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Abstract. Let C and D be digraphs. A mapping f : V (D) → V (C) is a C-

colouring if for every arc uv of D, either f(u)f(v) is an arc of C or f(u) = f(v),
and the preimage of every vertex of C induces an acyclic subdigraph in D. We
say that D is C-colourable if it admits a C-colouring and that D is uniquely C-
colourable if it is surjectively C-colourable and any two C-colourings of D differ

by an automorphism of C. We prove that if a digraph D is not C-colourable,
then there exist digraphs of arbitrarily large girth that areD-colourable but not
C-colourable. Moreover, for every digraph D that is uniquely D-colourable,

there exists a uniquely D-colourable digraph of arbitrarily large girth. In
particular, this implies that for every rational number r ≥ 1, there are uniquely
circularly r-colourable digraphs with arbitrarily large girth.

1. Introduction

In a seminal Canadian Journal of Mathematics article [12], Paul Erdős estab-

lished nonconstructively the existence of graphs with arbitrarily large girth γ and

arbitrarily large chromatic number χ. In these introductory remarks, we focus

mainly on Erdős’ theorem, for the features that make it interesting are shared by

its progeny (e.g. [6, 28, 31]), the first of which also appeared in CJM.

Because graphs with similar combined properties as guaranteed by Erdős had

been constructed earlier—e.g. triangle-free plus large χ [8, 24, 34] or girth at least

six plus large χ [9, 16]—his result was not wholly unanticipated. Nevertheless, it re-

mains somewhat counterintuitive. Näıvely, one might reason that having large girth

implies edge-sparsity, while having large chromatic number entails edge-abundance,

so how could both properties coexist in one graph? Even upon closer inspection,

the result seems paradoxical. If, for a positive integer ℓ, a graph G satisfies γ > ℓ,

then any set of at most ℓ vertices induces an acyclic, hence 2-colourable, subgraph.
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Why is it not possible to assemble such colourings into a proper colouring of V (G)

using few colours? These questions’ answers might be regarded as the take-home

message of Erdős’ theorem: since the chromatic number depends intrinsically upon

the graph’s global structure, local 2-colourability imparts nothing on χ.

Yet the theorem’s influence somehow manages to transcend its important mes-

sage. Every student of combinatorial probability studies Erdős’ proof (cf. [1, 2,

5, 7, 10, 22]), that employs a deterministic step after a probabilistic argument for

the existence of graphs with few short cycles and small stability number. And

though constructive proofs [18, 20, 26] of Erdős’ existence theorem eventually fol-

lowed, their complexity perhaps precludes their inclusion in ‘The Book’, generally

imagined to favour the elegance, clarity, and simplicity of Erdős’ original argument.

Aside from its beautiful proof, the theorem’s influence can also be measured by

considering its descendants. Nešetřil [25] conjectured, and Bollobás and Sauer [6]

proved, the existence of graphs as guaranteed by Erdős that are, moreover, uniquely

χ-colourable. Colourings are special cases of homomorphisms into a fixed graph,

and Zhu [31] extended both Erdős’ and Bollobás and Sauer’s results to homomor-

phisms into general graphs. Rather recently, the results of [31] were extended by

Nešetřil and Zhu [28] to give a simultaneous generalization of Zhu’s two primary

results. Without attempting to give an exhaustive list, we also note the appearance

in recent years of a host of other articles related to the interplay between girth and

colouring; see, e.g., [11, 17, 19, 23, 27, 29, 32]. The results of the present paper

extend the main theorems of Zhu [31] to digraphs with acyclic homomorphisms.

Notation, terminology, details. As much as possible, we try to follow standard

terminology. See, for example, [3, 7] for graphs and digraphs, [2, 22] for probabilistic

concerns, and [15] for homomorphisms.

Our digraphs are simple—i.e. loopless and without multiple arcs—however, we

allow two vertices u, v to be joined by two oppositely directed arcs, uv and vu. The

girth of a graph or digraph refers to the length of a shortest cycle, that we take to

mean directed cycle in the digraph case (and infinite in either acyclic case).

Recall that a homomorphism of a graphG into a graphH is a function φ : V (G) →

V (H) such that {φ(u), φ(v)} ∈ E(H) whenever {u, v} ∈ E(G). An acyclic homo-

morphism of a digraph D into a digraph C is a function φ : V (D) → V (C) such

that:

(i) for every vertex v ∈ V (C), the subdigraph of D induced by φ−1(v) is

acyclic;

(ii) for every arc uv ∈ E(D), either φ(u) = φ(v), or φ(u)φ(v) is an arc of C.

If digraphs D and C are obtained from undirected graphs G and H, respectively, by

replacing every edge by two oppositely directed arcs, then acyclic homomorphisms
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between D and C correspond to usual graph homomorphisms between G and H. In

this sense, acyclic homomorphisms can be viewed as a generalization of the notion

of homomorphisms of undirected graphs.

It is well-known and easy to see that a graph G is (properly) r-colourable (for a

positive integer r) if and only if G admits a homomorphism to the complete graph

Kr. Thus, G is commonly called H-colourable if there is a homomorphism from G

to H. In the same way as homomorphisms generalize the notion of graph colouring,

acyclic homomorphisms generalize digraph colouring; cf. [4]. Motivated by this, we

say that a digraph D is C-colourable if there is an acyclic homomorphism from D

to C.

Zhu generalized Erdős’ theorem as follows.

Theorem 1.1 ([31]). If G and H are graphs such that G is not H-colourable,

then for every positive integer g, there exists a graph G∗ of girth at least g that is

G-colourable but not H-colourable.

To recover Erdős’ theorem, suppose that we want to arrange for γ ≥ g and χ ≥ r,

for some prescribed integers g and r; then we take G = Kr and H = Kr−1 in

Theorem 1.1.

Our first main result is a digraph analogue of the preceding result.

Theorem 1.2. If D and C are digraphs such that D is not C-colourable, then

for every positive integer g, there exists a digraph D∗ of girth at least g that is

D-colourable but not C-colourable.

Just as Theorem 1.1 generalizes Erdős’ theorem, Theorem 1.2 generalizes the ana-

logue appearing in [4]. See the introduction to Section 4 for a statement of this

analogue.

A graph G is uniquely H-colourable if it is surjectively H-colourable, and for any

two H-colourings φ, ψ of G, there is an automorphism π of H such that

(1.1) φ = π ◦ ψ.

Unique D-colourability is defined analogously for digraphs D. In either case, when

(1.1) occurs, we sometimes say that φ and ψ differ by an automorphism of H. A

graph H is a core if it is uniquely H-colourable; likewise for digraphs. To align

this formulation with the usual one (cf. [13, 15]), we offer the following observation

about the digraph version.

Lemma 1.3. A digraph D is a core if and only if every acyclic homomorphism

V (D) → V (D) is a bijection.
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Proof. Let φ : V (D) → V (D) be an acyclic homomorphism. If φ is not a bijection,

then φ and the identity homomorphism do not differ by an automorphism of D, so

D is not a core.

Suppose now that D is not a core, and let φ, ψ be two acyclic homomorphisms

that do not differ by an automorphism of D. If φ (or ψ) is bijective, then it is

a homomorphism of D onto itself. This implies that it is an automorphism of D.

Therefore, φ and ψ are not both bijective. �

Zhu generalized the aforementioned Bollobás-Sauer theorem [6] as follows.

Theorem 1.4 ([31]). For every graph H that is a core and every positive integer

g, there exists a graph H∗ of girth at least g that is uniquely H-colourable.

Bollobás and Sauer’s result follows from Theorem 1.4 because complete graphs are

cores, as is easily verified.

Our second main result establishes a digraph analogue of Theorem 1.4.

Theorem 1.5. For every digraph D that is a core and every positive integer g,

there exists a digraph D∗ of girth at least g that is uniquely D-colourable.

Theorem 1.5 immediately applies to digraph colourings and digraph circular colour-

ings (see, e.g., [4, 21]) to yield our third main result, Theorem 4.4. In favour of

an abbreviated mention of this result here, we postpone until Section 4 its full

statement, the definition of ‘circular colouring’, and some related discussion.

Corollary 1.6. For every rational number r ≥ 1 and every positive integer g, there

exists a digraph of girth at least g that is uniquely circularly r-colourable.

We devote Section 2 to the proof of Theorem 1.2, while Section 3 contains the

proof of Theorem 1.5. Both proofs are probabilistic and follow the main ideas of

[6] and [31], which themselves trace back to Erdős [12]. However, just as both of

these earlier refinements required new ideas to move to the next level, additional

care and some inspiration are needed to extend the proofs to the digraph setting.

2. Proof of Theorem 1.2

We begin by setting up a suitable random digraph model. Suppose that V (D) =

{1, 2, . . . , k} and that q = |E(D)|. Let n be a (large) positive integer, and let Dn be

the digraph obtained from D as follows: replace every vertex i with a (temporarily)

stable set Vi of n ordered vertices v1, v2, ..., vn, and replace each arc ij of D by the

set of all possible n2 arcs from Vi to Vj ; additionally, add each arc vrvs such that

vr, vs ∈ Vi and r < s. Clearly, |V (Dn)| = kn and |E(Dn)| = qn2 + k
(
n
2

)
.

Now fix a positive ε < 1/(4g). Our random digraph model D = D(Dn, p) consists

of those spanning subdigraphs of Dn in which the arcs of Dn are chosen randomly

and independently with probability p = nε−1.
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As usual in nonconstructive probabilistic proofs of results of this nature (cf.

[6, 28, 31]), the idea is to show that most digraphs in D have only a few short

cycles, and for most digraphs H ∈ D, the subdigraph of H obtained by removing

an arbitrary yet small set of arcs is not C-colourable. Choosing an H ∈ D with

both these properties, we can force the girth to be large by deleting an arc from

each short cycle. Since the set A0 of deleted arcs is small, the resulting digraph

H −A0 satisfies the desired conclusion of Theorem 1.2.

To make this description more precise, let D1 denote the set of digraphs in D

containing at most ⌈ngε⌉ cycles of length less than g, and let D2 be the set of

digraphs H ∈ D that have the property that H − A0 is not C-colourable for any

set A0 of at most ⌈ngε⌉ arcs. We will show that

(2.1) |D1| >
(
1− n−ε/2

)
|D|

and

(2.2) |D2| >
(
1− e−n

)
|D| .

Since (2.1) and (2.2) imply that D1 ∩D2 6= ∅ (for sufficiently large n), there exists

a digraph H ∈ D1 ∩ D2. Now H ∈ D1 implies that there is a set A0 of at most

⌈ngε⌉ arcs whose removal leaves a digraph D∗ :=H − A0 of girth at least g, while

H ∈ D2 means that D∗ is not C-colourable. Thus, it remains to establish (2.1) and

(2.2).

Proof of (2.1). The expected number Nℓ of cycles of length ℓ in a digraph H ∈ D

is at most

(2.3)

(
kn

ℓ

)
(ℓ− 1)! pℓ

since there are
(
kn
ℓ

)
(ℓ − 1)! ways of choosing a cyclic sequence of ℓ vertices as a

candidate for a cycle, and such an ℓ-cycle occurs in D with probability either 0 or

pℓ. It is easy to see that the product of the first two factors in (2.3) is smaller than

(kn)ℓ/ℓ. Therefore, if n is large enough, then

g−1∑

ℓ=2

Nℓ ≤

g−1∑

ℓ=2

(knε)ℓ

ℓ
< kg−1n(g−1)ε < n−ε/2ngε.

Now (2.1) follows easily from Markov’s Inequality. �

Proof of (2.2). We shall argue that |DrD2| < e−n|D|. If H ∈ DrD2, then there is

a set A0 of at most ⌈ngε⌉ arcs of H so that H−A0 admits an acyclic homomorphism

h to C. Let k′ = |V (C)|. By the pigeonhole principle, for each i ∈ V (D), there

exists a vertex xi ∈ V (C) such that |Vi∩h
−1(xi)| ≥ n/k′. Define φ : V (D) → V (C)

by setting φ(i) = xi. Since n/k′ ≫ ngε, the set Vi ∩ h
−1(xi) contains a subset Wi

of cardinality w := ⌈n/(2k′)⌉ such that no arc in A0 has an end vertex in Wi.
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Since D is not C-colourable, the function φ is not an acyclic homomorphism.

Therefore, either there is an arc ij ∈ E(D) such that φ(i) 6= φ(j) and φ(i)φ(j)

is not an arc of C, or there is a vertex v ∈ V (C) such that the subdigraph of D

induced on φ−1(v) contains a cycle.

We first consider the case when ij is an arc of D such that φ(i) 6= φ(j) and

φ(i)φ(j) is not an arc of C. Since h is an acyclic homomorphism, there are no arcs

from Wi to Wj in H −A0. By the definition of Wi and Wj , neither are there such

arcs in H.

Let us now estimate the expected number M of pairs of sets A ⊆ Vi, B ⊆ Vj ,

with |A| = |B| = w, such that ij ∈ E(D) and such that there is no arc from A to

B in H ∈ D (we call such a pair A,B a bad pair). By the linearity of expectation,

we have

(2.4) M = q

(
n

w

)2

(1− p)w
2

< q
(nw
w!

)2

(1− p)w
2

=
q(n2(1− p)w)w

(w!)2
.

Since w grows no more (or less) than linearly with n, for sufficiently large n we

have

n2(1− p)w < e−2k′

and
q

(w!)2
<

1

2
.

Therefore, Markov’s Inequality and (2.4) yield

(2.5) Pr(∃ a bad pair) <
e−n

2
.

Suppose now that there is a vertex v ∈ V (C) such that D contains a cycle

Q whose vertices are all in φ−1(v). Suppose that Q = i1i2 · · · it. Observe that

2 ≤ t ≤ k. Since φ(Q) = {v}, we conclude that h(Wi1) = h(Wi2) = · · · =

h(Wit) = {v}. Since h is an acyclic homomorphism, the subdigraph of H induced

on Wi1 ∪Wi2 ∪ · · · ∪Wit is acyclic.

Let us consider all sequences of sets Uj1 , Uj2 , . . . , Ujℓ such that, for r = 1, 2, . . . , ℓ,

we have Ujr ⊆ Vjr and |Ujr | = w, and the vertex sequence j1j2 · · · jℓ is a cycle in

D. Let U(ℓ) denote the subdigraph of H induced on Uj1 ∪ Uj2 ∪ · · · ∪ Ujℓ , and

let Pℓ := Pr(U(ℓ) is acyclic). We call this sequence of sets bad if U(ℓ) is acyclic.

Since the expected number N of bad sequences is the sum of the corresponding

expectations over all possible cycle lengths, we have

(2.6) N ≤

k∑

ℓ=2

(
k

ℓ

)
(ℓ− 1)!

(
n

w

)ℓ

Pℓ.

In order to bound N , we first bound the probabilities Pℓ.

Lemma 2.1. There exists a constant γ > 0 (not depending on n) such that Pℓ ≤

e−γn1+ε

for every integer ℓ ∈ {2, 3, . . . , k}.
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We present two proofs of Lemma 2.1. The second invokes the Janson Inequalities

(see, e.g., [2, Chapter 8]). The first uses only elementary methods and relies in the

beginning on the following observation.

Lemma 2.2. A digraph D is acyclic if and only if every induced subdigraph contains

a vertex of outdegree 0.

Proof. If D is acyclic, then every induced subdigraph of D must be acyclic and

therefore must contain a vertex of outdegree 0. If D is not acyclic, then it must

contain a cycle, the vertex set of which induces a subdigraph containing no vertex

of outdegree 0. �

Proof 1 of Lemma 2.1. Let E0 be certain (Pr(E0) = 1), and let Ej be the event

that all induced subdigraphs of U(ℓ) with more than ℓw − j vertices have a vertex

of outdegree 0 (the outdegree in the induced subdigraph). Lemma 2.2 shows that

(2.7) Pℓ = Pr
( ℓw⋂

j=0

Ej

)
=

ℓw−1∏

j=0

Pr(Ej+1|Ej) ≤

w−1∏

j=0

Pr(Ej+1|Ej).

We will call a set S ⊆ V (U(ℓ)) an acyclic-sink set if the induced subdigraph U(ℓ)[S]

is acyclic and there are no arcs in U(ℓ) from S to V (U(ℓ))r S (so S acts as a sink

in U(ℓ)).

Claim 1: The union of two acyclic-sink sets in U(ℓ) is an acyclic-sink set in U(ℓ).

Proof of claim. Let A and B be two acyclic-sink sets in a digraph U(ℓ). Since A

and B are both sinks in U(ℓ), their union A∪B is a sink because there are no arcs

from A∪B to V (U(ℓ))r (A∪B). Consider the three sets ArB, BrA, and A∩B;

each is a subset of an acyclic-sink set so each induces an acyclic digraph. Since A

is a sink in U(ℓ), there can be no arcs from A ∩ B to B r A. Likewise B is a sink

in U(ℓ), so there can be no arcs from A ∩ B to A r B. Therefore, A ∪ B induces

an acyclic digraph and is consequently an acyclic-sink set in U(ℓ). �

Claim 2: There exists an acyclic-sink set S ⊆ V (U(ℓ)) of cardinality j if and only

if Ej occurs.

Proof of claim. If there exists an acyclic-sink set of cardinality j, then a subdigraph

of U(ℓ) with more than ℓw− j vertices must have a nonempty intersection with it.

Any subdigraph that has nonempty intersection with an acyclic-sink set induces a

subdigraph containing a vertex of outdegree zero.

If there is no acyclic-sink set of cardinality j, then the largest acyclic-sink set is

an S′ ⊆ V (U(ℓ)) such that |S′| < j. Then U(ℓ) − S′ is a subdigraph of U(ℓ) with

cardinality greater than ℓw − j and with no vertices of outdegree 0 (otherwise we

could have added them to S′ and had a larger acyclic-sink set). �
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Claim 3: If U(ℓ) has an acyclic-sink set of cardinality j, then it has an acyclic-sink

set of cardinality j − 1.

Proof of claim. Suppose that S is an acyclic-sink set in U(ℓ) of cardinality j. Then

the subdigraph U(ℓ)[S] is acyclic, so there must be a vertex v with indegree 0

in U(ℓ)[S]. Consider the set S r {v}; this induces an acyclic subdigraph of U(ℓ)

because it is a subdigraph of an acyclic digraph. There were no arcs from S to

V (U(ℓ))r S, and there are no arcs from S r {v} to v, so S r {v} is a sink in U(ℓ).

Therefore, there exists an acyclic-sink set in U(ℓ) of cardinality j − 1. �

We now fix j in order to estimate Pr(Ej+1|Ej). Let I =
{
1, 2, . . . ,

(
ℓw
j

)}
and let{

Si

}
i∈I

be the j-subsets of the ℓw vertices of U(ℓ) (in some fixed order). Let Bi

be the event that Si is an acyclic-sink set in U(ℓ). By Claim 1, if more than one

Bi occurs, there must be an acyclic-sink set of cardinality at least j + 1, and so by

Claim 3, there exists one of cardinality exactly j + 1. Therefore by Claim 2,

(2.8) Pr
(
Ej+1|

⋂

i∈Y

Bi

)
= 1 whenever Y ⊆ I and |Y | ≥ 2.

Now additionally fix a Bi, and we will estimate Pr(Ej+1|Bi). Let F be the event

that U(ℓ)− Si contains a vertex of outdegree 0. Then

(2.9) Pr(Ej+1|Bi) = Pr(Ej+1|F ∩Bi) Pr(F |Bi) + Pr(Ej+1|F
C ∩Bi) Pr(F

C |Bi).

The event Ej+1 occurs when all subsets of V (U(ℓ)) of cardinality greater than

ℓw− (j + 1) induce a subdigraph in U(ℓ) that has a vertex of outdegree 0. Clearly

U(ℓ) − Si has cardinality ℓw − j, while FC is the event that this set induces a

subdigraph with no vertex of outdegree zero. Thus Pr(Ej+1|F
C ∩ Bi) = 0. All

sets of cardinality exceeding ℓw − (j + 1) that are distinct from V (U(ℓ))r Si have

a nonempty intersection with Si, which (given Bi) is an acyclic-sink set in U(ℓ).

Therefore, subdigraphs of U(ℓ) induced on these sets have a vertex of outdegree 0, so

that Pr(Ej+1|Bi∩F ) = 1. Using these observations, (2.9) reduces to Pr(Ej+1|Bi) =

Pr(F |Bi). The event F is independent of the event Bi since the vertices in Si do

not affect the outdegree of vertices in the subdigraph induced by V (U(ℓ)) r Si.

Therefore, Pr(Ej+1|Bi) = Pr(F ).

Now we estimate the probability of F . The probability that any particular vertex

of U(ℓ)− Si has outdegree 0 in the induced subdigraph is bounded from above by

(1− p)(w−j). Since these outdegree computations are independent for each vertex,

the probability that all vertices have outdegree greater than 0 is bounded from

below by (1− (1− p)(w−j))(ℓw−j), so that

Pr(Ej+1|Bi) = Pr(F ) ≤ 1− ((1− (1− p)(w−j))(ℓw−j))

< (ℓw − j)(1− p)(w−j) =: pj .(2.10)
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We also need to estimate Pr(Ej+1|Ej). By Claim 2, Ej occurs if and only if
⋃

i∈I Bi

occurs. Thus we may rewrite Pr(Ej+1|Ej) using inclusion-exclusion:

Pr(Ej+1|Ej) = Pr
(
Ej+1

∣∣ ⋃

i∈I

Bi

)

=
Pr

(
Ej+1 ∩

(⋃
i∈I Bi

))

Pr
(⋃

i∈I Bi

)

=
Pr

(⋃
i∈I(Ej+1 ∩Bi)

)

Pr
(⋃

i∈I Bi

)

=
∑

∅ 6=Y⊆I

(−1)|Y |+1
Pr

(
Ej+1 ∩

(⋂
y∈Y By

))

Pr
(⋃

i∈I Bi

)

=
∑

∅ 6=Y⊆I

(−1)|Y |+1
Pr

(
Ej+1 ∩

(⋂
y∈Y By

))

Pr
(⋂

y∈Y By

) Pr
(⋂

y∈Y By

)

Pr
(⋃

i∈I Bi

)

=
∑

∅ 6=Y⊆I

(−1)|Y |+1 Pr
(
Ej+1

∣∣ ⋂

y∈Y

By

)
Pr

( ⋂

y∈Y

By

∣∣ ⋃

i∈I

Bi

)

=
∑

y∈I

Pr(Ej+1|By) Pr
(
By

∣∣ ⋃

i∈I

Bi

)

+
∑

Y⊆I
|Y |≥2

(−1)|Y |+1 Pr
(
Ej+1

∣∣ ⋂

y∈Y

By

)
Pr

( ⋂

y∈Y

By

∣∣ ⋃

i∈I

Bi

)
.

Using (2.8) and (2.10) in the last expression for Pr(Ej+1|Ej) gives

Pr(Ej+1|Ej) ≤ pj
∑

y∈I

Pr
(
By

∣∣ ⋃

i∈I

Bi

)
+

∑

Y⊆I
|Y |≥2

(−1)|Y |+1 Pr
( ⋂

y∈Y

By

∣∣ ⋃

i∈I

Bi

)

= pj
∑

y∈I

Pr
(
By

∣∣ ⋃

i∈I

Bi

)
+
[
Pr

(⋃

i∈I

Bi

∣∣ ⋃

i∈I

Bi

)
−

∑

y∈I

Pr
(
By

∣∣ ⋃

i∈I

Bi

)]

= pj
∑

y∈I

Pr
(
By

∣∣ ⋃

i∈I

Bi

)
+
[
1−

∑

y∈I

Pr
(
By

∣∣ ⋃

i∈I

Bi

)]
.

Since
∑

y∈I Pr
(
By|

⋃
i∈I Bi

)
≥ 1 and pj − 1 < 0, we have

Pr(Ej+1|Ej) ≤ 1 +
∑

y∈I

Pr
(
By

∣∣ ⋃

i∈I

Bi

)
(pj − 1) < pj .
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Applying this last estimate to (2.7) yields

Pℓ ≤

w−1∏

j=0

pj =

w−1∏

j=0

(ℓw − j)(1− p)(w−j)

< (ℓw)w(1− p)w(w+1)/2

≤ (ℓw)w(1− p)w
2/2

≤ (ℓw)we−pw2/2

≤
(
ℓwe−pw/2

)w

≤
(
ℓwe−nε/(4k′)

)w

(2.11)

≤
(
e−nε/(5k′)

)w

(2.12)

≤ e−n1+ε/(10(k′)2).(2.13)

In passing from (2.11) to (2.13), the reader may find it helpful to recall that n = |Vi|

(for 1 ≤ i ≤ k), k′ = |V (C)|, ℓ is between 2 and k, w = ⌈n/(2k′)⌉, and p = nε−1,

and that these estimates are valid for fixed k′ and sufficiently large n. Of course,

Lemma 2.1 follows if we take γ = 1/(10(k′)2). �

Proof 2 of Lemma 2.1. We use the Janson Inequalities, (mainly) follow the notation

of [2, Chapter 8], and assume familiarity on the readers’ part. Here, Ω denotes the

set of all potential arcs (in Dn, as defined at the start of Section 2) between the

sets Uji , for i = 1, 2..., ℓ, (introduced just prior to our statement of Lemma 2.1);

each arc in Ω appears with probability p.

Let s be a (large) multiple of ℓ; the value of s will be independent of n and

specified below. Now, let us enumerate those cycles of Dn that are of length s,

and that cyclically traverse Uj1 , Uj2 , ..., Ujℓ s/ℓ times. For j ≥ 1, denote by Sj the

arc set of the jth such cycle and by Bj the event that the arcs in Sj all appear in

H (i.e. the cycle determined by Sj is present in H). Let the random variable X

count those Bj that occur. Since Pr(X = 0) (the probability that there is no such

cycle of length s) is an upper bound for Pℓ (the chance that U(ℓ) is acyclic), we can

bound Pℓ by bounding Pr(X = 0), and estimating the latter quantity is exactly the

purpose of Janson’s Inequalities. In the Janson paradigm, the value of ∆ is defined

by

(2.14) ∆ :=
∑

Si∼Sj

Pr(Bi ∩Bj),

where Si ∼ Sj if the two cycles determined by Si and Sj have at least one arc in

common.
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First, we find an upper bound for ∆. Letting i remain fixed, we (rather crudely)

obtain

(2.15) ∆ ≤ ns
∑

j:Si∼Sj

Pr(Bi ∩Bj),

since each |Ur| ≤ n and each |Si| = s. The sum on the right side satisfies

(2.16)
∑

j:Si∼Sj

Pr(Bi ∩Bj) ≤

s−1∑

r=1

(
s

r

)
p2s−rws−(r+1).

The binomial coefficient in (2.16) accounts for the number of ways to choose the

arcs of Si ∩ Sj , the power of p is Pr(Bj |Bi) Pr(Bi), and finally, the power of w

reflects the facts that each U -set has cardinality w and, with i fixed, there are at

most s− (r+1) vertices in the Sj-cycle not already in the Si-cycle. Recalling that

w = ⌈n/(2k′)⌉ (so that w < n), using the gross bound
(
s
r

)
< 2s, and replacing p

with nε−1, we find that

∑

j:Si∼Sj

Pr(Bi∩Bj) < 2s
s−1∑

r=1

p2s−rns−(r+1) = 2s
s−1∑

r=1

n2εs−s−rε−1 < 2ssn2εs−s−ε−1.

With (2.15), the last estimate yields

(2.17) ∆ < 2ssn2εs−ε−1.

Next, we find a lower bound for µ := E[X]. Since there are ℓ U -sets, each con-

taining w vertices, and each ordered choice of s/ℓ vertices from each (up to the

choice of the first vertex) contributes 1 to X with probability at least ps, we have

µ ≥
1

s

(
w

s/ℓ

)ℓ [(s
ℓ

)
!
]ℓ
ps.

Therefore,

(2.18)

µ ≥
1

s

(
w!

(w − s/ℓ)!

)ℓ

ps ≥
1

s

(
w −

s

ℓ

)s

ps ≥
1

s

( n

4k′

)s

nεs−s =
nεs

s(4k′)s
.

We distinguish two cases.

Case 1: ∆ ≥ µ.

Here, we have the hypotheses of the Extended Janson Inequality ([2, Theorem 8.1.2]),

which, along with our bounds (2.17), (2.18) gives

Pr(X = 0) ≤ e−µ2/(2∆) < e−n1+ε/(2s3(32k′2)s).

Case 2: ∆ < µ.

Now we have the hypotheses of the basic Janson Inequality ([2, Theorem 8.1.1]),

which together with (2.18) gives

Pr(X = 0) ≤ e−µ+∆/2 < e−µ/2 ≤ e−nεs/(2s(4k′)s).
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Let s > 1 + (1 + ε)/ε be a multiple of ℓ. Then the last bound shows that

Pr(X = 0) ≤ e−n1+ε(nε/(2s(4k′)s)) ≤ e−n1+ε

.

Since s and k′ are constants (not depending on n), as is the number 1 (the

coefficient of n1+ǫ in the last expression), in either case we see that

Pℓ ≤ Pr(X = 0) ≤ e−γn1+ε

for some constant γ > 0. This gives us Lemma 2.1. �

We return to our estimation of the expected number N of bad sequences in (2.6),

repeated here for convenience:

N ≤

k∑

ℓ=2

(
k

ℓ

)
(ℓ− 1)!

(
n

w

)ℓ

Pℓ.

Using Lemma 2.1 to bound the factors Pℓ in this sum shows that for n large enough,

(2.19) N ≤
k∑

ℓ=2

(
k

ℓ

)
(ℓ− 1)!

(
n

w

)ℓ

e−γn1+ε

<
k∑

ℓ=2

e−n

2k
<

e−n

2
.

From (2.19) and Markov’s Inequality, we conclude that

(2.20) Pr(∃ a bad sequence) <
e−n

2
.

Since φ fails to be an acyclic homomorphism exactly when there exists a bad pair

or there exists a bad sequence, (2.5) and (2.20) now show that

|D rD2| ≤ (Pr(∃ bad pair) + Pr(∃ bad sequence)) |D| < e−n |D| ,

which yields (2.2). �

3. Proof of Theorem 1.5

To obtain the conclusion of Theorem 1.5 (unique D-colourability), we shall need

to refine the deletion method employed in the proof of Theorem 1.2. We preserve

the earlier notation. Let D3 be the set of digraphs H ∈ D1, in which any two cycles

of length less than g are disjoint. Let D4 denote the set of those H ∈ D with the

property that H − A1 is uniquely D-colourable for any set A1 of at most ⌈ngε⌉

independent arcs. (Here, we call a set S ⊆ E(H) independent if no two arcs in S

have a vertex in common.) Now we will show that

(3.1) |D3| >
(
1− n−ε/3

)
|D|

and

(3.2) |D4| >
(
1− e−nε/6

)
|D| .

Since (3.1) and (3.2) imply that D3 ∩ D4 6= ∅ (for large enough n), we can choose

a digraph H ∈ D3 ∩ D4. As H ∈ D3 ⊆ D1, we can delete a set A1 of at most

⌈ngε⌉ independent arcs from H so that D∗ :=H − A1 has girth at least g, and
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H ∈ D4 ensures that D∗ is uniquely D-colourable. Hence, to complete the proof of

Theorem 1.5, it suffices to establish (3.1) and (3.2).

Proof of (3.1). For integers ℓ1, ℓ2 < g, we follow [31] and call a digraph an (ℓ1, ℓ2)-

double cycle if it consists of a directed cycle Cℓ1 of length ℓ1 and a directed path

of length ℓ2 joining two (not necessarily distinct) vertices of Cℓ1 ; such a digraph

contains ℓ1+ ℓ2−1 vertices and ℓ1+ ℓ2 arcs. Let D′ denote the set of digraphs in D

containing an (ℓ1, ℓ2)-double cycle for some ℓ1, ℓ2 < g. Notice that D1 r D3 ⊆ D′,

whence

(3.3) |D1 rD3| ≤ |D′| ,

so we can obtain a lower estimate for |D3| by estimating |D′|.

For fixed ℓ1, ℓ2 < g, the expected number N(ℓ1, ℓ2) of (ℓ1, ℓ2)-double cycles in a

digraph H ∈ D is less than

ℓ1(kn)
ℓ1(kn)ℓ2−1pℓ1+ℓ2 ,

since there are fewer than ℓ1(kn)
ℓ1(kn)ℓ2−1 ways of choosing such a double cycle

Y with V (Y ) ⊆ V , and each such Y exists with probability 0 or pℓ1+ℓ2 . Since

p = nε−1 we have

N(ℓ1, ℓ2) < ℓ1k
ℓ1+ℓ2nε(ℓ1+ℓ2)n−1.

Since ε(ℓ1 + ℓ2) ≤ 2gε < 1/2, for large enough n we have
∑

2≤ℓ1<g
1≤ℓ2<g

N(ℓ1, ℓ2) < n−1/2.

Markov’s Inequality now shows that

|D′| < n−1/2 |D| ,

so from (3.3) we obtain

|D3| > |D1| − n−1/2 |D| ,

and (2.1) gives (3.1). �

Proof of (3.2). We will argue that |D r D4| < e−nε/6|D|. If H ∈ D r D4, then

there is a set A1 of at most ⌈ngε⌉ independent arcs of H so that H − A1 admits

an acyclic homomorphism h to D that is not the composition σ ◦ c of the natural

homomorphism c : H − A1 → D (sending Vi to i) with an automorphism σ of D.

As in the proof of (2.2), we can define a function φ : V (D) → V (D) such that∣∣Vi ∩ h−1(φ(i))
∣∣ ≥ n/k for each i ∈ V (D).

Let us first suppose that φ is not an automorphism of D. By hypothesis, D is

a core, so any acyclic homomorphism of D to itself must be an automorphism. It

follows that φ is not an acyclic homomorphism. Therefore, there is an arc ij ∈ E(D)

such that φ(i)φ(j) 6∈ E(D), or there is a vertex i ∈ V (D) such that φ−1(i) is not
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acyclic. Notice that the current arrangement is analogous to the one in the second

paragraph in the proof of (2.2). Repeating the earlier argument, with D in the

place of C and k in the role of k′, we find that most H ∈ D do not fall into the

present case. More precisely, we reach the following conclusion:

At least (1−e−n)|D| digraphs H ∈ D have the property that for any set A1 of at most

⌈ngε⌉ arcs (independent or otherwise), the digraph H−A1 cannot be D-coloured so

that φ is not an automorphism of D.

Thus, in this case, |D rD4| < e−n|D| < e−nε/6|D|, and (3.2) is proved.

From now on, we treat the case when φ is an automorphism of D. Without loss

of generality, we may assume that φ is the identity, i.e., that

(3.4)
∣∣Vi ∩ h−1(i)

∣∣ ≥ n/k for each i ∈ V (D).

We may assume further that

(3.5)
∣∣Vj ∩ h−1(i)

∣∣ < n/k for all j 6= i.

(Otherwise, we can redefine φ(i) to be equal to j and fall into the case where φ is

not an automorphism.)

Since h is not the composition σ◦c of the natural homomorphism c : H−A1 → D

(sending Vi to i) with an automorphism σ ofD, there must be a pair {i, j} of distinct

vertices of D such that Vj ∩h
−1(i) 6= ∅. Let {i0, j0} be such a pair that maximizes

|Vj0 ∩ h
−1(i0)|. Consider the map φ′ : V (D) → V (D) such that

φ′(x) :=

{
x (= φ(x)) if x 6= j0
i0 if x = j0.

Clearly φ′ is not a bijection, and since D is a core, it cannot be an acyclic homo-

morphism. There are two possibilities.

Case 1: Both j0i0 and i0j0 are arcs of D (so φ′−1(i0) is not acyclic).

Case 2: There exists v ∈ V (D) such that vj0 is an arc of D but vi0 is not, or j0v

is an arc of D but i0v is not.

We will show that in either case, |D rD4| < e−nε/6|D|.

Case 1: Our choice of {i0, j0} ensures that h
−1(i0)∩Vj0 6= ∅. Let x ∈ h−1(i0)∩Vj0 ,

and consider the (nonrandom) subdigraph D̂n ofDn induced by {x}∪(h−1(i0)∩Vi0).

As Vi0 induces no cycles, all cycles of D̂n must include x, and since the arcs of A1 are

independent, at most one such arc is incident with x. Furthermore, the constraint

on the size of A1 and our choice of ε (smaller than 1/4g) give

|A1| ≤ ⌈ngε⌉ < ⌈n1/4⌉ ≪
n

k
.

Because |h−1(i0)∩Vi0 | ≥ n/k (cf. (3.4)), there must be a subset U ⊆ h−1(i0)∩Vi0 of

cardinality ⌊n/2k⌋ such that the (random) subdigraph induced by {x}∪ U contains
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no arcs of A1 and moreover is acyclic (since h−1(i0) is acyclic). To show that this

is unlikely, we first estimate the expected number M of ways to select a vertex

x ∈ Vj0 and a subset U ⊆ Vi0 of cardinality ⌊n/2k⌋ so that the subdigraph Hx,U

of H that they induce is acyclic and no arc of A1 is incident with a vertex in U . If

Px,U denotes the probability that Hx,U is acyclic, then

(3.6) M ≤ n

(
n

⌊n/2k⌋

)
Px,U < nnPx,U .

In order to estimate Px,U , we again employ the Janson Inequalities (cf. [2, Chap-

ter 8]). Now Ω denotes the set of all potential arcs in the subdigraph D′
x,U of

Dn induced by {x} ∪ U ; each arc in Ω appears in Hx,U with probability p. Let

ℓ > (2+ε)/ε be a fixed integer. Let us index those cycles of D′
x,U (with the positive

integers) that are of length ℓ+1 in D′
x,U . For j ≥ 1, let Sj be the arc-set of the jth

such cycle and Bj be the event that the arcs in Sj all appear (i.e. the cycle deter-

mined by Sj is present in Hx,U ). Let X count the Bj that occur; since Pr(X = 0)

is an upper bound for Px,U , we can bound Px,U by bounding Pr(X = 0).

As in (2.14), Janson’s ∆ is given by

∆ :=
∑

Si∼Sj

Pr(Bi ∩Bj).

Since there are at most
(
⌊n/2k⌋

ℓ

)
< nℓ cycles Sj , if we fix an Si to maximize∑

j:Sj∼Si
Pr(Bi ∩Bj), then

(3.7) ∆ ≤ nℓ
∑

j:Sj∼Si

Pr(Bi ∩Bj).

Now we sum over the number r of common arcs an Sj can have with Si; this fixes

at least r + 1 vertices of Sj . Thus,

∑

j:Sj∼Si

Pr(Bi ∩Bj) ≤

ℓ∑

r=1

(
ℓ+ 1

r

)⌊ n
2k

⌋ℓ−r−1

p2(ℓ+1)−r.

Using the crude upper estimates
(
ℓ+1
r

)
< 2ℓ+1 and ⌊n/2k⌋ < n, and replacing p

with nε−1, we obtain

∑

j:Sj∼Si

Pr(Bi∩Bj) < 2ℓ+1
ℓ∑

r=1

(np)ℓ−r−1pℓ+3 < 2ℓ+1ℓ(np)ℓ−2pℓ+3 = 2ℓ+1ℓn2εℓ+ε−ℓ−3.

This and (3.7) now give

(3.8) ∆ ≤ 2ℓ+1ℓn2εℓ+ε−3.

We also need to find a lower bound for µ := E[X]. Since the arcs of D′
x,U within

U are acyclically oriented, each choice of ℓ vertices within U determines exactly one
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potential (ℓ+ 1)-cycle (viz., through x). It follows that

(3.9) µ =

(
⌊n/2k⌋

ℓ

)
pℓ+1 >

(
⌊n/2k⌋

ℓ

)ℓ

pℓ+1 >
nεℓ+ε−1

(4kℓ)ℓ
.

As in the proof of Theorem 1.2, we have two subcases.

Subcase 1(i): ∆ ≥ µ.

Again, we have the hypotheses of the Extended Janson Inequality ([2, Theorem 8.1.2]),

which, along with (3.8) and (3.9) gives

Pr(X = 0) ≤ e−µ2/(2∆) < e−n1+ε/(ℓ2ℓ+2(4kℓ)2ℓ) =: e−βn1+ε

,

where β is the (positive) constant (not depending on n) absorbing the denominator

in the preceding exponent.

Subcase 1(ii): ∆ < µ.

Here, we have the hypotheses of the Janson Inequality ([2, Theorem 8.1.1]), which,

with the help of (3.9) gives

Pr(X = 0) ≤ e−µ+∆/2 < e−µ/2 < e−nεℓ+ε−1/(2(4kℓ)ℓ).

Recalling our choice of ℓ > (2 + ε)/ε, we see that

Pr(X = 0) < e−n1+2ε/(2(4kℓ)ℓ) < e−n1+ε

.

In either subcase, we have that Px,U ≤ Pr(X = 0) < e−βn1+ε

(since β < 1), and

returning to (3.6), we have

M < nnPx,U < nne−βn1+ε

=
(
ne−βnε

)n

< e−βn1+ε/2.

By Markov’s Inequality, the probability that there exists such an {x} ∪ U (that

induces an acyclic subdigraph) is less than e−βn1+ε/2 < e−nε/6, and so in Case 1,

|D rD4| < e−nε/6|D|, as desired.

Case 2: By the hypothesis of this case, there is a vertex v such that either vj0 ∈

E(D) and vi0 6∈ E(D), or j0v ∈ E(D) and i0v 6∈ E(D). We will consider the first

of these; the second one yields to similar reasoning. Let us recall that we chose a

pair {i0, j0} of distinct vertices of D so as to maximize b := |Vj0 ∩ h
−1(i0)| 6= 0.

Claim: Every vertex z ∈ V (D)r {i0} satisfies
∣∣Vz ∩ h−1(z)

∣∣ ≥ n− (k − 1)b.

Proof of claim. Otherwise, some z 6= i0 satisfies
∣∣Vz ∩ h−1(z)

∣∣ < n − (k − 1)b. By

the pigeonhole principle, there is some u 6= z such that
∣∣Vz ∩ h−1(u)

∣∣ > b, but this

contradicts our choice of {i0, j0}. �

Using the claim, we see that there are sets Uv ⊆ Vv ∩ h−1(v) and Uj0 = Vj0 ∩

h−1(i0) with |Uv| = n− (k− 1)b and |Uj0 | = b. Since h : H −A1 → D is an acyclic

homomorphism and vi0 6∈ E(D), there are at most min{b, ⌈ngε⌉} independent arcs

from a vertex in Uv to one in Uj0 . We now estimate the expected number L(b) of
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pairs U ′
v ⊆ Vv, U

′
j0

⊆ Vj0 with |U ′
v| = n− (k − 1)b = n− (k − 1)|U ′

j0
|, and at most

min{b, ⌈ngε⌉} arcs from U ′
v to U ′

j0
.

For b < n/k (cf. (3.5)) and s ≤ min{b, ⌈ngε⌉}, denote by L(b, s) the expected

number of pairs U ′
v ⊆ Vv, U

′
j0

⊆ Vj0 , |U
′
v| = n − (k − 1)b = n − (k − 1)|U ′

j0
|, and

exactly s arcs joining a vertex in U ′
v to one in U ′

j0
. Then

L(b, s) <

(
n

n− (k − 1)b

)(
n

b

)(
(n− (k − 1)b)b

s

)
ps(1− p)(n−(k−1)b)b−s

< n(k−1)bnb(nb)sns(ε−1)e−bnε+nε−1((k−1)b2+s)

< bsnεsnkbe−(bnε)/2

= bsnεs(nke−nε/2)b

< bsnεse−(bnε)/3

< e−nε/4.

Letting L(b) =
∑

s≤min{b,⌈ngε⌉} L(b, s) < ⌈ngε⌉e−nε/4 < e−nε/5, we find that

∑

1≤b<n/k

L(b) < (n/k)e−nε/5 < e−nε/6.

This completes the discussion for the case when vj0 ∈ E(D) and vi0 6∈ E(D); an

identical argument gives the same upper bound in the case when j0v ∈ E(D) and

i0v 6∈ E(D). Thus in Case 2, we also arrive at |D rD4| < e−nε/6|D|.

Combining the estimates obtained above and applying Markov’s Inequality fi-

nally yields (3.2) and therefore completes the proof of Theorem 1.5. �

4. The circular chromatic number

We turn now to the implications of Theorem 1.5 for circular colouring digraphs.

The concept of the digraph circular chromatic number χc, defined below, generalizes

the circular chromatic number for undirected graphs. The theory of the graph

invariant, as of 2001, was surveyed in [33]. The digraph version was introduced

in [4], where it was proved, via Lemma 4.2 below, that χc assumes all rational

values at least one. (Note that the digraphs of Lemma 4.2 do not generally have

large girth.) The same article also established the following analogue of the Erdős’

theorem introducing the present paper: there exist digraphs with arbitrarily large

girth and arbitrarily large circular chromatic number (this is the result to which

we alluded immediately following the statement of Theorem 1.2). Our main result

here, Theorem 4.4, provides a common generalization and strengthening of these

basic results. It shows that the ‘all conceivable rationals’ property of χc holds even

for digraphs of arbitrarily large girth and even demanding a certain uniqueness of

the colouring.
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Let d ≥ 1 and k ≥ d be integers. Let C(k, d) be the digraph with vertex set

Zk = {0, 1, . . . , k − 1} and arcs

E(C(k, d)) = {ij | j − i ∈ {d, d+ 1, . . . , k − 1}},

where the subtraction is considered in the cyclic group Zk of integers modulo k.

Acyclic homomorphisms into C(k, d) are an important concept because of their

relation to the circular chromatic number of digraphs; cf. [4]. An acyclic homo-

morphism of a digraph D into C(k, d) is called a (k, d)-colouring of D. It is shown

in [4, 21] that there is a rational number q ∈ Q such that D has a (k, d)-colouring

if and only if k/d ≥ q. This value q is denoted by χc(D) and called the circular

chromatic number of D. For q ∈ Q+, let Sq denote the circle of perimeter q (cen-

tred, say, at the origin of R2). We define a circular q-colouring of D to be a map

φ : V (D) → Sq such that for every xy ∈ E(D), with φ(x) 6= φ(y), the distance

dS(φ(x), φ(y)) from φ(x) to φ(y) in the clockwise direction around Sq is at least

1, and for every p ∈ Sq, the preimage φ−1(p) induces an acyclic subdigraph of D.

If φ is a circular q-colouring, we say that the arc xy ∈ E(D) is tight whenever

dS(φ(x), φ(y)) ≤ 1 (in which case this distance is either 1 or 0). A cycle in D

consisting of tight arcs is called a tight cycle for the circular q-colouring φ. Note

that every tight cycle contains an arc xy such that dS(φ(x), φ(y)) = 1. We will use

the following results, respectively from [21] and [4].

Lemma 4.1. If χc(D) = q, then every circular q-colouring of D has a tight cycle.

Lemma 4.2. χc(C(k, d)) = k/d.

Lemmas 4.1 and 4.2 imply the following fact.

Proposition 4.3. If k and d are integers with 1 ≤ d ≤ k, then C(k, d) is a core if

and only if k and d are relatively prime.

Proof. Let C = C(k, d) and V = V (C). If r := gcd(k, d) > 1, then the mapping

φ : V → V given by φ(i) := r⌊i/r⌋ is easily seen to be an acyclic homomorphism

C → C that is not surjective. By Lemma 1.3, C(k, d) is not a core.

For the converse, assume that k and d are relatively prime, and let φ : V →

V be an acyclic homomorphism. Define a map ϕ : C(k, d) → Sk/d as follows.

Let s0, s1, . . . , sk−1 be points on Sk/d that appear on the circle consecutively at

distance 1/d apart. For 0 ≤ i ≤ k − 1, we set ϕ(i) := sφ(i). Since φ is an acyclic

homomorphism, it is easily verified that ϕ is a circular k
d -colouring of C(k, d).

By Lemmas 4.1 and 4.2, ϕ has a tight cycle C0 = v1v2 · · · vℓv1 in C(k, d). We

may assume that ϕ(v1) = s0. The images ϕ(v1), ϕ(v2), . . . , ϕ(vℓ), ϕ(v1) must take

consecutive values s0, sd, s2d, s3d, . . . (each possibly repeated several times), with the

indices taken modulo k, and end up at s0. Since k and d are relatively prime, the
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sequence s0, sd, s2d, . . . must exhaust all the elements in the set {s0, s1, . . . , sk−1}.

This shows that φ is surjective; whence, by Lemma 1.3, C(k, d) is a core. �

Proposition 4.3 and Theorem 1.5 together yield an immediate consequence,

Corollary 1.6, that we now state in a slightly expanded (and more precise) form:

Theorem 4.4. If k and d are relatively prime integers with 1 ≤ d ≤ k, then for

every positive integer g, there exists a uniquely C(k, d)-colourable digraph of girth

at least g (and with circular chromatic number equal to k/d).

The last claim of Theorem 4.4 follows from the next result, an analogue of [31,

Theorem 3].

Theorem 4.5. If D is a uniquely C(k, d)-colourable digraph, then χc(D) = k/d.

Proof. Since D is C(k, d)-colourable, we have χc(D) ≤ k/d. Suppose, for a contra-

diction, that χc(D) = k′/d′ < k/d. Define d∗ := dd′, m := kd′ and m′ := k′d so that

m′/d∗ = k′/d′ < k/d = m/d∗. Now, let φ′ be an (m′, d∗)-colouring of D. Using

the idea in the proof of Proposition 4.3, we can define a circular m′

d∗
-colouring ϕ of

C(m′, d∗) so that ϕ ◦ φ′ is such a colouring of D. Since χc(D) = k′/d′ = m′/d∗,

Lemma 4.1 implies that ϕ◦φ′ has a tight cycle inD. Choosing a tight arc xy ∈ E(D)

for ϕ ◦φ′ yields an arc xy of D such that φ′(x) and φ′(y) are separated by d∗ units

in the clockwise direction around C(m′, d∗). Without loss of generality, we may

assume that φ′(y) = 0 and φ′(x) = m′ − d∗. We define an (m, d∗)-colouring ψ as

follows: ψ(v) := φ′(v) if φ′(v) < m′ − d∗ and ψ(v) := φ′(v) + m − m′ otherwise.

It is easily verified that ψ is indeed an (m, d∗)-colouring of D. Next, we define

ψ̄ : V (D) → V (C(k, d)) by ψ̄(v) := ⌊ψ(v)/d′⌋. (In this formula—and hereafter—

we view the vertices ψ(v) of C(m, d∗) as integers between 0 and m − 1.) Since

⌊·/d′⌋ : V (C(m, d∗)) → V (C(k, d)) defines an acyclic homomorphism, and such

maps compose (cf. [4]), it is not hard to check that ψ̄ is a (k, d)-colouring of D.

Similarly, we define φ̄ : V (D) → V (C(k, d)) by φ̄(v) := ⌊φ′(v)/d′⌋. As in the case

of ψ̄, it is easy to check that φ̄ is a (k, d)-colouring of D. We claim that φ̄ and ψ̄ do

not differ by an automorphism of C(k, d). Note that φ̄(y) = ψ̄(y) = 0; therefore, it

suffices to show that φ̄(x) 6= ψ̄(x). Now,

φ̄(x) =

⌊
m′ − d∗

d′

⌋
=

⌊
d(k′ − d′)

d′

⌋
while ψ̄(x) =

⌊
m− d∗

d′

⌋
= k − d.

Since k′/d′ < k/d, we have d(k′ − d′)/d′ < k − d, and it follows that φ̄(x) <

ψ̄(x). This implies that φ̄ and ψ̄ are (k, d)-colourings of D that do not differ

by an automorphism of C(k, d). Hence, D is not uniquely C(k, d)-colourable, a

contradiction. �
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[17] A.V. Kostochka and J. Nešetřil, Properties of Descartes’ construction of triangle-free
graphs with high chromatic number. Combin. Probab. Comput. 8 (1999), no. 5, 467–472.

doi:10.1017/S0963548399004022
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122–125, 212.
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