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Outline

Reinforcement Learning (single agent)
ë Learning/solving a Markov decision process (MDP)

Competitive interactions between two (or more) agents:
learning to play a game (a game as in game theory)
ë Game and some solution concepts
ë Btw, what are we solving exactly?

Cooperative interaction: learning to coordinate in a
(potentially) large society of agents to reach a collective
goal.
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Reinforcement learning – single agent learning
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Learning from interaction

State of the world
st
different actions are
available from st

Take action at
using a policy
for state st

Get a reward r
State of the world
changes st→ st+1

Update policy for state st
using knowledge of st+1 and r

Goal: obtain as much reward as possible
assumes that the agent’s goals are modeled using utility function,
→ flexible but may be difficult to elicit

Reinforcement Learning: specify how to update the policy.
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Markov assumption

After taking an action a in a state s:
the reward r obtained
or the state s ′ reached

could in principle depend on everything that happened ear-
lier.

However, we assume they depend on the current state only:
this is called the Markov assumption.

ex: in chess – the state of the game does not depend on the
history.
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Markov Decision Process

A Markov Decision Process is defined by
States of the world S
Action set A
Transition probabilities: probibility of reaching state
s ′ ∈ S when one takes action a ∈ A in state s ∈ S
ë we write Pr(st+1 = s | st = s,at = a).
Expected reward: the reward obtained after taking
action a in state s when the agent ended up in state s ′

E{rt+1 | st = s,at = a,st+1 = s ′}.
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Example: robot looking for gold in a grid world

state of the world: a grid n×n
some states are walls: if the agent tries to get there, it
bumps and remain in the same position.
some states are pits (holes): if the agent enters that state, it
is the end of the episode and the game restarts
one state contain a pot of gold

actions are moving one cell up, down, left or right.
The actions are not deterministic: e.g. wheels may be
blocked and the robot may end up in a different neighbouring cell
ë we have a transition probabilities Pr
reward: if the agent reached the gold, it gets a reward
of 100, otherwise, it gets a reward of −1.

A

G
PW

W
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The problem

A policy π : S×A→ [0,1] is a probability distribution over
the action set A telling the probability of taking action a ∈ A
when the agent is in state s ∈ S.

A solution to a Markov Decision process is a policy that
“maximises reward”.
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What are we optimising?

for episodic tasks:
there are some terminal states
when an agent reaches a terminal state: reset to a
starting state and the agent starts to act

ë maximise the expected return RT = r1 + r2 + · · ·+ rT

for continuing tasks

ë maximise a discounted return Rt =

∞∑
k=0

γkrt+k+1

γ is called the discounted rate.
γ= 0 the agent is myopic: she cares only about the
immediate reward
0< γ < 1 when {rt, t ∈ N} is bounded, RT is well defined.
ë The agent cares about the immediate reward but also
for future ones (but cares more about reward in the near
future than in the far one)

we use continuing tasks
(one can represent episodic tasks using continuing tasks.)
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Value function

How good it is to be in state s ∈ S when the agent follows
policy π?
ë expected return when starting in s and following π there-
after.

Vπ(s) = Eπ

{ ∞∑
k=0

γkrt+k+1 | st = s

}
.

Similarly, how good is it to take action a in state s following
policy π?

Qπ(s,a) = Eπ

{ ∞∑
k=0

γkrt+k+1 | st = s,at = a

}
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Bellman equation

notation:
Pa

s→s ′ = E {st+1 = s | st = s,at = a}
Ra

s→s ′ = E {rt+1 | st = s,at = a,st+1 = s ′}

Vπ(s) = Eπ

{ ∞∑
k=0

γkrt+k+1 | st = s

}

= Eπ

{
rt+1 +γ

∞∑
k=0

γkrt+k+2 | st = s

}

=
∑
a∈A

π(s,a)
∑
s ′∈S

Pa
s→s ′

[
Ra

s→s ′ +γEπ

{ ∞∑
k=0

γkrt+k+2 | st = s

}]
=
∑
a∈A

π(s,a)
∑
s ′∈S

Pa
s→s ′

[
Ra

s→s ′ +γVπ(s ′)
]
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Optimal Value Functions

we can define a partial order � over policies:
π� π ′ iff ∀s ∈ S Vπ(s)> vπ

′
(s)

π? is an optimal policy if it is not dominated by othe poli-
cies.

All optimal policies share the same
state-value function, thus called optimal value function
V? = maxπ Vπ(s)
action-value function Q? = maxπ Qπ(s,a)
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Bellman optimality equation

Vπ(s) = max
a∈A

Qπ?
(s,a)

= max
a∈A

Eπ?

{ ∞∑
k=0

γkrt+k+1 | st = s,at = a

}

= max
a∈A

Eπ?

{
rt+1 +γ

∞∑
k=0

γkrt+k+2 | st = s,at = a

}
= max

a∈A
Eπ? {rt+1 +γV?(st+1) | st = s,at = a}

= max
a∈A

∑
s ′∈S

Pa
s→s ′

[
Ra

s→s ′ +γV?(s ′)
]

Similarly, we have

Q?(s,a) =
∑
s ′∈S

Pa
s→s ′

[
Ra

s→s ′ +γmax
a ′∈A

Q?(s ′,a ′)
]
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solving Bellman optimality equation

For finite MDPs, the Bellman optimality equation has a
unique solution independent of the policy.

ë system of n equations with n unknowns

ë many ways to solve for V?

dynamic programming (policy iteration, value iteration)
use of Monte Carlo methods for approximations
temporal difference learning → combine dynamic
programming with Monte Carlo methods (Sarsa,
Q-learning)

ë once V? is known, it is easy to compute Q?
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Value Iteration (dynamic programming)

1 for each s ∈ S
2 V(s)← 0
3
4 repeat
5 ∆← 0
6 for each s ∈ S
7 v← V(s)
8 V(s)←maxa∈A

∑
s ′∈S Pa

s→s ′
[
Ra

s→s ′ +γV(s ′)
]

9 ∆←max(∆, |v−V(s)|)
10 until ∆ < ε

Not very useful in practice:
need to know the dynamics of the environment
requires large computational resources
Markov property

RL typically uses an approximation method.
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One solution: Q-learning

We want to estimate the value Q(s,a) of taking action a
in a state s.
The update rule for Q-learning is:

Q(st,at)←Q(st,at)+α

(
rt +γ max

a∈A(s)
Q(st,a)−Q(st,at)

)
,

where α is called the learning rate.

ë do not require a model of the environment, only experi-
ence.
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Exploitation Vs Exploration

Suppose you estimate the value Q(s,a) of taking an action a
in state s. What should you do?

exploitation: choose action a? = argmaxa∈A(s) Q(s,a)
exploration: choose action a 6= a?

you cannot exploit all the time (maybe your experience is
not enough to make a good choice)

you cannot explore all the time (at some point, you should
use your knowledge), but can never stop exploring (as you
are never sure you are doing well)
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Two classical methods for trading off exploration and exploitation

ε-greedy

at =

{
a? = argmaxa∈A(s) Q(s,a) with probability 1−ε
pick a random action in A(s) with probability ε

ε may decrease during learning.
Boltzmann softmax
uses a temperature parameter T
pick an action using the distribution in which the

probability of picking action a is proportional to e
Q(s,a)

T .
T can be decreased during learning.
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Partially observable MDP

Only partial information about the current state is available.
ë the agent is uncertain about what the current state is.

the agent senses observations (responses, perceptions, views,
etc) that provide some clues about the current state

many states may share the same observation
noisy or faulty sensors provide incomplete information
from which the agent cannot infer the current state
combinaison of both
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POMDP

A Partially Observable Markov Decision Process is defined
by

States of the world S 4

Action set A 4

Observation set Ω
Transition probabilities: probability of reaching state
s ′ ∈ S when one takes action a ∈ A in state s ∈ S
ë we write Pr(st+1 = s | st = s,at = a).4
Expected reward: the reward obtained after taking
action a in state s when the agent ended up in state s ′

E{rt+1 | st = s,at = a,st+1 = s ′}.4
Observation probability: probability of observing o ∈Ω
when action a was taken in state s O : S×A×Ω→ [0,1]

ë the agent builds a belief about the current state and tries
to find the optimal policy.
ë quite complex, active area of research.
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Learning to play a game against another learning agent
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interlude about game theory

Agents have goals, they want to bring about some states
of the world, they can take actions in their environment.
In a multiagent system, agents interact, the actions of
one may affect many other agents.
How can we formally model such interactions?

Game theory is one way.
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Prisoner’s dilemma

Two partners in crime, Row (R) and Column (C), are ar-
rested by the police and are being interrogated in separate
rooms. From Row’s point of view, four different outcomes
can occur:

only R confesses ë R gets 1 year.
only C confesses ë R spends 4 years in jail
both confess ë Both spend 3 years in prison.
neither one confesses ë both get 2 years in prison

The utility of an agent is (5 - number of years in prison).

Column confesses Column does not
Row confesses 2,2 4,1
Row does not 1,4 3,3
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We can abstract this game and provide a generic game rep-
resentation as follows:

Definition (Normal form game)
A normal form game (NFG) is (N,(Si)i∈N ,(u)i∈N) where

N is the set of n players
Si is the set of strategies available to agent i.
ui : S1×·· ·×Sn→ Rn is the payoff function of agent
i. It maps a strategy profile to a utility.

Terminology:

an element s = 〈s1, . . . ,sn〉 of S1×·· ·×Sn is called a strategy
profile or a joint-strategy.

Let s ∈ S1×·· ·×Sn and s ′i ∈ Si. We write (s ′i ,s−i) the
joint-strategy which is the same as s except for agent i which
plays strategy s ′i , i.e., (s ′i ,s−i) = 〈s1, . . . ,si−1,s ′i ,si+1, . . . ,sn〉
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What would you do?

N = {Row,Column}
SRow = SColumn = {cooperate, defect}
uRow and uColumn are defined by the following bi-matrix.

Row \ Column defect cooperate
defect 2,2 4,1

cooperate 1,4 3,3

1. Wait to know the other action?
2. Not confess?
3. Confess?
4. Toss a coin?

Can you use some general principles to explain your choice?
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Definition (strong dominance)
A strategy x ∈ Si for player i (strongly) dominates an-
other strategy y ∈ Si if independently of the strategy
played by the opponents, agent i (strictly) prefers x to y,
i.e. ∀s ∈ S1×·· ·×Sn, ui(x,s−i)> ui(y,s−i)

Prisoner’s dilemma

C confesses C does not
R confesses 2,2 4,1
R does not 1,4 3,3

Both players have a dominant strategy: to
confess! From Row’s point of view:

if C confesses: R is better off confessing
as well.

if C does not: R can exploit and confess.
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Battle of the sexes

L R
T 2,2 4,3
B 3,4 1,1

Problem: Where to go on a
date: Soccer or Opera?
Requirements:

have a date!
be at your favourite place!

Do players have a dominant strategy?

Definition (Best response)
A strategy si of a player i is a best response to a joint-
strategy s−i of its opponents iff

∀s ′i ∈ Si, ui(si,s−i)> ui(s ′i ,s−i).

Definition (Nash equilibrium)
A joint-strategy s ∈ S1×·· ·×Sn is a Nash equilibrium if
each si is a best response to s−i, that is

(∀i ∈N)
(
∀s ′i ∈ Si

)
ui(si,s−i)> ui(s ′i ,s−i)

Battle of the sexes possesses two Nash equilibria 〈T,R〉 and 〈B,L〉.
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A Nash equilibrium is a joint-strategy in which no player
could improve their payoff by unilaterally deviating from
their assigned strategy.

Prisoner’s dilemma
C confesses C does not

R confesses 2,2 4,1

R does not 1,4 3,3

Unique Nash equilibrium: both players confess!

if R changes unilaterally, R loses!

if C changes unilaterally, C loses!

Definition (Pareto optimal outcome)
A joint-strategy s is a Pareto optimal outcome if for no joint-
strategy s ′

∀i ∈N ui(s
′)> ui(s) and ∃i ∈Nui(s

′)> ui(s)

A joint-strategy is a Pareto optimal outcome when there is no
outcome that is better for all players.

Prisoner’s dilemma: Remaining silent is Pareto optimal.

discussion: It would be rational to confess! This seems counter-
intuitive, as both players would be better off by keeping silent.

ë There is a conflict: the stable solution (i.e., the Nash equilib-
rium) is not efficient, as the outcome is not Pareto optimal.
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Chicken game

In Rebel Without a Cause, James Dean’s character’s, Jim, is chal-
lenged to a "Chickie Run" with Buzz, racing stolen cars towards
an abyss. The one who first jumps out of the car loses and is
deemed a "chicken" (coward).

Jim drives on Jim turns
Buzz drives on -10,-10 5,0

Buzz turns 0,5 1,1

Dominant Strategy?

Nash equilibrium ?

Stéphane Airiau (LAMSADE) - Learning in MAS Nash equilibrium 29



Nash equilibrium

When there is no dominant strategy, an equilibrium is
the next best thing.
A game may not have a Nash equilibrium.
If a game possesses a Nash equilibrium, it may not be
unique.
Any combinations of dominant strategies is a Nash
equilibrium.
A Nash equilibrium may not be Pareto optimal.
Two Nash equilibria may not have the same payoffs
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Definition (Mixed strategy)
A mixed strategy pi of a player i is a probability distri-
bution over its strategy space Si.

Assume that there are three strategies: Si = {1,2,3}. Player i may
decide to play strategy 1 with a probability of 1

3 , strategy 2 with a
probability of 1

2 and strategy 3 with a probability of 1
6 . The mixed

strategy is then denoted as
〈

1
3

,
1
2

,
1
6

〉
.

Given a mixed strategy profile p = 〈p1, . . . ,pn〉, the expected utility
for agent i is computed as follows:

Ei(p) =
∑

s∈S1×···×Sn

∏
j∈N

pj(sj)

×ui(s)


Battle of the sexes

y 1−y

L R

x T 2,2 4,3

1−x B 3,4 1,1

The expected utility for the Row player is:
xy ·2+x(1−y) ·4+(1−x)y ·3+(1−x)(1−y) ·1
=−4xy+3x+2y+1
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Given a mixed strategy profile p = 〈p1, . . . ,pn〉, we write
(p ′i ,p−i) the mixed strategy profile which is the same as p ex-
cept for player i which plays mixed strategy p ′i , i.e., (p ′i ,p−i) =

〈p1, . . . ,pi−1,p ′i ,pi+1, . . . ,pn〉.

Definition (Mixed Nash equilibrium)
A mixed Nash equilibrium is a mixed strategy profile
p such that Ei(p) > Ei(p ′i ,pi) for every player i and every
possible mixed strategy p ′i for i.

Battle of the sexes

L R
T 2,2 4,3
B 3,4 1,1

Let us consider that each player
plays the mixed strategy 〈 3

4 , 1
4 〉.

None of the players have an
incentive to deviate:

Erow(T) = 3
4 ·2+

1
4 ·4 = 5

2 Erow(B) = 3
4 ·3+

1
4 ·1 = 5

2
(players are indifferent)
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Theorem (J. Nash, 195))
Every finite strategic game has got at least one mixed
Nash equilibrium.

note: The proofs are non-constructive and use Brouwer’s or
Kakutani’s fixed point theorems.

J.F. Nash. Equilibrium points in n-person games. in Proc. National
Academy of Sciences of the United States of America, 36:48-49, 1950.
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Computing a Nash equilibrium

Complexity: In general, it is a hard problem. It is a PPAD-
complete problem.

Daskalakis, Goldberg, Papadimitriou: The complexity of computing a
Nash equilibrium, in Proc. 38th Ann. ACM Symp. Theory of Computing
(STOC), 2006

There are complexity results and algorithms for different
classes of games. We will not treat then in this tutorial.

Y. Shoham & K. Leyton-Brown: Multiagent Systems, Cambridge Univer-
sity Press, 2009. (Chapter 4)
Nisan, Roughgarden, Tardos & Vazirani: Algorithmic Game Theory,
Cambridge University Press, 2007. (chapters 2, 3)
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Other types of solution concepts for NFGs
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Safety strategy

With Nash equilibrium, we assumed that the opponents were rational
agents. What if the opponents are potentially malicious, i.e., their goal could
be to minimize the payoff of the player?

Definition (Maxmin)
For player i,
the maxmin strategy is argmax

si∈Si
min

s−i∈S−i
ui(si,s−i),

and its maxmin value or safety level is max
si∈Si

min
s−i∈S−i

ui(si,s−i).

1) player i chooses a (possibly mixed) strategy.
2) the opponents −i choose a (possible mixed) strategy that minimize i’s
payoff.
ë the maxmin strategy maximizes i’s worst case payoff.

y 1−y
L R

x T 2,2 4,3
1−x B 3,4 1,1

x

EUrow

L

R

2.5

0 1
2

1

1

2

3

4

Payoff of Row
when Column plays pure strategy (T or R)

or any mixed strategy (yellow area)

Whatever Column does, Row
can guarantee itself a payoff of
2.5 by playing the mixed strat-
egy 〈 1

2 , 1
2 〉.
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Minimax regret

Instead of assuming the opponents are rational (Nash equilib-
rium) or malicious (minimax), one can assume the opponent is
unpredictable ë avoid costly mistakes/minimize their worst-case
losses.

L R
T 100,100 0,0
B 0,0 1,1

(T,L) is preferred by both agents.
However, (B,R) is also a NE.
There is no dominance.
How to explain that (T,L) should be
preferred?

One can build a regret-recording game where the payoff
function ri is defined by ri(si,s−i) = ui(s?i ,s−i) − ui(si,s−i),
where s?i is i’s best response to s−i, i.e., ri(si,s−i) is i’s regret
to have chosen si instead of s?i .

ri\rj L R

T 0,0 1,100
B 100,1 0,0

We define regreti(si) as the maximal regret
i can have from choosing si.
A regret minimization strategy is one that
minimizes the regreti function.
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Repeated games

Prisoner’s dilemma
Defect Cooperate

Defect 2,2 4,1

Cooperate 1,4 3,3

When players are rational, both players
confess!
If they trusted each other, they could
both not confess and obtain 〈3,3〉.
If the same players have to repeatedly
play the game, then it could be rational
not to confess.

One shot games: there is no tomorrow.
This is the type of games we have studied thus far.
Repeated games: model a likelihood of playing the
game again with the same opponent. The NFG (N,S,u)
being repeated is called the stage game.

finitely repeated games ë represent using a EFG and
use backward induction to solve the game.
infinitely repeated games: the game tree would be
infinite, use different techniques.
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Infinitely repeated games

What is a strategy? In a repeated game, a pure strategy de-
pends also on the history of play thus far.

ex: Tit-for-Tat strategy for the prisoner’s dilemma:
Start by not confessing. Then, play the action played by the
opponent during the previous iteration.

What is the players’ objective?

Average criterion: Average payoff received throughout

the game by player i: lim
t→∞

∑k
t=1 ui(st)

k
, where st is the

joint-strategy played during iteration t.
Discounted-sum criterion: Discounted sum of the
payoff received throughout the game by player i:∞∑
t=0

γtui(st), where γ is the discount factor (γ models how

much the agent cares about the near term compared to long
term).
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Theorem (A Folk theorem)
Using the average criterion, any payoff vector v such that

v is feasible, i.e., ∃λ ∈ [0,1]
∏

j∈N |Sj| s.t. vi =
∑

s∈
∏

j∈N Sj
λsvi(s)

v is enforceable vi > max
si∈Si

min
s−i∈S−i

ui(si,s−i)

can be sustained by a Nash equilibrium.

maxmin

m
ax

m
in

Row’s payoff

Column’s payoff

1 2 3 4
1

2

3

4

maxmin

m
ax

m
in

Row’s payoff

Column’s payoff

1 2 3 4
1

2

3

4
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In repeated games, the same stage game was played
repeatedly.

A Stochastic game is a set of NFGs. The agents repeatedly
play games from this set. The next game is chosen with a
probability which depends on the current game and the
joint-action of the players.

Definition (Stochastic games)
A stochastic game is tuple (N,(Si)i∈N,Q,P,(ui)i∈N)
where

N is the set of players
Si is the strategy space of player i

Q is a set of NFGs q = (N,(Si)i∈N,(vq
i )i∈N)

P : Q×
∏

i∈N Si×Q→ [0,1] is the transition function.
P(q,s,q ′) is the probability that game q ′ is played after
game q when the joint-strategy s was played in game q.

ui : Q×
∏

i∈N Si is the payoff function
ui(q,s) is the payoff obtained by agent i when the
joint-strategy s was played in game q.

0.5 In the definition, for ease of presentation, we assume that all the games have the same strategy space,which is not required.
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For stochastic games, the players know which game is
currently played, i.e., they know the players of the game, the
actions available to them, and their payoffs.

In Bayesian games,

there is uncertainty about the game currently being
played.
players have private information about the current game.
The definition uses information set.
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Back to Learning! (finally!)

Stéphane Airiau (LAMSADE) - Learning in MAS Other models of games: bayesian games 43



Learning to play a repeated game

Soccer Opera
Soccer 3,4 1,1
Opera 2,2 3,4

Defect Cooperate
Defect 2,2 4,1

Cooperate 1,4 3,3

Battle of the sexes Prisoners’ dilemma

Assumptions:
each player can observe the action taken by its
opponent (perfect information)
a player may not know the payoff of the other agent
(incomplete information)
the game is played repeatedly

we could make it more complex using a stochastic game.

ë all theoretical results about solving single-agent MDPs no
longer apply!
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What are we trying to do?

descriptive approach: study the way learning takes
place in real life
ë show similarities between the formal model and nature
ë it is interesting if the formal model possesses some nice

properties (e.g. convergence to a solution concept)
convergence to Nash equilibrium of the stage game?
frequency of play converges to Nash equilibrium
convergence to a special Nash equilibrium of the repeated
game (e.g. that is also Pareto efficient).

Prescriptive theory: how (artificial) agents should learn.

a learning rule should guarantee at least its maxmin
payoff (safety/Individual rationality)
if the opponent(s) play a stationary strategy, the learning
rule should play a best-response to that strategy.
a learning strategy should have no regret.
learning rule should converge in self play.
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First algorithm: Fictitious Play

The learner believes its opponent is playing a fixed mixed
strategy given by the empirical distribution of the opponents
previous action.
ë the learner plays a best response to this mixed strategy.

1 intialize frequencies of the actions played by the opponent
2 repeat
3 play a best response to p
4 observe the action played by the opponent

and update frequencies

Theorem
If the empirical distribution of each player’s strategies
converges in fictitious play, the it converges to a Nash
equilibrium

the play converges to a NE, but the players may not play a NE and
may not receive a NE expected payoff (ex anti-coordination game)

convergence is not always guaranteed (ex Rock-paper-cisors)
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Joint Action Learning

consider cooperative games
ë observing its own payoff is enough

learns Q values for joint-actions
update of Q-learning is Q(a)←Q(a)+α(r−Q(a)
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Nash-Q

assumes a stochastic game
must observe payoff of all players
learns Q values for joint-actions
update of Q-learning is
Q(s,a1, . . . ,an)← (1−α)Q(s,a1, . . . ,an)+α(r+βNashQ(s ′)
where NashQ is the payoff of a selected Nash
equilibrium
converges to Nash equilibrium under some conditions
improvements with Friend of Foe Q-learning [Littman 01]
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Gradient ascent and hill climbing

Infinitesimal Gradient Ascent (IGA) policy gradient ascent
(convergence not guaranteed for all games)
Generalized IGA → use regret based learning
IGA converges to a Nash equilibrium when the game
has a pure Nash equilibrium.
Win or Lose Fast IGA (WoLF-IGA)
Converges to NE for two-agent two action games
Policy Hill Climber (PHC) and WoLF-PHC
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Comparison

It is difficult to compare these algorithms
may have guarantee in self play
some algorithms do better on certain games, against
some opponents
What criteria to use for comparison? On what testbed?
What ranking method to use?

Powers and Shoham 05, Airiau & Sen 05
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Application to controlling a multiagent system
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Scenario

Collection of autonomous learning agents (e.g. robots,
uavs, traffic controllers) works for a system designer
The system designer wants to optimize a collective
criterion (e.g. some objective function)

ë The utility function of the agents can be set up by the
system designer.
Agents cannot explicitly reason and communicate to
reach the goal (system is too large, too difficult to
compute).
Agents only use their own experience

How to set up the individual utility functions so that, when
each agents optimize its personal utility, the system con-
verges to a good state?
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Difference Utility

N = {1, . . . ,n} is the set of agents
A = {a1, . . . ,ak} is the set of actions available to each agent
z ∈ AN is the joint-action of the agents in the system
(this may contain many entries)
→ zi is the action of agent i
G : AN→ R is the collective utility function
(set by the system designer).

The difference reward for agent i is of the form:

Di = G(z)−G(z− zi · ei + ci · ei),

where ei ∈ An such that ei(j) = 0 if i 6= j and ei(i) = 1.
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Di = G(z)−G(z− zi · ei + ci · ei),

the action of agent i zi is replaced by ci
Sometimes, it is possible to choose ci such that z− zi · ei + ci · ei
is as if i left the system.
ë D evaluates the contribution of agent i

better signal (“learnability”)
As G(z− zi · ei + ci · ei) does not depend on i, any action
that improves Di also improves G! (“factoredness”)

The form of G may be complex, but sometimes, each agent
can “easily” approximate its Di.

Tumer & Agogino (AAMAS-07)
Application to air-traffic control
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Conclusion

Multiagent learning is an active area of research
Has the potential to be useful in many applications
In this talk, I focused on learning repeated games.
There are more general classes of games (e.g. stochastic
games) for which there are some algorithms.
There are also games for which a game theoretic
approach may not be feasible (e.g. RoboCup soccer)

Some events
Workshop at AAMAS (ALA Adaptive and Learning
Agents)
Tutorial this year at AAMAS
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