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Some Definitions

Acyclic digraph: digraph without directed cycles.

Digon: the directed cycle of length two.



An old conjecture

Conjecture (Albertson, Berman 1979)

Every n-vertex planar graph contains an induced forest of order at
least n/2.

Best possible: K4

Fact: every n-vertex planar graph contains an induced forest
of order at least 2n/5.
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The dichromatic number χ(D) of digraph D is the smallest k
s.t. V (D) can be partitioned into k sets V1, ...,Vk each of
which induces an acyclic subdigraph.

χ(D) = 3χ(G) = 3
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Introduced by Victor Neumann-Lara in 1982.
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Another old conjecture

Conjecture (Neumann-Lara, 1985)

Every oriented planar graph D has χ(D) ≤ 2.

Seems very hard to attack.

Theorem (Mohar, H., 2013)

Every planar digraph D of digirth at least five has χ(D) ≤ 2.
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The proof

Idea: Discharging...but messy. Configurations are graphs, not
digraphs.
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Open questions

I D planar and of digirth four ⇒ χ(D) ≤ 2?

Conjecture (McDiarmid, Mohar 2002)

Every oriented graph D with maximum degree ∆ has
χ(D) ≤ C · ∆

log ∆ .
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Thank You


