 from φ′w by coloring
w with color d and uncoloring w2. But Lemma 3.4 (b) says that vertices s and y must
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have the same color as w in both of these colorings, which is clearly impossible. This final
contradiction shows that Q17 is reducible.

wv

u

u2

Q19

v1

v2

w1

w2

w3

u1
u3

wv

u

u2

Q20

v1

v2

w1

w2

w3

u1
u3s

t

x

y

Figure 12: Configurations Q19 and Q20

Lemma 3.11. The configurations Q19 and Q20 are reducible.

Proof. We will use additional notation depicted in Figure 12. By Lemma 3.4 we see that
L(w) = {1, 2}. Let C = C2(v), and assume that C2(v) uses the arcs uv, vv1. The cycle
C2(v) cannot use the arc u1u by Lemma 3.3. Therefore, C2(v) must use one of the arcs u2u
or u3u. If C2(v) uses the arc u3u, then Cc(u) would use edges u1u and uu2, a contradiction
to Lemma 3.2. Thus, C2(v) uses the arc u2u. The cycles Cc(u) and C2(v) touch at u; thus
Cc(u) must use the edges uw and uu3. This implies that c = 1. Let us now consider the
cycle C1(v). Clearly, it contains the edges wv and vv2, and does not contain the edge w3w
by Lemma 3.3. Therefore, C1(v) uses one of the edges w1w and w2w.

If C1(v) uses the edge w2w, then Cd(w) must use the edges wu and ww1. Since φw(u) = 2,
we have d = 2 and φ(w1) = 2. Observe that the cycles C1(u) and C2(w) share the edge uw,
but are otherwise disjoint. However, this is not possible, since they cross each other as
they enter and leave the edge uw. This contradiction shows that C1(v) uses the edge w1w.
Consequently, we have φ(w1) = 1. Then Cd(w) contains the edges ww3 and ww2. This
contradicts Lemma 3.2 for configuration Q20.

It remains to consider Q19. Recall that the cycle C1(v) = C1(w) must use the edge w1w,
and Cd(w) must use the edge ww2. This gives a contradiction in exactly the same way as
for Q17 in the previous proof (using φw here instead of φ′w there). Therefore, Q19 is also
reducible.

Lemma 3.12. The configurations Q21, Q22 and Q23 are reducible.

Proof. Consider the cycle C1(v). It uses the edges wv and vv2. By Lemma 3.3, C1(v) cannot
use the edge w2w. If C1(v) uses the edge w1w, then Cd(w) would use edges uw and wu4,
and Lemma 3.2 would yield a contradiction. This proves that C1(v) uses the edge u4w. Now
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Figure 13: Configurations Q21, Q22, and Q23

we see that the cycle Cd(w) uses the edges w1w and ww2, and thus φv(w1) = φv(w2) = d.
Lemma 3.2 gives a contradiction in the case of Q21, so it remains to consider Q22 and Q23.

Let C = C2(v) = C2(u), which uses the edges uv and vv1. By Lemma 3.3, C cannot use
the edge u1u. Since φv(u4) = 1, C uses one of the edges u2u and u3u. Let C ′ = Cc(u), which
touches C = C2(u) at u. If C uses edge u3u, then C ′ must use either edges uu1 and uu2, or
edges uw and uu4, both of which would contradict Lemma 3.2. Thus, C uses the edge u2u,
and C ′ uses two of the edges uu3, uu4 and uw. In particular, c = 1 since φu(w) = φu(u4) = 1.

By Lemma 3.2, C ′ cannot use the edges uu4 and uw, and therefore it must use edge
uu3; we may assume that C ′ uses the arc u3u. If C ′ uses arc uw then it uses arc wu4, since
φu(w1) = φu(w2) = d 6= 1. Since D has no directed triangle, uu4 ∈ E(D), and so we can
shorten C ′ by using arc uu4 instead of the path uwu4. Thus, we may assume that C ′ uses
the arc uu4. In Q22, this contradicts Lemma 3.2 applied to the triangle u3uu4.

It remains to consider Q23. By Lemma 3.3 applied to the 4-cycle u3uu4x, C ′ cannot use
the arc u4x, and therefore it must use the arc u4y. In particular, φ(y) = c = 1.

Recall that C1(v) uses edges u4w and wv, and C = C2(v) uses edges u2u and uv. Form
φ′ from φu by coloring u with color 1 and recoloring u4 with color d′ ∈ L(u4)\{1}. Since
C2(v) separates the neighbors u1 and u3 of u, and u is the only neighbor of w with color 1
in φ′, it follows that there is no color-1 cycle through u in φ′. We also claim that there is
no color-d′ cycle through u4 in φ′: if C1(v) uses the edge u4y, then this holds since C1(v)
separates the neighbors x and w1 of u4; and if C1(v) uses the edge u4x then it holds because
φ′(x) = φ′(y) = 1 and w1 is the only neighbor of u4 that can have color d′. Thus, φ′ is an
L-coloring of D, a contradiction. This completes the proof of reducibility of Q23.

We are ready to complete the proof of the main result.

Proof of Theorem 1.3. By Theorem 2.1, every planar graph of minimum degree at least four
contains one of the configurationsQ1, . . . , Q23. Suppose thatD is a minimum counterexample
to Theorem 1.3. Then D has digirth at least five and minimum degree at least four, but
cannot contain any of the configurations Q1, . . . , Q23 by Lemmas 3.5-3.13. This proves that
a counterexample does not exist, and the proof is complete.
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4 Concluding remarks

We raise the following questions. It would be interesting to see if the result can be pushed
to digirth 4. Also, the following relaxation of Conjecture 1.1 should be of interest.

Conjecture 4.1. There exists k such that every oriented planar graph without cycles of
length 4, . . . , k is 2-colorable.

The original conjecture still seems out of reach. In fact, we do not know of a simple proof
of the fact that planar digraphs of large digirth are 2-colorable. In support of the conjecture,
it would be nice to see whether one can find large acyclic set in a planar digraph, say of size
n/2. In fact, the following was conjectured in [3].

Conjecture 4.2. Every oriented n-vertex planar graph has an acyclic set of size at least 3n
5

.

It is known that the bound in Conjecture 4.2 cannot be replaced by any larger value.
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