Coloring tournaments: from local to global *
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Abstract

The chromatic number of a directed graph D is the minimum num-
ber of colors needed to color the vertices of D such that each color class
of D induces an acyclic subdigraph. Thus, the chromatic number of
a tournament 7' is the minimum number of transitive subtournaments
which cover the vertex set of T. We show in this note that tourna-
ments are significantly simpler than graphs with respect to coloring.
Indeed, while undirected graphs can be altogether “locally simple” (ev-
ery neighborhood is a stable set) and have large chromatic number, we
show that locally simple tournaments are indeed simple. In particular,
there is a function f such that if the out-neighborhood of every ver-
tex in a tournament T has chromatic number at most ¢, then T has
chromatic number at most f(c). This answers a question of Berger et
al.
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1 Introduction

A directed graph is said to be acyclic if it does not contain any directed
cycles. Given a loopless digraph D, a k-coloring of D is a coloring of each of
the vertices of D with one of the colors from the set {1, ..., k} such that each
color class induces an acyclic subdigraph. The chromatic number X (D) of
D is the smallest number k for which D admits a k-coloring. This digraph
invariant was introduced by Neumann-Lara [14], and naturally generalizes
many results on the graph chromatic number (see, for example, [4], [10]
[11], [12], [13]). As shown by Chen, Hu, and Zang [5], it is NP-hard to
determine the chromatic number of a digraph D, even when D is restricted
to a tournament. In this note, we study the chromatic number of a class
of tournaments where the out-neighborhood of every vertex has bounded
chromatic number.

A tournament is a loopless digraph such that for every pair of distinct
vertices u, v, exactly one of wv,vu is an arc. Given a tournament 7', a
subset X of V(T) is transitive if the subtournament of 7' induced by X
contains no directed cycle. Thus, ¥(7') is the minimum & such that V(T')
can be colored with k£ colors where each color class is a transitive set. The
coloring of tournaments has close relationship with the celebrated Erdds—
Hajnal conjecture (cf. [1, 9]) and has been studied in [3, 6, 7, 2, 8].

Given t > 1, a tournament 7" is t-local if for every vertex v, the subtour-
nament of T" induced by the set of out-neighbors of v has chromatic number
at most ¢. The following conjecture was raised in [3] (Conjecture 2.6) and
settled for ¢ =2 in [8].

Conjecture 1. There is a function f such that every t-local tournament T
satisfies X(T') < f(t).

The goal of this note is to provide a proof of Conjecture 1 for all ¢.

Given a set S C V(T'), we say that S is a dominating set of T if every
vertex in V'\ S has an in-neighbor in S. The dominating number v(T') of a
tournament 7T is the smallest number k such that T has a dominating set of
size k. The main tool to prove Conjecture 1 is the following theorem, which
seems more interesting than our original goal.

Theorem 2. For every integer k > 1, there exist integers K and { such
that every tournament T with dominating number at least K contains a
subtournament on £ vertices having chromatic number at least k.

Roughly speaking, Theorem 2 asserts that if the dominating number of a
tournament is sufficiently large, then it contains a bounded-size subtourna-
ment with large chromatic number. One may ask whether high dominating
number is enough to force an induced copy of a specific (high chromatic



number) subtournament. The following tournaments may be potential can-
didates. Let S; be the tournament with a single vertex. For every ¢ > 1,
let S; be the tournament (with 2¢ — 1 vertices) obtained by blowing up two
vertices of an oriented triangle into two copies of S;_1. It is easy to check
that x(S;) > i. The following problem is trivial for ¢ < 2 and verified for
i = 3 in [8], while still open for all i > 4.

Problem 3. For every integer i > 1, there exist f(i) such that every tour-
nament T with dominating number at least f(i) contains an isomorphic copy

Of Sz

On another note, it is natural to ask whether Theorem 2 still holds
with a weaker hypothesis. In particular, is it true that for every k, if the
chromatic number of a tournament is huge, then it contains a bounded-
size subtournament with chromatic number at least k7 Unfortunately, the
answer is negative for any k > 3. It is well known that for any ¢, there is
an undirected simple graph G with arbitrarily high chromatic number and
girth at least £ + 1. We fix an arbitrary enumeration of vertices of G and
create a tournament T as follows: If ¢j with ¢ < j is an edge of G then j
is an arc of T'; otherwise, ji is an arc of 1. Then T has arbitrarily high
chromatic number while every subtournament of T' of size ¢ has chromatic
number at most 2. However, a similar question for dominating number is
still open.

Problem 4. For every integer k > 1, there exist integers K and £ such
that every tournament T with dominating number at least K contains a
subtournament with £ vertices and dominating number at least k.

2 Proof of Conjecture 1

For every vertex v in a tournament 7', we denote by N; (v) the set of out-
neighbors of v in T'. Given a subset X of V(T), let N/ (X) denote the union
of all N (v), for v € X, and let N'[X] := X UN;(X). For every subset X
of V(T), let X¥r(X) denote the chromatic number of the subtournament of
T induced by X.

Given a tournament 7" and a subset X of V(T'), we say a set R C V(7))
(not necessary disjoint from X)) is a dominating set of X in T if every vertex
in X\ R has an in-neighbor in R. The dominating number yr(X) of X in T
is the smallest number k such that X has a dominating set of size k. When
it is clear in the context, we omit the subscript 7" in the notation.

Let T be a tournament and X,Y C V(T'). The following inequalities are
straightforward:
yr(NTIX]) < |X], (1)



and
r(Y) < yr(X) +9r(Y\X). (2)

Let us restate Theorem 2.

Theorem 5. For every integer k > 1, there exist integers K and £ such
that every tournament T with v(T) > K contains a subtournament A on ¢
vertices with X(A) > k.

Proof. We proceed by induction on k. The claim is trivial for £k = 1. For
k = 2, we can choose K = 2 and ¢ = 3. Indeed, if a tournament 7' satisfies
v(T) > K = 2, then T is not transitive and thus it contains an oriented
triangle A of size £ = 3 and \(A4) > k = 2.

Assuming now that (K, ¢) exists for k, we want to find (K’,¢') for k + 1.
For this, we set K’ := k(K +/(+1)+K, and fix ¢ later. Let T be a tournament
such that v(T) > K’. Let D be a dominating set of T of minimum size.
Consider a subset W of D of size k(K + ¢+ 1). From (1) and (2) we have

YV \NFTW]) >A(T) —y(NTW]) > K' = |[W| > K,

where V is the vertex set of 7. Thus by induction hypothesis on k, one can
find a set A C V \ N*t[W] such that A has ¢ vertices and ¥(A) > k. Note
that by construction, ANW = () and all arcs between A and W are directed
from A to W.

Consider now a subset S of W of size K + ¢ + 1. We claim that
y(N*(S)) > K + ¢. If not, we can choose a dominating set S’ of N*(9)
of size at most K + ¢ — 1. Note that x dominates S for any = € A, and so
S" U {z} dominates NT[S]. Hence (D \ S)U S’ U {z} would be a dominat-
ing set of T of size less than |D|, which contradicts the minimality of |D].
Therefore y(NT(S)) > K + /.

Let N’ be the set of vertices N*(S)\ N*(A). From (1) and (2) we have
YN') Z y(NT(8)) = v(NT(A)) = K + L~ |A| = K.

Thus by induction hypothesis on k, there is a subset Ag of N’ such that
|Ag| = ¢ and ¥(Ag) > k. Note that by construction, Ag N A = () and all
arcs between Ag and A are directed from Ag to A.

We now construct our subtournament of 7" with chromatic number at
least k& + 1. For this we consider the set of vertices A UW to which we add
the collection of Ag, for all subsets S C W of size K + ¢+ 1. Let A’ denote
this new tournament and observe that its number of vertices is at most

E(K+(+1)
U =0+k(K+/0+1 14 .
s (1)
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To conclude, it is sufficient to show that ¥(A’) > k + 1. Suppose not, and
for contradiction, take a k-coloring of A’. Since |W| = k(K + ¢ + 1) there
is a monochromatic set S in W of size K + ¢ + 1 (say, colored 1). Recall
that we have all arcs from Ag to A and all arcs from A to .S, and note that
since X(A) > k and ¥(Ag) > k, both A and Ag have a vertex of each of the
k colors. Hence there are u € A and w € Ag colored 1. Since Ag C N*(9),
there is v € S such that vw is an arc. We then obtain the monochromatic
cycle uvw of color 1, a contradiction. Thus, Y(A’) > k + 1, completing the
proof. ]

We now show that Conjecture 1 is true.

Theorem 6. There is a function f such that every t-local tournament T
satisfies X(T') < f(¢).

Proof. Let (K,¢) satisfy Theorem 5 for k := t + 1. Let T be a t-local
tournament. Thus, if v(7') > K then T contains a set A of ¢ vertices and
X(A) >t + 1. If a vertex v € V(T)\A does not have an in-neighbor in A,
then A C N*(v), and so t + 1 < ¥(A) < X(N*(v)) < t, a contradiction.
Hence, A is a dominating set of T. Note that

X(NT]) < X(NF () +X({v}) <t +1
for every v € V(T'). Thus

X(T) = ¥(NT[AD) < Y X(NFR]) < (t+ DJA| = (£ + 1)L
veEA

Otherwise, v(7') < K. Let D be a dominating set of 7" with minimum
size. Then

X(T) = X(NF[D]) < > ¥(NTR]) < (t+1)[D] < (¢ + K.
veD

Consequently, t-local tournaments have chromatic number at most f(t) :=
max ((t + 1)K, (t + 1){). O

The implication of our result is that we are possibly missing a key-
definition of what is a “large” (or “dense”) hypergraph (i.e., a set of subsets).
It could be that for a suitable definition of “large” (for which “large” inter-
secting “large” would be “large”), we would obtain that for any tournament
T on vertex set V', the set of out-neighborhoods of vertices of T" is “large”,
and in addition the set of subsets of vertices of a K-chromatic tournament
inducing at least chromatic number k is also “large”. Hence, if two large
sets are intersecting in a non-empty way, one could find an out-neighborhood
with chromatic number k.



If such a notion would exist, it should decorrelate the two large sets (out-
neighborhoods and k-chromatic), and thus imply the following: If T}, T, are
tournaments on the same set of vertices and ¥(77) is huge, then there is a
vertex v such that 77 induces on N’j’; (v) a subtournament of large chromatic
number. A very similar conjecture was proposed by Alex Scott and Paul
Seymour.

Conjecture 7. [15] For every k, there exists K such that if T and G are
respectively a tournament and a graph on the same set of vertices with G of
chromatic number at least K, then there is a vertexr v such that G induces
on N;f(v) a subgraph of G of chromatic number at least k.
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