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Abstract

Let γ(G) and γ◦(G) denote the sizes of a smallest dominating set and smallest inde-

pendent dominating set in a graph G, respectively. One of the first results in probabilistic

combinatorics is that if G is an n-vertex graph of minimum degree at least d, then

γ(G) ≤ n

d
(log d+ 1)

In this paper, the main result is that if G is any n-vertex d-regular graph of girth at least

five then

γ◦(G) ≤ n

d
(log d+ c)

for some constant c independent of d. This result is sharp in the sense that as d → ∞,

almost all d-regular n-vertex graphs G of girth at least five have

γ◦(G) ∼ n

d
log d.

Furthermore, if G is a disjoint union of n
2d complete bipartite graphs Kd,d, then γ◦(G) = n

2 .

We also prove that there are n-vertex graphs G of minimum degree d and whose maximum

degree grows not much faster than d log d such that γ◦(G) ∼ n
2 as d→∞. Therefore both

the girth and regularity conditions are required for the main result.

1 Introduction

Using so-called semirandom methods, many recent results deal with lower bounds on the size

of maximum independent sets in d-regular graphs of girth g. The optimal bounds were found

by Shearer [15], who showed that the maximum size of an independent set in a d-regular
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triangle-free graph is asymptotically at least n log d
d . Later, Johansson [10] used semirandom

methods to show that d-regular triangle-free graphs actually have chromatic number O( d
log d).

Duckworth and Wormald [4] used the differential equations method [17] to determine lower

bounds on the size of a maximum independent set in random d-regular graphs for each fixed d.

Lauer and Wormald [11] studied the largest independent set in d-regular graphs of large girth.

Gamarnik and Goldberg [7] also study the question of independent sets in d regular graphs

of large girth, in particular studying the performance of a randomized greedy algorithm, thus

differing somewhat from the semirandom methods used in this work and by others.

Let γ◦(G) denote the size of a smallest independent dominating set in a graph G. An early

result using the probabilistic method is that every n-vertex graph of minimum degree at least

d has a dominating set of size at most n
d (1 + log d). This result is due independently to

Arnautov [2], Lovász [12] and Payan [14]. In this paper, we prove the following theorem.

Theorem 1. There is a constant c > 0 such that for every d-regular n-vertex graph G of girth

at least five,

γ◦(G) ≤ n

d
(log d+ c).

The proof of this theorem actually gives a maximal independent set of size roughly n
d (log d+c),

which coincides with Shearer’s result for triangle-free graphs. However, in our result the girth

five requirement is essential, since a graph G consisting of n
2d disjoint copies of the complete

bipartite graph Kd,d, when 2d divides n, has γ◦(G) = n
2 . Alon, Krivelevich, and Sudakov [1]

extended the theorem of Johansson to graphs with sparse neighbourhoods. It seems likely

that Theorem 1 can be extended to cases where the number of common vertices of any pair

of vertices is much smaller than d.

It is known that as d, n→∞ with d growing much more slowly than n (say, d5 � n), almost

all vertices of a random d-regular n-vertex graph lie in no five cycles and every independent

dominating set has size asymptotic to n log d
d – see Duckworth and Wormald [4] and Zito [18]

for a precise study of independent dominating sets in random regular graphs. Theorem 1 is

also sharp in the following sense.

Theorem 2. For all m > 1, there exists d0(m) such that if d ≥ d0(m) then there exists a

graph G of minimum degree d, maximum degree at most ∆ = md and girth at least five such

that

γ◦(G) >
(

1− 4 log ∆

∆
1
2
− 2
m−1

) |V (G)|
2∆

2
m−1

.

For example, if m
log d →∞ as d→∞, this theorem guarantees graphs G of maximum degree md

and minimum degree d such that γ◦(G) ∼ |V (G)|
2 (again, as d → ∞). It would be interesting

for each m ≥ 1 to determine the best possible upper bound on the smallest independent

dominating set in an n-vertex graph G of girth five, minimum degree d and maximum degree

md. The above theorem does not give any information for 1 < m ≤ 5, since the bound in

this range is negative, and new ideas seem to be required to find an analog of Theorem 1 for

graphs which are not d-regular. We make the following conjecture.
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Conjecture 3. For all ε > 0, m > 1 there exists d0(ε,m) such that if d ≥ d0(ε,m) and G is

a graph of girth at least five, minimum degree d and maximum degree at most ∆ = md then

γ◦(G) ≤ |V (G)|
2∆

1−ε
m

.

1.1 Notation and Terminology

If G is a graph, then for a set S ⊂ V (G) let ∂S denote the set of vertices in V (G)\S which

are adjacent to at least one vertex in S. As in the introduction, γ◦(G) denotes the size of a

smallest independent dominating set in G – this is a set S ⊆ V (G) such that no edge of G

joins two vertices of S and S ∪ ∂S = V (G).

1.2 Organization

The rest of the paper is organized as follows: in Section 2, we define a random process by

which an independent dominating set of a d-regular graph of girth five is constructed. The

analysis of the process is in Section 3, where we use probabilistic tools (Appendix) to control

the degrees of vertices at each stage. The proof of Theorem 2 is in Section 4.

2 The Process

For an n0-vertex d0-regular graph G0 of girth at least five, a natural way to build an inde-

pendent dominating set in stages is to select vertices independently and randomly with an

appropriate probability. Let St be the set of selected vertices at stage t. The set Zt of selected

vertices in the graph Gt which are not adjacent to any other selected vertices are added to the

current independent set Z0 ∪ Z1 ∪ · · · ∪ Zt−1, and then Zt ∪ ∂Zt is deleted from Gt to obtain

the graph Gt+1. The idea is to show that in the remaining graph Gt at each stage t, the

degrees of vertices are all roughly the same with positive probability, specifically, the degrees

all decrease by a factor roughly e−
1
e at each stage with positive probability. To show that this

is true requires concentration of degrees of the vertices at each stage. Unfortunately this is

not sufficient, since the expected degrees begin to vary substantially if the above process is

followed. To fix this problem, we equalize the degrees of the vertices at each stage by putting

vertices randomly and independently into an auxiliary set Wt. Another technical considera-

tion is that the random process stops when the degrees of the vertices become too small. We

will stop the process at time T = be(log d0 − c)c where c = 2100.

2.1 Statement of the process

We start with a d0-regular n0-vertex graph G0 of girth at least five. Let Y0 = ∅ and X0 =

V (G0). Having defined graphs Gi, independent sets Zi, and partitions V (Gi) = Xi ∪ Yi for
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i < t, let dt = d0
∏t
i=1 ωi and nt = n0

∏t
i=1 ωi, where

σ2
t := 105dt(log dt)

5 (1)

ωt := e−
1
e

(
1− σt−1

dt−1

)
. (2)

At stage t, we randomly and independently select vertices from Xt−1 with probability 1
dt−1

and let St be the set of selected vertices of Xt−1. Let Zt ⊆ St be the set of selected vertices

which have no selected neighbours. Then place vertices v ∈ Xt−1 in a set Wt independently

with probability ωt(v) chosen so that

P(v 6∈ ∂Zt ∪Wt) = P(v 6∈ ∂Zt)(1− ωt(v)) = ωt. (3)

The choice of weights ωt(v) is made to equalize all the expected degrees of vertices in the

graph at stage t, so that they are all roughly dt. It will be seen that P(v 6∈ ∂Zt) ≥ ωt, so that

ωt(v) is well-defined. Then define

Xt := Xt−1\(Wt ∪ Zt ∪ ∂Zt) (4)

Yt := (Yt−1 ∪Wt) \ ∂Zt. (5)

We stop the process when log dt+1 ≤ 2100. Since dt ≤ e−
t
ed0, this occurs at some time

T ≤ be(log d0 − c)c, where c = 2100. We make no attempt to find the smallest value of c for

which our analysis still works.

2.2 Control of degrees and sets

For t ≤ T and v ∈ V (Gt−1)\Zt, let Xv,t and Yv,t denote the number of neighbours of v in

Xt and Yt respectively. We shall show that with positive probability, for all t ≤ T and all

v ∈ V (Gt−1)\Zt:

|Xv,t − dt| ≤ σt (6)

Yv,t ≤ 100σt. (7)

We will use martingales and the Lovász Local Lemma [5] to prove these statements. It will

then be shown that for t ≤ T ,

|Xt| < nt +
100σtnt
dt

(8)

|Yt| <
200σtnt
dt

(9)

|Zt| <
nt
edt

+ 200
σtnt
d2
t

. (10)
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2.3 Proof of Theorem 1

The proof of Theorem 1 follows from the fact that (8) – (10) hold for t ≤ T .

T−1∑
t=0

|Zt| <
n0T

ed0
+

200n0

d0

T−1∑
t=0

σt
dt

<
n0 log d0

d0
− n0c

d0
+

200 · 105/2n0

d0

T−1∑
t=0

(log dt)
5/2

d
1/2
t

<
n0 log d0

d0
,

where in the last line we have used the facts that dT−1 > c = 2100 and that dt grows exponen-

tially with decreasing t to deduce that
∑T−1

i=0
(log dt)5/2

d
1/2
t

< 1.

Let Z be a maximal independent set in XT ∪ YT . Using (8) and (9), we have

|Z| ≤ |XT |+ |YT | ≤ nT +
300σTnT

dT

=
nT
dT

(dT + 300σT )

<
2cn0

d0
,

where in the last line we used the fact that dT + 300σT < 2dT < 2c.

Combining all the bounds we obtain an independent dominating set Z0 ∪Z1 ∪ · · · ∪ZT−1 ∪Z
of size less than

n0(log d0 + 2c)

d0
.

This completes the proof of Theorem 1 provided we can show (6) – (10) hold for t ≤ T .

3 Analysis of degrees

In this section we prove that, for any given vertex v, (6) and (7) hold with high probability

at stage t, assuming they hold for all vertices at stage t− 1.

Lemma 4. Let t ≤ T and v ∈ V (Gt−1). Suppose (6) holds at time t− 1. Then(
1− σt−1

dt−1

)
·

(
1

1− 1
dt−1

)
≤ e

1
eP(v 6∈ ∂Zt|v 6∈ St) ≤ 1 +

σt−1

dt−1
.

Proof. Write u ↔ w to mean that u and w are adjacent vertices in Gt−1. For convenience

put d = dt−1 and σ = σt−1. For our coming computations, we recall that since t ≤ T , d and,
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consequently, σ are large constants. First note that

P(v 6∈ ∂Zt|v 6∈ St) =
∏

u∈Xv,t−1

P(u /∈ Zt) =
∏

u∈Xv,t−1

(
1− 1

d

∏
w∈Xu,t−1

w 6=v

(
1− 1

d

))
.

By (6), the products have at least d− σ − 1 and at most d+ σ terms, respectively. Then

logP(v 6∈ ∂Zt|v 6∈ St) ≤ (d− σ − 1) · log
(

1− 1

d

(
1− 1

d

)d+σ)
≤ −

(
1− σ + 1

d

)
·
(

1− 1

d

)d+σ

using the inequality log(1− x) ≤ −x for x < 1. Also since 1
e ≤ (1− 1

x)x−1 for x > 1,

logP(v 6∈ ∂Zt|v 6∈ St) ≤ −1

e
·
(

1− σ + 1

d

)
·
(

1− 1

d

)σ+1

≤ −1

e

(
1− σ + 1

d

)2

≤ −1

e
+ log

(
1 +

σ

d

)
for t ≤ T . This proves the upper bound. Now we prove the lower bound. We will use the

inequalities log(1− x) ≥ −x− x2 which holds for all x ∈ (0, 0.5) and 1− x < e−x which holds

for all x.

logP(v 6∈ ∂Zt|v 6∈ St) ≥ (d+ σ) · log
(

1− 1

d

(
1− 1

d

)d−σ−1)
≥ (d+ σ)

(
−1

d

(
1− 1

d

)d−σ−1

− 1

d2

(
1− 1

d

)2(d−σ−1)
)

≥ −(d+ σ)

(
1

d
· e−1 · 1

(1− 1
d)σ+1

+
1

d2
· e−2 · 1

(1− 1
d)2(σ+1)

)

≥ −(d+ σ)

(
1

d
· e−1 · 1

1− σ+1
d

+
1

d2
· e−2 · 1

1− 2(σ+1)
d

)

= −1

e

(
1 +

2σ + 1

d− σ − 1
+ e−1

(
1 +

σ

d

)
· 1

d− 2σ − 2

)
> −1

e

(
1 +

2σ + 2

d− 2σ − 2

)
> −1

e
− σ − 1

d− 1

> −1

e
+ log

((
1− σ

d

)( 1

1− 1
d

))
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From this note that,

P(v 6∈ ∂Zt) = P(v 6∈ ∂Zt|v 6∈ St)P(v 6∈ St) + P(v 6∈ ∂Zt|v ∈ St)P(v ∈ St)

≥ e−
1
e

(
1− σt−1

dt−1

)
= ωt (11)

Therefore ωt(v) is well defined by (3).

Similarly,

P(v 6∈ ∂Zt) ≤ e−
1
e

(
1 +

σt−1

dt−1

)(
1− 1

dt−1

)
+

1

dt−1

This last bound allows us to give an upper bound on ωt(v).

ωt(v) = 1− ωt
P(v 6∈ ∂Zt)

≤ 1−
e−

1
e

(
1− σt−1

dt−1

)
e−

1
e

(
1 + σt−1

dt−1

)
+ 1

dt−1

= 1− e−
1
e (dt−1 − σt−1)

e−
1
e (dt−1 + σt−1) + 1

=
2e−

1
eσt−1 + 1

e−
1
e (dt−1 + σt−1) + 1

≤ 2σt−1

dt−1

Thus,

ωt(v) ≤ 2σt−1

dt−1
(12)

3.1 Expected degrees

Lemma 4 allows us to estimate E(Xv,t) and E(Yv,t).

Lemma 5. Let t ≤ T and v ∈ V (Gt−1). Suppose that (6) and (7) hold at stage t− 1. Then

|E(Xv,t)− dt| < 0.9σt (13)

E(Yv,t) < 90σt. (14)

Proof. By definition:

E(Xv,t) =
∑

u∈Xv,t−1

P(u 6∈ ∂Zt ∪Wt) = ωtXv,t−1.

Using the assumption |Xv,t−1 − dt−1| < σt−1, we easily obtain for t ≤ T :

|E(Xv,t)− dt| = |ωtXv,t−1 − dt| = ωt|Xv,t−1 − dt−1| < ωtσt−1 < 0.9σt.
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This is enough for (13). Next we turn to E(Yv,t). We write Yv,t = Wv,t+Uv,t where Wv,t is the

number of neighbours of v in Wt, and Uv,t is the number of neighbours of v in Yt\Wt. Wv,t

reflects the new neighbours of v in Yt, while the change in Uv,t reflects that some neighbours

of v in Yt−1 are in ∂Zt. Since 0 ≤ ωt(u) ≤ 2σt−1

dt−1
for all u ∈ V (Gt−1),

0 ≤ E(Wv,t) ≤
2σt−1Xv,t−1

dt−1
< 2σt−1 +

2σ2
t−1

dt−1
.

Then summing over u ∈ Yt−1 with u↔ v, by Lemma 4 we get:

E(Uv,t) =
∑
u↔v
u∈Yt−1

P(u 6∈ ∂Zt) ≤
(
e−

1
e

(
1 +

σt−1

dt−1

)
+

1

dt−1

)
Yv,t−1.

Finally, since Yv,t = Uv,t +Wv,t and Yv,t−1 < 100σt−1 by assumption:

E(Yv,t) <

(
e−

1
e

(
1 +

σt−1

dt−1

)
+

1

dt−1

)
Yv,t−1 + 2σt−1 +

2σ2
t−1

dt−1

< 100

((
1 +

σt−1

dt−1

)
e−

1
e +

1

dt−1

)
σt−1 + 2σt−1 +

2σ2
t−1

dt−1
< 90σt

These inequalities are contingent on t ≤ T . This completes the proof.

Remark. The identities for E(Xv,t) and E(Uv,t) in the proof of this lemma are crucial. If

we did not create the set Wt to equalize expected degrees, then without further analysis we

could have vertices v such that |E(Xv,t)−dt| > 2e−
1
2eσt, which is problematic since 2e−

1
2e > 1.

Indeed, in such a case the error terms grow exponentially. This may lead to a situation

where, for t large enough (but much smaller than be(log d0 − c)c where our process ends), Xt

contains much more than (n0 log d0)/d0 vertices of small constant degree. In such a case every

maximal independent set in Xt might be much larger than the (n0 log d0)/d0 sized independent

dominating set whose existence is posited by Theorem 1.

3.2 Concentration of degrees

In this section, we show that Xv,t is highly concentrated near its expected value, and Yv,t <

100σt with high probability.

Lemma 6. For t ≤ T and all v ∈ V (Gt−1)\Zt, if (6)- (7) hold at stage t− 1, then

1. P(|Xv,t − dt| > σt) < d−9
t−1

2. P(Yv,t > 100σt) < d−9
t−1.

The proofs of both inequalities are similar, and are centered around the use of a martingale

concentration inequality of Shamir and Spencer [16] (Appendix: Proposition 12). Throughout

the proof, we fix a v which has neighbourhood Γ(v) = {u1, u2, . . . , uk} in Xt−1. Let Γ+(x)
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denote the set of vertices y ∈ Γ(x) at greater distance from v than x. We denote by χ the

indicator function and let χ(x) := χ(x ∈ St). The event x ∈ St means x is selected. And

finally, w(x) will denote the indicator for the event that x was placed in Wt. We say that ui
survives if ui is not in Wt and for every x ∈ Γ+(ui), either x is not selected or x is selected

and at least one y ∈ Γ(x) \ {ui} is also selected. In terms of characteristic functions, we may

write the latter event in terms of x and y as χ(x)− χ(x)χ(y) = 0. We let Σi be the indicator

that ui survives, so that

Σi = (1− w(ui)) ·
∏

x∈Γ+(ui)

(
1−

∏
y∈Γ(x)\{ui}

(χ(x)− χ(x)χ(y))
)
. (15)

The key to proving Lemma 6 is to show that αv,t =
∑k

i=1 Σi is the final state of a martingale

α whose difference sequence is very unlikely to be large at any time. Note that αv,t is not the

same as Xv,t, because αv,t ignores the fact when a ui and a neighbour of ui are selected. Thus

we will further show that |αv,t −Xv,t| ≤ 10 log d with high probability. Define

Ci = {w(ui), χ(x), χ(x) · χ(y) : x ∈ Γ+(ui), y ∈ Γ+(x)}

and define the σ-field Fj = σ(C1 ∪ · · · ∪ Cj). Then the martingale α is defined by

αj =
k∑
i=1

E(Σi|Fj)

Then αv,t = αk =
∑k

i=1 Σi. We note that Ci does not include terms χ(x)χ(y) with both x

and y at distance two from v, so Fi does not in general determine Σi. Nevertheless, as χ(x)

is revealed for all vertices within distance two of v by the last Fk, we have that Fk indeed

determines all the Σi, 1 ≤ i ≤ k. The central part of the proof of Lemma 6 is the following.

Lemma 7. Let r = (2 log d)2. If |αj − αj−1| > r, then some vertex at distance at most three

from v has more than log d selected neighbours.

Proof. Throughout the proof, we let p = 1
dt−1

= E[χ(x)] denote the probability that a vertex

is selected.

Fix j ≥ 1. We wish to bound

αj − αj−1 = E(Σj |Fj)− E(Σj |Fj−1) +
∑
i 6=j

(E(Σi|Fj)− E(Σi|Fj−1)).

First, we refine the filter. Suppose Γ+(uj) = {x1, x2, . . . , x`} and Γ+(xi) = {yi1, yi2, . . . , yimi}
for 1 ≤ i ≤ `. Order the random variables in Cj as follows: first w(uj), and then χ(x1) and

the variables χ(x1)χ(y11), χ(x1)χ(y12), . . . , χ(x1)χ(y1m1) followed by χ(x2) then χ(x2)χ(y21),

χ(x2)χ(y22), . . . , χ(x2)χ(y2m2), and so on until χ(x`) and χ(x`)χ(y`1), . . . , χ(x`)χ(y`m`).

If s = |Cj |, consider the σ-fields G0, G1, . . . , Gs where Gm is the σ-field generated by Fj−1 and

the first m random variables in our ordering. Note that G0 = Fj−1 and Fj = Gs. Then∑
i 6=j

E(Σi|Fj)− E(Σi|Fj−1) =

s∑
m=1

∑
i 6=j

E(Σi|Gm)− E(Σi|Gm−1).
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We wish to bound each ∆ijm := E(Σi|Gm)− E(Σi|Gm−1) where i 6= j. Note that for m = 1,

we have ∆ijm = 0. Now suppose m ≥ 2. A vertex x is said to be exposed at time m if

E(χ(x)|Gm) ∈ {0, 1}.

Case 1. We consider first Gm = σ(Gm−1, χ(x)) where x ∈ Γ+(uj). If Γ(x)∩Γ+(ui) = ∅, then

∆ijm = 0. Now suppose x∗ is a neighbour of x in Γ+(ui); since G has no cycles of length four,

x∗ is unique. In that case, we have from (15) that

|∆ijm| ≤ |E(χ(x∗)− χ(x)χ(x∗)|Gm)− E(χ(x∗)− χ(x)χ(x∗)|Gm−1)|.

If i < j, then x∗ is already exposed at time m−1, and so ∆ijm = 0 when i < j and χ(x∗) = 0.

If i < j and χ(x∗) = 1, then

|∆ijm| ≤

{
p if χ(x) = 0

1 if χ(x) = 1.

If i > j, then x∗ is not yet exposed. In that case,

|∆ijm| ≤

{
p2 if χ(x) = 0

p if χ(x) = 1

This completes Case 1.

Case 2. The second case is Gm = σ(Gm−1, χ(x)χ(y)) where x ∈ Γ+(uj) and y ∈ Γ+(x).

First, note that if χ(x) = 0, then ∆ijm = 0, since if x is not selected, then χ(x)χ(y) reveals no

information about y. This is the key to the proof, and the reason why we use the particular

filtration which we use. Suppose χ(x) = 1. If i < j, then E(Σi|Gm) = E(Σi|Gm−1). So we

may suppose that i > j and χ(x) = 1. Note that the vertex y is adjacent to at most one

vertex x∗ ∈ Γ+(ui), and this vertex is not yet exposed. We get,

|∆ijm| ≤

{
p if χ(y) = 1

p2 if χ(y) = 0.
(16)

This completes Case 2.

Suppose, for a contradiction, that no vertex within distance three of v has more than M = log d

selected neighbours. Let us count how many times each of 1, p, and p2 appear as our best

possible bound in our bounds on ∆ijm. Note that in all cases |∆ijm| ≤ 1.

We have that ∆ijm ≤ p unless Gm = σ(Gm−1, χ(x)) where χ(x) = 1, and i < j. Furthermore,

∆ijm = 0 unless the common neighbour of x and ui, x
∗, has χ(x∗) = 1. Therefore |∆ijm| > p

at most M2 times; there are at most M selected neighbours x of uj such that χ(x) = 1 and

each of these has at most M selected neighbours adjacent to some ui with i < j.

The bound |∆ijm| ≤ p is our best bound if Gm = σ(Gm−1, χ(x)) and either i < j with

χ(x) = 0, and the unique common neighbour x∗ of x and ui has χ(x∗) = 1, or i > j and

χ(x) = 1. Since the degree of any vertex is less than 2d and no vertex has more than M
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selected neighbours, neither bound is our best more than 2dM times. The bound |∆ijm| ≤ p

is also the best bound if Gm = σ(Gm−1, χ(x)χ(y)) where χ(x)χ(y) = 1 and i > j. Note that

there are at most M2 edges with χ(x)χ(y) = 1, for each ui. Again, since the degree of v is at

most 2d, this bound is best possible no more than 2dM2 times. In all, p is the best bound for

|∆ijm| no more than 4dM + 2dM2 times.

The bound |∆ijm| ≤ p2 is the best bound if Gm = σ(Gm−1, χ(x)) with χ(x) = 0 and i > j.

Using the fact that both v and uj have maximum degree 2d this occurs at most 4d2 times. It

also is the best bound if i > j and Gm = σ(Gm−1, χ(x)χ(y)) with χ(x)χ(y) = 0 but χ(x) = 1.

Since at most M neighbours of uj are selected and every vertex has degree at most 2d there

are at most 2dM such edges, and each for at most 2d different |∆ijm|s. In total, p2 is the best

bound for |∆ijm| no more than 4d2 + 4Md2 times.

In all other cases, ∆ijm = 0.

In total:

|αj − αj−1| ≤ 1 +
∑
i 6=j

∑
t

|∆ijm|

≤ 1 +M2 + p(4dM + 2dM2) + p2(4d2 + 4Md2)

= 1 +M2 + 4M + 2M2 + 4 + 4M = 5 + 8M + 3M2 ≤ r.

Here, the initial one comes from the fact that |E(Σj |Fj)−E(Σj |Fj−1)| ≤ 1. This contradiction

completes the proof.

Proof of Lemma 6. Let (αj)
k
j=0 be the martingale described above, where k = |Γ(v)|. Since

there are at most (2d)3 vertices at distance at most three from v, we have with r = (2 log d)2,

µ :=
k−1∑
j=0

P(|αj+1 − αj | > r) < |Γ(v)|(2d)3 ·
(

2d

r

)(
1

d

)r
< |Γ(v)|(2d)3

(
2e

r

)r
< d−40.

Here, (2d)3 ·
(

2d
r

)
(1/d)r gives an upper bound on the probability that some vertex at distance

at most 3 from v has at least r selected neighbours. So (αi)
k
i=0 is r-Lipschitz with exceptional

probability at most µ := d−40. Note also that, on the event that v ∈ V (Gt−1) \Zt, |αk −Xv,t|
is bounded by the number of vertices in Γ(v) which are selected. Now, using (6) at time t− 1,

it follows by the Chernoff bounds (noting that vertices are in St independently) that

P(|Γ(v) ∩ St| > 10 log d) < d−10.

Thus, we have that

P(|αk −Xv,t| > 10 log d) < d−10.

11



Finally,

|α0 − E(Xv,t)| ≤ E(|αk −Xv,t|)
= E(|αk −Xv,t||v 6∈ Zt)P(v 6∈ Zt) + E(|αk −Xv,t||v ∈ Zt)P(v ∈ Zt)

≤ E|Γ(v) ∩ St|+ (2dt−1) · 1

dt−1

≤ 2 + 2

≤ 0.01σt,

as P(v ∈ Zt) ≤ P(v ∈ St) = 1
d .

Let λ := 0.08σt. By Proposition 12 and Lemma 5:

P(|Xv,t − dt| > σt) ≤ P(|Xv,t − EXv,t| > 0.1σt)

≤ P(|Xv,t − α0| > 0.09σt)

≤ P(|αk − α0| > 0.09σt − 10 log d) + P(|αk −Xv,t| > 10 log d)

≤ P(|αk − α0| > λ+ k2µ1/2) + d−10

≤ 2 exp

(
− λ2

2kr2

)
+ 5d−10 (17)

where we used the fact that µ = d−40 is a bound on the exceptional probability as above, and

the fact that k and |αk−α0| are both at most 2d. For t ≤ T , we easily have λ2 ≥ 64·10d(log d)5

whereas 4dr2 < 64d(log d)4. Therefore the above probability is less than 2d−10 + 5d−10 < d−9

for t ≤ T .

For Yv,t, we recall that Yv,t = Uv,t + Wv,t where Wv,t is the number of neighbours of v in Wt

and Uv,t is the number of neighbours of v ∈ Yt \Wt. In this case, Wv,t is bounded by the sum

of independent indicators; Wv,t ≤
∑

u↔v χ(u) where χ(u) is the indicator random variable of

u being selected to be in the set Wv,t. Then, as seen in the proof of Lemma 5,

E(Wv,t) ≤
∑
u↔v

E(χ(u)) ≤ 2σt−1 +
2σ2

t−1

dt−1
.

The Chernoff bounds then imply that

P
(
Wv,t > E(Wv,t) + σt

)
≤ exp

(
− σ2

t

2
(
2σt−1 + 2σ2

t−1/dt−1 + σt/3
)) ≤ d−10

t−1 .

for t ≤ T .

Concentration for Uv,t is nearly precisely the same as concentration of Xv,t with one slight

simplification: in the Xv,t case we were required to define random variables Σi which were

agnostic to the selection of v and its neighbours. Such is not necessary here, only the realization

that Uv,t =
∑

u∼v χ(u 6∈ ∂Zt), where the sum is taken over u ∈ Yv,t−1. For Uv,t, we use the

martingale (βj)
k
j=0 defined by βj = E(Uv,t|Fj) for j = 1, 2, . . . , k and β0 = E(Uv,t), and where

the Fj are defined exactly as above (immediately prior to the proof of Lemma 4), only with

12



the {ui} denoting the neighbours of v in Yt−1. Identically as in the proof of Lemma 7, with the

random variables χ(u 6∈ ∂Zt) taking over the role of Σi, (βj)
k
j=0 is r-Lipschitz with exceptional

probability at most µ. Similar to the calculation in (17), using Proposition 12 and Lemma 5:

P(|Uv,t − E(Uv,t)| > 9σt) = P(|βk − β0| > 9σt) ≤ d−10
t−1

for t ≤ T . Combining the two bounds, and using the fact that by Lemma 5, E(Yv,t) < 90σt,

we see that P(Yv,t > 100σt) < P(Yv,t − E[Yv,t] > 10σt) < d−9. �

3.3 Lovász Local Lemma

Let Av,t and Bv,t be the events that (6) and (7) do not hold at stage t. We have seen that

both these event have probability less than d−9
t−1 at stage t if they hold at stage t− 1.

Lemma 8. Suppose t ≤ T and (6) - (10) hold at time t − 1. Then (6), (7) and (10) hold at

time t with positive probability.

Proof. Note that Av,t is mutually independent of any set of events {Au,t, Bu,t : u ∈ U} if no

vertex of U is at distance at most six from v, and similarly for any event Bv,t. Therefore a

dependency graph of these events certainly has maximum degree less than ∆ = 210d6
t−1. By

the Lovász Local Lemma with δ = 212d−3
t−1, the probability that no Av,t or Bv,t occurs is at

least

exp
(
− 8

d9
t−1

· |V (Gt−1)|
)
.

Using the assumption (8) and (9) at time t− 1, this product is easily at least exp(−nt/d8
t ) if

t ≤ T . Now the event that (10) does not hold has probability easily less than exp(−nt/d8
t ):

By (8), E|Zt| ≤ nt
edt

+ 150σtnt
d2t

, and concentration follows by consider an ordering v1, v2, . . . , vm

of the vertices of Gt−1, and the martingale (ρi)
m
i=0 where ρi = E(|Zt| | Fi) where Fi is the

σ-field generated by exposing the first i vertices of Gt−1. By (6), no vertex of Gt−1 has degree

more than dt−1 + σt−1, and this is easily less than 2dt for t ≤ T . Then the required bound

follows from Hoeffding’s Inequality (Appendix: Proposition 11) since (ρi)
m
i=0 is 2dt-Lipschitz.

Therefore with positive probability (6), (7) and (10) all hold at time t.

3.4 Bounds on |Xt| and |Yt|

Lemma 8 implies the existence of a choice for Gt (along with Xt, Yt and Zt satisfying (6), (7)

and (10)). It remains to show that such a choice also satisfies (8), (9).

We show that the random variables |Xt| and |Yt| are deterministically bounded as follows by

induction on t.

13



Lemma 9. Let t ≤ T . Suppose (8)-(9) hold at stage t− 1 and (6), (7) and (10) hold at stage

t. Then

1. |Xt| < nt +
100σtnt
dt

(18)

2. |Yt| <
200σtnt
dt

(19)

Proof. Observe |X0| = n and |Y0| = 0, so the inequalities in the lemma hold for t = 0. Suppose

t > 0 and that the inequalities of the lemma hold at stage t − 1. For the first inequality, we

count the number edges between Xt−1 and Xt. Every v ∈ Xt−1\Zt has Xv,t ≤ dt + σt by (6).

Similarly, every v ∈ Xt has Xv,t−1 ≥ dt−1 − σt−1. Therefore

(dt−1 − σt−1)|Xt| ≤ (dt + σt)|Xt−1|.

For t ≤ T we have

dt + σt
dt−1 − σt−1

=
(dt + σt)/dt

(dt−1 − σt−1)/dt
= e−

1
e

(
1 +

σt
dt

)
.

Also, a quick computation shows that σt−1

dt−1
< e−

1
3e σt
dt

. Using (8) applied to |Xt−1|, we obtain

|Xt| ≤ e−
1
e

(
1 +

σt
dt

)
|Xt−1|

< e−
1
ent−1

(
1 +

σt
dt

)(
1 +

100σt−1

dt−1

)
= nt

(
1 +

σt−1

dt−1 − σt−1

)(
1 +

σt
dt

)(
1 +

100σt−1

dt−1

)
< nt

(
1 +

2σt
dt

)(
1 +

σt
dt

)(
1 +

100e−
1
3eσt

dt

)

< nt

(
1 +

100σt
dt

)
.

By (7), we have Yv,t ≤ 100σt for every v ∈ Xt and so

(dt − σt)|Yt| ≤ e(Xt, Yt) ≤ 100σt|Xt|.

The following calculation gives the required bound on Yt when t ≤ T .

|Yt| ≤
100σt|Xt|
dt − σt

<
100σt
0.8dt

(
nt +

100σtnt
dt

)
=

125σtnt
dt

+
12500σ2

t nt
d2
t

<
200σtnt
dt

.
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4 Proof of Theorem 2

Let N = 1
2n, and let F be a random k-regular graph on N vertices where k = (m− 1)d. For

convenience, we assume N is even. For m ≤ 5 the bound in the theorem is negative, so we

assume m > 5. Let G be obtained from F by adding a set I of N independent new vertices,

and place an independent random d-regular graph between I and F . We shall show that with

positive probability,

γ◦(G) >
(

1− 4 log ∆

∆
1
2
− 2
m−1

) N

∆
2

m−1

.

It is well-known (see Bollobás [3] for instance) that the number of cycles of length at most

four in F is asymptotically Poisson. The same calculation shows that the number of cycles of

length at most four in G is also asymptotically Poisson as n→∞ with mean less than 1
2∆4.

Therefore for large enough N , the probability that G has girth at least five is certainly at least

2 exp(−∆4).

Now, from a computation of Frieze and Luczak (cf. [6]), it is known that the expected number

of independent sets in F of size ` is at most 2
(
eN
` exp(− k`

2N )
)`
. Let Iα be the expected number

of independent sets in F of size α = (2N log k)/k. It follows that Iα < 2 (2 log k)−2N log k/k <

exp(−N(log log k)/k). For large enough N , the probability that every independent set has

size at most α is easily at least 1 − exp(−∆4), so we conclude that with probability at least

exp(−∆4), every independent set in F has size at most α and G has girth at least five.

If J is a fixed set of vertices in F , let ϕ(J) denote the number of vertices of I adjacent to no

vertex in J . Then

E(ϕ(J)) > |I| · (N − |J | − d)d

Nd
= N

(
1− |J |+ d

N

)d
.

We claim that for |J | ≤ α, this expectation is at least β := N/∆2/(m−1). Indeed,
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(
1− |J |+ d

N

)d
> exp

(
−(|J |+ d)d

N
− d

(
|J |+ d

N

)2
)

> exp

(
−2d log k

k
− d2

N
− d

(
2 log k

k
+

d

N

)2
)

= ((m− 1)d)−2/(m−1) · exp

(
−d

2

N

)
· exp

−(2
√
d log k

k
+
d
√
d

N

)2


= ((m− 1)d)−2/(m−1) · exp

(
−d

2

N

)
· exp

−(2 log((m− 1)d)

(m− 1)
√
d

+
d3/2

N

)2


> ((m− 1)d)−2/(m−1) ·
(

m

m− 1

)−2/(m−1)

= ∆−2/(m−1),

where in the penultimate step we used the fact that m is fixed and we can take d sufficiently

large with respect to m and N sufficiently large with respect to d. Hoeffding’s inequality

(Appendix: Proposition 11) applied to the 1-Lipschitz vertex exposure martingale, obtained

by exposing one by one the vertices of I shows that:

P(ϕ(J) < (1− δ)β) < exp
(
− 1

2N
δ2β2

)
.

We select the following value of δ, which is less than one if m > 5 and d ≥ d0(m):

δ = 4∆
2

m−1
− 1

2 log ∆.

Using this choice of δ, the expected number of sets J ⊆ F of size at most α such that

ϕ(J) < (1− δ)β is at most∑
j≤α

(
N

j

)
· exp

(
− 1

2N
δ2β2

)
< exp

(
2α log ∆− 1

2N
δ2β2

)
< exp

(
− 1

8N
δ2β2

)
.

If N is large enough, we conclude that with probability at least 1 − exp(−∆4), every set J

of at most α vertices in F has ϕ(J) ≥ (1 − δ)β. By the first part of the proof, we conclude

that with positive probability, G has girth at least five and every independent set J in F has

ϕ(J) ≥ (1− δ)β, and therefore γ◦(G) > (1− δ)β, as required. This completes the proof.
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5 Appendix : Concentration Inequalities

In this section, we present the inequalities which we will need from probability theory involving

concentration of measure. All of these inequalities deal with upper bounds for expressions of

the form P(|X − EX| > λ) where X is a random variable and λ is a real number. The most

basic inequality of this type for binomial distributions is the Chernoff Bound [9].

Proposition 10. (Chernoff Bound) If a random variable X has binomial distribution with

probability p and mean pn, then for any ε ∈ [0, 1],

P(|X − pn| > εpn) < 2 exp
(
−ε

2pn

3

)
.

Moreover, the following version also holds, for all t > 0:

P(X > E[X] + t) < exp
(
− t2

2(np+ t/3)

)
.

Most of the inequalities we will need concern martingales. One of the most fundamental

martingale inequalities is Hoeffding’s Inequality. Further refinements and generalizations of

this inequality may be found in McDiarmid [13].

Proposition 11. (Hoeffding’s Inequality) Let (ξi)
n
i=0 be a martingale with respect to a filtra-

tion Fi and with difference sequence (yi)
n
i=1, where −ai ≤ yi ≤ −ai + ci, and where ai is a

function on (Ω, Fi−1) and ci ∈ R. Then for t ≥ 0 and c :=
∑
c2
i ,

P(ξn > E(ξn) + λ) ≤ exp
(
−2λ2

c

)
and P(ξn < E(ξn)− λ) ≤ exp

(
−2λ2

c

)
.

We require the following martingale concentration inequality of Shamir and Spencer [16],

which deals with concentration of a martingale which is c-Lipschitz with high probability. An

overview of such inequalities is given in [8]. We note that the version in [16] has a larger

factor of 8 in the exponential instead of 2, but the version stated here follows from the proof

given there.

Proposition 12. Suppose (ξi)
k
i=0 is a martingale with ξ0 constant satisfying

(i)
k−1∑
i=0

P(|ξi+1 − ξi| > r) < µ

(ii) ∀0 ≤ i < k : |ξi+1 − ξi| ≤ k.

Suppose kµ1/2 ≤ r. Then

P(|ξk − ξ0| > λ+ k2µ1/2) < 2 exp

(
−λ2

2kr2

)
+ 2kµ1/2.

A martingale satisfying the hypothesis of Proposition 12 is called r-Lipschitz with exceptional

probability at most µ. A final tool from probability which we require is the Lovász Local

Lemma [5].
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Proposition 13. (Lovász Local Lemma) Let A1, A2, . . . , An be events in some probability

space and suppose that for some set Ji ⊂ [n] of size at most ∆, Ai is mutually independent of

{Aj : j 6∈ Ji ∪ {i}}. Suppose that there is a real 0 < x < 1 such that P(Ai) ≤ x(1− x)∆ for all

i. Then

P
( n⋂
i=1

Ai

)
≥ (1− x)n.

Let 0 < δ < 1. The following corollary is immediate for ∆ ≥ 2 by setting x = δ
∆ .

If P(Ai) ≤ δ
4∆ for all i, then

P
( n⋂
i=1

Ai

)
≥ e−2δn/∆.
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