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Abstract

The Satisfactory Partition problem consists in deciding if a given graph has a
partition of its vertex set into two nonempty parts such that each vertex has at least as
many neighbors in its part as in the other part. This problem was introduced by Gerber
and Kobler [GK98, GK00] and further studied by other authors but its complexity re-
mained open until now. We prove in this paper that Satisfactory Partition, as well
as a variant where the parts are required to be of the same cardinality, are NP -complete.
However, for graphs with maximum degree at most 4 the problem is polynomially solv-
able. We also study generalizations and variants of this problem where a partition into k
nonempty parts (k ≥ 3) is requested.
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1 Introduction

Gerber and Kobler introduced in [GK98, GK00] the problem of deciding if a given graph has a
vertex partition into two nonempty parts such that each vertex has at least as many neighbors
in its part as in the other part. A graph satisfying this property is called partitionable.
As remarked by Gerber and Kobler, Satisfactory Partition may have no solution. In
particular, the following graphs are not partitionable: complete graphs, stars, and complete
bipartite graphs with at least one of the two vertex sets having odd size. Some other graphs
are easily partitionable: cycles of length at least 4, trees which are not stars, and disconnected
graphs. After [GK98, GK00] this problem was further studied in [SD02], [GK03], [BTV03]
and [GK04] but its complexity remained open until now, while some generalizations were
studied and proved to be NP -complete.

Gerber and Kobler showed in [GK98, GK00] the strong NP -hardness of a first generaliza-
tion of this problem where vertices are weighted and we ask for a vertex partition into two
nonempty parts such that for each vertex the sum of weights of the neighbors in the same
part is at least as large as the sum of weights of the neighbors in the other part. Another
generalization where the edges are weighted was also proved to be NP -hard in the strong
sense.

An “unweighted” generalization of Satisfactory Partition was studied in [BTV03]
where each vertex v is required to have at least s(v) neighbors in its own part, for a given
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function s representing the degree of satisfiability. Obviously, when s = ⌈d
2⌉, where d is

the degree function, we obtain Satisfactory Partition. Stiebitz proved in [Sti96] that if
s ≤ ⌈d

2⌉ − 1 then such a partition always exists; and we gave in [BTV03] a polynomial-time

algorithm that finds one such partition. We also proved in [BTV03] that for ⌈d
2⌉+1 ≤ s ≤ d−1

the problem is NP -complete. Only the complexity for s = ⌈d
2⌉ remained open in [BTV03].

We define in this paper another variant of Satisfactory Partition, called Balanced
Satisfactory Partition, where the parts are required to have the same cardinality. A
graph admitting such a partition is said to be balanced partitionable. One can easily see that
graphs like cycles of even length and complete bipartite graphs with both vertex classes of
even size are trivially balanced partitionable. A graph of even order formed by two non-
partitionable connected components of unequal size is an example of a graph partitionable
but not balanced partitionable. We show in this paper that Satisfactory Partition and
Balanced Satisfactory Partition are polynomially equivalent and NP -complete.

The paper is structured as follows. Section 2 contains some notation, definitions of prob-
lems and a preliminary result. In Section 3, we prove that for graphs with maximum degree
at most 4, Satisfactory Partition is polynomially solvable and a satisfactory partition
can be found in polynomial time if it exists. In Section 4 we show the polynomial equiv-
alence of Satisfactory Partition and Balanced Satisfactory Partition, and the
NP -completeness of these problems. In Section 5 we study the complexity of some extensions
where partitions into k nonempty parts (k ≥ 3) are requested.

2 Preliminaries

The following notation will be used in the rest of the paper. For a graph G = (V, E), a
vertex v ∈ V , and a subset Y ⊆ V we denote by dY (v) the number of vertices in Y that are
adjacent to v; and, as usual, we write d(v) for the degree dV (v) of v in V . The minimum and
maximum degree of G will be denoted by δ(G) and ∆(G), respectively. For any subgraph G′

of G, V (G′) and E(G′) denote respectively the set of vertices and edges of G′. A partition
(V1, V2) of V is said to be nontrivial if both V1 and V2 are nonempty.

The problems we are interested in are defined as follows.

Satisfactory Partition
Input: A graph G = (V, E).
Question: Is there a nontrivial partition (V1, V2) of V such that for every v ∈ V , if v ∈ Vi

then dVi
(v) ≥ ⌈d(v)

2 ⌉ ?

Balanced Satisfactory Partition
Input: A graph G = (V, E) on an even number of vertices.
Question: Is there a nontrivial partition (V1, V2) of V such that |V1| = |V2| and for every

v ∈ V , if v ∈ Vi then dVi
(v) ≥ ⌈d(v)

2 ⌉ ?

Considering A ⊆ V , a vertex v ∈ A is said to be satisfied in A if dA(v) ≥ ⌈d(v)
2 ⌉. Moreover

A is a satisfactory subset if all of its vertices are satisfied in A. If A, B ⊆ V are two disjoint,
nonempty, satisfactory subsets, we say that (A, B) is a satisfactory pair . If, in addition,
(A, B) is a partition of V , then it will be called a satisfactory partition and if the partition
has the property |A| = |B| then it will be called a balanced satisfactory partition. Given a

partition (V1, V2) of V , a vertex v ∈ Vi is satisfied if dVi
(v) ≥ ⌈d(v)

2 ⌉.

2



We establish now a necessary and sufficient condition to obtain a satisfactory partition
that will be useful afterwards. In [GK00] and [SD02] some sufficient as well as necessary and
sufficient conditions are also given for the existence of a satisfactory partition in a graph.

Proposition 1 A graph G = (V, E) is partitionable if and only if it contains a satisfactory

pair (A, B). Moreover, if a satisfactory pair (A, B) is given, then a satisfactory partition of

G can be determined in polynomial time.

Proof : The necessary part is obvious. The sufficient part is proved as follows. Let V1 = A
and V2 = B. While there is a vertex v in V \ (V1 ∪V2) such that dV1

(v) ≥ ⌈d(v)
2 ⌉, insert v into

V1. While there is a vertex v in V \ (V1 ∪ V2) such that dV2
(v) ≥ ⌈d(v)

2 ⌉, insert v into V2. At

the end, if C = V \ (V1∪V2) 6= ∅, then dV1
(v) < ⌈d(v)

2 ⌉ and dV2
(v) < ⌈d(v)

2 ⌉ for any v ∈ C. For

any v ∈ C we have dV1∪C(v) ≥ ⌈d(v)
2 ⌉ and dV2∪C(v) ≥ ⌈d(v)

2 ⌉. Thus we can insert all vertices
of C either into V1 or into V2, forming a satisfactory partition. 2

3 Graphs with degrees bounded by 4

Graphs G with ∆(G) ≤ 4 are such that any subgraph induced by a cycle corresponds to a
satisfactory subset. This property seems to make the problem easier, which is indeed the
case since we can decide in polynomial time if G with ∆(G) ≤ 4 is partitionable and find a
partition when it exists. In particular, all cubic graphs except K4 and K3,3 are partitionable
and all 4-regular graphs except K5 are partitionable.

We first establish results on regular graphs.

Proposition 2 Each cubic graph except K4 and K3,3 is partitionable.

Proof : Let G be a cubic graph other than K4 and K3,3. If G is disconnected it is trivially
partitionable. Hence, we assume that G is connected.

Suppose first that G contains a triangle and let C be a triangle of G with vertices v1, v2, v3.
Remark that a vertex outside C cannot have all its neighbors on C since G 6= K4.

If each vertex of V \V (C) has at most one neighbor on C then V1 = V (C) and V2 = V \V1

form a satisfactory partition.
Suppose that there is a vertex v4 with two neighbors v1, v2 on C. If v3 and v4 have a

common neighbor v5, then V1 = {v1, v2, v3, v4, v5} and V2 = V \ V1 6= ∅ form a satisfactory
partition of G. Otherwise V1 = {v1, v2, v3, v4} and V2 = V \ V1 6= ∅ form a satisfactory
partition of G.

Suppose now that G contains a cycle of length 4 and does not contain a triangle. Let
C = v1v2v3v4 be a cycle of length 4. A vertex outside C cannot have more than two neighbors
on C since otherwise G would contain a triangle.

If each vertex of V \V (C) has at most one neighbor on C, then V1 = V (C) and V2 = V \V1

form a satisfactory partition.
Otherwise, suppose that a vertex v5 has neighbors v1 and v3. Since G 6= K3,3 there is no

vertex of G with the three neighbors v2, v4, v5. Thus, a vertex vi with i ≥ 6 has at most two
neighbors among {v2, v4, v5}. If all vertices vi with i ≥ 6 have at most one neighbor among
{v2, v4, v5} then V1 = {v1, v2, v3, v4, v5} and V2 = V \ V1 6= ∅ form a satisfactory partition of
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G. Otherwise, let v6 be a vertex that has v2, v4 as neighbors. If all vertices vi with i ≥ 7 have
at most one neighbor among {v5, v6}, then V1 = {v1, v2, v3, v4, v5, v6} and V2 = V \ V1 6= ∅
form a satisfactory partition of G. Otherwise, there is another vertex v7 with neighbors v5, v6.
In this case V1 = {v1, v2, v3, v4, v5, v6, v7} and V2 = V \ V1 6= ∅ form a satisfactory partition
of G.

Finally, suppose that G has no cycle of length at most 4. Let C be a shortest cycle in G.
Since C has length k ≥ 5, then no external vertex can have more than one neighbor in C, for
otherwise G would contain a cycle of length at most ⌊k/2⌋ + 2 < k, contradicting the choice
of C. Thus, (V1, V2) with V1 = V (C) and V2 = V \ V1 is a satisfactory partition. 2

Proposition 3 Each 4-regular graph except K5 is partitionable.

Proof : Let G be a 4-regular graph other than K5. If G is disconnected it is trivially
partitionable. Hence, we assume that G is connected.

Suppose that G contains a triangle and let C be a triangle of G with vertices v1, v2, v3.
If each vertex of V \ V (C) has at most two neighbors on C, then G is partitionable, and
V1 = V (C) and V2 = V \ V1 form a satisfactory partition. Otherwise let v4 be a vertex with
neighbors v1, v2, v3. If each vertex vi, i ≥ 5 has at most two neighbors among v1, v2, v3, v4 then
G is partitionable with V1 = {v1, v2, v3, v4} and V2 = V \ V1. Otherwise, since G 6= K5, there
is a vertex v5 with exactly three neighbors among v1, v2, v3, v4. Then V1 = {v1, v2, v3, v4, v5}
and V2 = V \ V1 6= ∅ form a satisfactory partition of G.

Suppose now that G is triangle free. Let C be a shortest cycle in G. Since C has length
k ≥ 4, then there are no three vertices on C with a common neighbor outside C, since
otherwise there exists in G a cycle of length at most ⌊k/3⌋ + 2. For k ≥ 4 this would be
a cycle shorter than C. Thus, (V1, V2) with V1 = V (C) and V2 = V \ V1 is a satisfactory
partition. 2

Clearly Proposition 2 and Proposition 3 show that a satisfactory partition for cubic graphs
except K4 and K3,3 and 4-regular graphs except K5 can be found in polynomial time. We can
even show that, for these graphs, a satisfactory partition can be found in linear time using
the following algorithm.

Algorithm 1 Determination of a satisfactory partition for 3 and 4-regular graphs, |V | > 10

Let G = (V, E) be a d-regular graph (d = 3 or 4) of order n > 10.
Search a cycle C of length less than n

2 .
V1 ← V (C)
while there exists a vertex v ∈ V \ V1 with at least d − 1 neighbors in V1 do

V1 ← V1 ∪ {v}
end while

V2 ← V \ V1

Remark The condition n > 10 is purely technical; it is imposed to ensure that for d = 3
the input graph do have a cycle of length less than n/2. On the other hand, for d = 4, a
cycle shorter than n/2 exists whenever n > 8. What is more, in the 4-regular case we would
just need a cycle of length at most n/2 (as shown later), and for this we should only assume
n > 5. The small cases, however, can be settled in constant time, therefore we have put a
uniform bound on n that works for both d = 3 and 4.
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It is immediately seen that, for both d = 3 and d = 4, the algorithm terminates with a
partition in which every vertex is satisfied, provided that the initial cycle C has been found.
We will prove that the partition obtained is always nontrivial, and that the algorithm runs
really fast. We begin with the latter, while the former will be split into two parts depending
on the value of d.

Lemma 4 Algorithm 1 can be implemented to run in linear time.

Proof : We apply the Breadth-First Search algorithm that finds a spanning tree T in the
input graph in linear time. If e is the first edge during BFS which does not become an edge of
T , then this e together with a subpath of T defines a sufficiently short cycle. (If this cycle is
longer than 2s, for some s ≥ 3, then up to distance s from the root of T we have d complete
(d − 1)-ary trees attached to the root; and if the cycle is also longer than 2s + 1, then this

subtree of height s is an induced subgraph of G. Thus, n > d
(

∑s−1
i=0 (d − 1)i

)

holds, and if

the length exceeds 2s + 1, then also n > d
(

∑s−1
i=0 (d − 1)i

)

+ (d− 1)s. From these bounds we

obtain n > 4s + 4, as needed.)
As regards the while loop, one solution for an efficient implementation is to create a

counter for each v ∈ V \ V1, whose value is set to 0 at the beginning. We also define a queue
Q that initially contains the vertices of V1 = V (C). In each step, we remove the head element
w from Q and increase the counters of all neighbors of w in V \ V1; and if the counter of
some v reaches the value d− 1, we move v into V1 and put it at the end of Q. The algorithm
terminates when Q has become empty after some step. Since each edge is considered at most
two times during the procedure, and |E(G)| = d

2 |V | ≤ 2n for 3 ≤ d ≤ 4, the while loop takes
just O(n) time. 2

Theorem 5 All cubic graphs except K4 and K3,3 are partitionable in linear time.

Proof : Let G be a cubic graph of order n. The cases n ≤ 10 can be handled in constant
time. For n > 10, let us verify that Algorithm 1 with d = 3 (running in linear time) is correct.

We have seen that ℓ = |V (C)| < n
2 . The key observation now is that the algorithm can

move at most ℓ vertices from V \ V1 to V1. Indeed, moving m vertices yields |V1| = ℓ + m,
and this V1 induces at least ℓ + 2m edges. Thus, the average degree in the subgraph induced
by V1 is not smaller than 3 + m−ℓ

m+ℓ
, which implies m ≤ ℓ since G is cubic. Consequently, if

n > 10, Algorithm 1 stops with a satisfactory partition (V1, V2) where |V1| ≤ 2ℓ < n, which
implies V2 6= ∅, i.e. the partition is nontrivial. 2

Theorem 6 All 4-regular graphs except K5 are partitionable in linear time.

Proof : Assuming that G is a 4-regular graph of order n > 10, we are going to prove that
Algorithm 1 with d = 4 is correct.

We have seen that ℓ = |V (C)| < n
2 . Each vertex of C has at most two neighbors in

G − C, therefore the degree sum in the induced subgraph G − C is at least 4(n − ℓ) − 2ℓ =
2(n − ℓ) + 2(n − 2ℓ) > 2(n − ℓ). That is, the average degree in G − C is at least two, and
therefore G−C contains some cycle C ′. Clearly, Algorithm 1 stops before moving any vertex
of C ′ into the set V1. Thus, V2 6= ∅ and the partition (V1, V2) obtained is satisfactory. 2
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Thus, all cubic graphs except K4 and K3,3 are partitionable and all 4-regular graphs except
K5 are partitionable. Moreover, as stated in the introduction, all 2-regular graphs (cycles)
except K3 are partitionable. These results cannot be extended for regular graphs with degree
greater than 4 since there are 5-regular graphs, different from K6 and K5,5 that are not
partitionable, and there are 6-regular graphs different from K7 that are not partitionable (see
Figure 1).

Figure 1: Non-partitionable 5-regular and 6-regular graphs

We consider now graphs with maximum degree at most 4. In [GK04], it is indicated
that such graphs with at least 13 vertices are always partitionable. We give necessary and
sufficient conditions for the existence of satisfactory partitions, and show how to generate
such a partition in polynomial time when it exists.

Proposition 7 A graph G with δ(G) = 3 and ∆(G) ≤ 4 is partitionable if and only if it

contains two vertex-disjoint cycles.

Proof : (If) Immediate from Proposition 1. (Only if) If G is partitionable then each vertex
has at least two neighbors in its part, so each part contains a cycle. 2

Proposition 8 Let G be a graph with ∆(G) ≤ 4 and with no isolated vertex. Graph G is

partitionable if and only if there exists at most two disjoint edges that can be inserted between

vertices of degrees 1 or 2, such that the resulting multigraph contains two vertex-disjoint cycles.

Proof : (If) If G contains two disjoint cycles C1, C2 then V (C1) and V (C2) can be completed
to form a satisfactory partition, using Proposition 1.

If G has no two disjoint cycles but adding one edge (vi, vj), with d(vi), d(vj) ≤ 2, the
graph G′ = (V, E ∪ {(vi, vj)}) has two disjoint cycles C1, C2 then (vi, vj) belongs to one of
these cycles. Then V (C1) and V (C2) form a satisfactory pair once we remove (vi, vj) since vi

and vj have degree at most two.
Assume now that the addition of two non-adjacent edges (vi, vj), (vk, vℓ), with d(vi), d(vj),

d(vk), d(vℓ) ≤ 2, is such that the new graph contains two disjoint cycles. Since these two edges
are not adjacent, as above, the two disjoint cycles can be completed to a satisfactory partition.

(Only if) Let (V1, V2) be a satisfactory partition of G. If Vi (i = 1, 2) contains no cycle,
then we add one edge between two degree-1 vertices of a tree component inside Vi. If the tree
in question is just an edge, then we add a parallel edge creating a cycle of length 2 in the
resulting multigraph. 2

6



Theorem 9 Let G be a graph with ∆(G) ≤ 4. We can decide in polynomial time if G is

partitionable, and find a satisfactory partition of G if it exists.

Proof : If G is disconnected a satisfactory partition is trivially obtained. We consider now
that G is connected so that we can apply Proposition 8. There is a polynomial number of
choices to add at most two non-adjacent edges in G. For a fixed choice, we first verify if there
are multiple edges. If there are two non-adjacent multiple edges, then we have found two
disjoint cycles; if there is one multiple edge, then we search a cycle in the graph obtained by
removing the two vertices incident to this edge. If the graph has no multiple edges, then we
apply a polynomial algorithm that finds two disjoint cycles in a graph if they exist ([Bod94]).2

4 The NP-completeness of (Balanced) Satisfactory Partition

In this section we establish the NP -completeness of Satisfactory Partition and Bal-
anced Satisfactory Partition. We first show that these two problems are polynomial
equivalent.

Proposition 10 Satisfactory Partition is polynomial reducible to Balanced Satis-
factory Partition.

Proof : Let G be a graph, instance of the first problem on n vertices v1, . . . , vn. The graph
G′, instance of Balanced Satisfactory Partition, is obtained from G by adding an
independent set of n−2 vertices u1, . . . , un−2. If G is partitionable and (V1, V2) is a satisfactory
partition then (V ′

1 , V
′
2) where V ′

1 = V1 ∪{u1, . . . , un−|V1|−1} and V ′
2 = V2 ∪{un−|V1|, . . . , un−2}

is a balanced satisfactory partition of G′.
If G′ is balanced partitionable and (V ′

1 , V
′
2) is a balanced satisfactory partition then both

V ′
1 and V ′

2 contain at least one vertex from V and the restriction of this partition to V is a
satisfactory partition of G. 2

Proposition 11 Balanced Satisfactory Partition is polynomial reducible to Satis-
factory Partition.

Proof : Let G = (V, E) be a graph, instance of the first problem on n vertices. The graph
G′ = (V ′, E′), instance of Satisfactory Partition, is obtained from G by adding two
cliques of size n

2 , A = {a1, . . . , an
2

} and B = {b1, . . . , bn
2

}. In G′, in addition to the edges of
G, all vertices of V are adjacent with all vertices of A and B. Also each vertex ai ∈ A is
linked to all vertices of B except bi, i = 1, . . . , n

2 .

Let (V1, V2) be a balanced satisfactory partition of G. Then (V ′
1 , V

′
2) where V ′

1 = V1 ∪ A
and V ′

2 = V2 ∪B is a satisfactory partition of G′. Indeed, a vertex from A∪B is satisfied, for
example if v ∈ A, dV ′

1

(v) = |A| + n
2 − 1 = dV ′

2

(v). Also it is easy to see that a vertex from V
is satisfied in G′ since it is satisfied in G.

Let (V ′
1 , V

′
2) be a satisfactory partition of G′, where V ′

1 = V1∪A1∪B1 and V ′
2 = V2∪A2∪B2

with Vi ⊆ V, Ai ⊆ A, Bi ⊆ B, i = 1, 2. We claim that (V1, V2) is a balanced satisfactory
partition of G.

We first show that A1 ∪ B1 6= ∅ and A2 ∪ B2 6= ∅, which means that no satisfactory
partition can contain A ∪ B in one of its parts. Indeed, by contradiction, suppose we have
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V ′
1 = V1 ∪ A ∪ B and V ′

2 = V2. Then, the inequality specifying that v ∈ V2 is satisfied is
dV2

(v) ≥ dV1
(v) + n which is impossible. So, two cases are possible: either each part of the

partition contains one clique, say V ′
1 = V1 ∪A and V ′

2 = V2 ∪B (case 1) or at least one of the
cliques is cut by the partition (case 2).

In case 1, in order that a vertex of A be satisfied, we have n
2 − 1 + |V1| ≥ |V2| +

n
2 − 1

and in order that a vertex of B be satisfied, we have n
2 − 1 + |V2| ≥ |V1| +

n
2 − 1. These two

inequalities imply |V1| = |V2|. Moreover, since v ∈ V1 ∪ V2 is satisfied in G′ where it is linked
to n

2 vertices in A and n
2 vertices in B, v is also satisfied in G.

In case 2, suppose that clique A is cut by the partition into non-empty sets A1 and A2

while B1 or B2 may be empty. We show now that if ai ∈ A1 for some i, then also bi ∈ B2 for
the same i. Assume by contradiction that bi ∈ B1. Since ai is satisfied we have

(|A1| − 1) + (|B1| − 1) + |V1| ≥ |A2| + |B2| + |V2| (1)

This implies |V ′
1 | > |V ′

2 |.
Let aj ∈ A2. We may have bj ∈ B1 or bj ∈ B2. If bj ∈ B2 then the condition that aj is

satisfied is

(|A2| − 1) + (|B2| − 1) + |V2| ≥ |A1| + |B1| + |V1| (2)

If bj ∈ B1 then the condition that aj is satisfied is

(|A2| − 1) + |B2| + |V2| ≥ |A1| + (|B1| − 1) + |V1| (3)

Each of (2) and (3) implies that |V ′
2 | ≥ |V ′

1 |, contradicting (1). Thus |A1| = |B2| and
|A2| = |B1|, that means that both cliques are cut by the partition.

For ai ∈ A1 and bi ∈ B2 the inequalities specifying that ai and bi are satisfied are
respectively:

(|A1| − 1) + |B1| + |V1| ≥ |A2| + (|B2| − 1) + |V2|

and
|A2| + (|B2| − 1) + |V2| ≥ (|A1| − 1) + |B1| + |V1|

from which we obtain |A1|+ |B1|+ |V1| = |A2|+ |B2|+ |V2|. Since |A1| = |B2| and |A2| = |B1|,
we get |V1| = |V2|.

Moreover, since v ∈ V1∪V2 is satisfied in G′ where it is linked to |A1|+ |B1| = n
2 vertices in

V ′
1 among the vertices of the two cliques and |A2|+ |B2| = n

2 vertices in V ′
2 , v is also satisfied

in G. 2

We state now the main result of our paper.

Theorem 12 Satisfactory Partition and Balanced Satisfactory Partition are

NP-complete.

Proof : Clearly, these two problems are in NP. We prove that Balanced Satisfactory
Partition is NP -complete, which implies by Proposition 11 that Satisfactory Partition
is NP -complete too.

We construct a polynomial reduction from a variant of Clique, the problem of deciding
if a non-complete graph with n vertices contains a clique of size at least n

2 , a problem proved
to be NP -hard in [GJ79], to Balanced Satisfactory Partition. Let G = (V, E) be a
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non-complete graph with n vertices v1, . . . , vn and m edges, an input of Clique problem.
We consider that n is even, since otherwise we can add an isolated vertex without changing
the problem. Let p = n(n−1)

2 − m ≥ 1 corresponding to the number of non-edges in G.
These non-edges are labelled ne1, . . . , nep. We construct a graph G′′ = (V ′′, E′′), instance of
Balanced Satisfactory Partition as follows: the vertex set V ′′ consists of six sets F ,
F ′, T , T ′, V and V ′ where F = {f1, . . . , f2p+1}, F ′ = {f ′

1, . . . , f
′
2p+1}, T = {t1, . . . , t2p+1},

T ′ = {t′1, . . . , t
′
2p+1} and V ′ = {v′1, . . . , v

′
n}. Vertices f2ℓ, f2ℓ+1 correspond to non-edge neℓ

(ℓ = 1, . . . , p) and f1 is an additional vertex. Vertices of F ′, T and T ′ are similarly defined. F
and T are two cliques of size 2p+1. Vertices f ′

i (t′i and v′j) are only linked with fi (ti and vj),
i = 1, . . . , 2p + 1, j = 1, . . . , n. In addition to these edges and E, the edge set E′′ contains all
edges between T and V and all edges between F and V except edges (f2ℓ, vi) and (f2ℓ+1, vj)
for each non-edge neℓ = (vi, vj), ℓ = 1, . . . , p.

It is easy to see that this construction can be accomplished in polynomial time. All
that remains to show is that G has a clique of size at least n

2 if and only if G′′ is balanced
partitionable.

Suppose firstly that G has a clique of size at least n
2 . Let C be a clique of size exactly n

2
of G. Let V ′′

1 = F ∪ F ′ ∪ C ∪ C ′ where C ′ = {v′i : vi ∈ C} and V ′′
2 = T ∪ T ′ ∪ C̄ ∪ C̄ ′, where

C̄ = V \ C and C̄ ′ = {v′i : vi ∈ C̄}. Let us check in the following that (V ′′
1 , V ′′

2 ) is a balanced
satisfactory partition. It is easy to see that all vertices of F , F ′, T , T ′ and V ′ are satisfied. Let
v ∈ C. Since C is a clique, when v is not linked to a vertex of F , it is also not linked to a vertex
of C̄. Thus, dV ′′

1

(v) = 2p+1− (n
2 − dC̄(v))+ n

2 = 2p+1+ dC̄(v) = dV ′′
2

(v) and so the vertices

of C are satisfied. Given a vertex v ∈ C̄, dV ′′
1

(v) = 2p + 1 − (n − 1 − dC̄(v) − dC(v)) + dC(v)
= 2p + 2 + dC̄(v) − (n − 2dC(v)) ≤ 2p + 2 + dC̄(v), while dV ′′

2

(v) = 2p + 2 + dC̄(v), thus also

the vertices of C̄ are satisfied in G′′.

Suppose now that G′′ is balanced partitionable and let (V ′′
1 , V ′′

2 ) be a balanced satisfactory
partition. Observe that in any satisfactory partition vertices f ′

i (respectively t′i, v′j) must be
in the same part of the partition as fi (respectively ti, vj), i = 1, . . . , 2p + 1, j = 1, . . . , n.

We justify firstly that T and F cannot be cut by the partition. Assume for a contradiction
that T is cut in (T1, T2) with T1 ⊂ V ′′

1 and T2 ⊂ V ′′
2 . Consider now that V is cut in (V1, V2)

with V1 ⊂ V ′′
1 and V2 ⊂ V ′′

2 , where V1 or V2 could be empty. Since any vertex from T1 must
be satisfied, we have |T1| + |V1| ≥ |T2| + |V2|. Since any vertex from T2 must be satisfied,
we have |T2| + |V2| ≥ |T1| + |V1|. These inequalities imply |T1| + |V1| = |T2| + |V2| which is
impossible since |T1| + |V1| + |T2| + |V2| = n + 2p + 1 is odd. Therefore T cannot be cut by
any satisfactory partition. We suppose in the following that T ⊂ V ′′

2 .
Assume now by contradiction that F is cut in (F1, F2) with F1 ⊂ V ′′

1 and F2 ⊂ V ′′
2 .

Consider that V is cut in (V1, V2) with V1 ⊂ V ′′
1 and V2 ⊂ V ′′

2 . Since (V ′′
1 , V ′′

2 ) is balanced, we
have

|F1| + |V1| = |F2| + |T | + |V2| (4)

Consider v ∈ F2. We have three cases:

• If v = f1 the condition stating that v must be satisfied is |F2|+ |V2| ≥ |F1|+ |V1| which
contradicts (4).

• If v is not linked to a vertex of V2, the condition stating that v must be satisfied is
|F2| + (|V2| − 1) ≥ |F1| + |V1| which also contradicts (4).
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• If v is not linked to a vertex of V1, the condition stating that v must be satisfied is
|F2| + |V2| ≥ |F1| + (|V1| − 1) which also contradicts (4) since |T | ≥ 3.

We show now that a balanced satisfactory partition (V ′′
1 , V ′′

2 ) cannot contain F and T
in the same part. Assume by contradiction that V is cut in (V1, V2) and V ′′

1 = V1 ∪ V ′
1 and

V ′′
2 = V2 ∪V ′

2 ∪F ∪F ′∪T ∪T ′. Since (V ′′
1 , V ′′

2 ) is balanced we have 2|V1| = 2|F |+2|T |+2|V2|
that is |V1|−|V2| = 2(2p+1). For a vertex in T to be satisfied we must have 2p+1+|V2| ≥ |V1|
which contradicts the previous equality.

Thus (V ′′
1 , V ′′

2 ) cuts the set V into two balanced sets V1, V2, where V ′′
1 = F ∪ F ′ ∪ V1 ∪ V ′

1

and V ′′
2 = T ∪ T ′ ∪ V2 ∪ V ′

2 . We show that V1 is a clique. A vertex v ∈ V1 has dV ′′
1

(v) =
2p + 1 − x + dV1

(v) + 1 where x = n − 1 − dV1
(v) − dV2

(v) is the number of non-edges of G
incident to v and dV ′′

2

(v) = 2p+1+dV2
(v). Since v is satisfied in G′′ we have dV ′′

1

(v) ≥ dV ′′
2

(v)
and we obtain that dV1

(v) ≥ n
2 − 1. Thus V1 is a clique of size n

2 . 2

5 Satisfactory k-Partitions

In this section we study the complexity of three generalizations of Satisfactory Partition
where a partition into k nonempty parts is requested, for k ≥ 3.

• Sum Satisfactory k-Partition where each vertex is required to have at least as many
neighbors in its part as in all the other parts together. This condition is equivalent to
asking that a vertex has at least the majority of its neighbors in its own part.

• Average Satisfactory k-Partition where each vertex is required to have at least
1/k proportion of its neighbors in its own part.

• Max Satisfactory k-Partition where each vertex is required to have at least as
many neighbors in its own part as in each of the other parts.

Sum and Max versions were introduced by Gerber and Kobler in [GK98] where they
proved the strong NP -hardness of generalizations of these problems where there are weights
on the vertices or edges, and left as an open question the complexity of the unweigthed case.

Formally these problems can be stated as follows.

Sum Satisfactory k-Partition
Input: A graph G = (V, E).
Question: Is there a partition into k nonempty parts (V1, . . . , Vk) of V such that, for all

v ∈ V , if v ∈ Vi then dVi
(v) ≥ ⌈d(v)

2 ⌉ ?

Average Satisfactory k-Partition
Input: A graph G = (V, E).
Question: Is there a partition into k nonempty parts (V1, . . . , Vk) of V such that, for all

v ∈ V , if v ∈ Vi then dVi
(v) ≥ ⌈d(v)

k
⌉ ?

Max Satisfactory k-Partition
Input: A graph G = (V, E).
Question: Is there a partition into k nonempty parts (V1, . . . , Vk) of V such that, for all
v ∈ V , if v ∈ Vi then dVi

(v) = maxj=1,...,k dVj
(v) ?
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We also consider the balanced version of these three problems. Observe that for k = 2
all these generalizations boil down to (Balanced) Satisfactory Partition. As could be
expected, all these problems are also NP -complete for every value of k.

We give now the proofs of NP -completeness, observing that all these problems are clearly
in NP.

Proposition 13 Sum Satisfactory k-Partition and Balanced Sum Satisfactory k-
Partition are NP-complete for every k ≥ 3.

Proof : We reduce Satisfactory Partition to Sum Satisfactory k-Partition as
follows. Given a graph G, instance of Satisfactory Partition, we construct an instance
of Sum Satisfactory k-Partition, G′, by adding k − 2 isolated vertices to G. It is easy
to see that G is partitionable if and only if in G′ there is a partition into k nonempty parts
such that each vertex has the majority of neighbors in its own part.

We reduce Balanced Satisfactory Partition to Balanced Sum Satisfactory k-
Partition as follows. Given a graph G of order n, instance of Balanced Satisfactory
Partition, we construct an instance of Balanced Sum Satisfactory k-Partition, G′,
by adding k − 2 cliques of size n

2 to G. If G has a balanced satisfactory partition, it can be
extended in G′ to a k-partition where the k − 2 remaining sets are the cliques. If G′ has a
balanced partition into k parts such that each vertex is satisfied, then since no clique can
be cut, k − 2 classes of this partition are the cliques and the two others induce a balanced
partition in G. 2

Proposition 14 Average Satisfactory k-Partition and Balanced Average Satis-
factory k-Partition are NP-complete for every k ≥ 3.

Proof : We construct a reduction from the Edge k-Coloring problem of a k-regular graph
to Average Satisfactory k-Partition. The first problem was proved to be NP -hard for
k = 3 by Holyer [Hol81] and for k ≥ 3 by Leven and Galil [LG83]. In order to illustrate
our reduction, we consider k = 3, but the proof for general k is similar. Given a 3-regular
graph G = (V, E) with n vertices and m = 3n/2 edges, we consider as instance for Average
Satisfactory 3-Partition the complement of the line graph of G, the graph G′ = L(G).
Graph G′ has m vertices, and is (m − 5)-regular. If G is edge-3-colorable, denote by Ei the
set of edges colored i, for i = 1, 2, 3. Each set Ei has m

3 edges. Let Vi be the set of vertices
of G′ corresponding to the edges of Ei, Vi is a clique, thus (V1, V2, V3) is a partition of G′

that satisfies the property that dVi
(v) = m/3 − 1 = ⌈m−5

3 ⌉ for all v ∈ Vi. Conversely, given
a partition (V1, V2, V3) of G′ with dVi

(v) ≥ m/3 − 1 for all v ∈ Vi (i = 1, 2, 3), Vi has exactly
m/3 vertices and so all the Vi are independent sets in L(G). This gives a 3-coloration of the
edges of G.

This reduction is also valid for the balanced case. 2

Proposition 15 Max Satisfactory k-Partition and Balanced Max Satisfactory
k-Partition are NP-complete for every k ≥ 3.

Proof : We use the proof of Proposition 14. If G is edge-3-colorable then, in L(G), each
vertex v ∈ Vi is adjacent with exactly two vertices in each of the other two sets, and thus
in G′ it has more neighbors in Vi than in each of the other sets. Conversely, if (V1, V2, V3)
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is a partition of G′ with dVi
(v) = maxj∈{1,2,3} dVj

(v) then dVi
(v) ≥ m/3 − 1 for all v ∈ Vi

(i = 1, 2, 3). Therefore Vi has exactly m/3 vertices and so all the Vi are cliques in G′. This
gives a 3-coloration of the edges of G as before.

This reduction is also valid for the balanced case. 2

6 Concluding remarks

Our arguments proving NP -completeness apply reductions from the maximum clique and
the edge coloring problems, both yielding vertices of high degree. On the other hand, we
have seen that if the maximum degree is very small (at most 4), then both the decision
and search problems for a satisfactory partition are polynomial-time solvable. It remains an
open problem whether there exists a finite bound D such that Satisfactory Partition is
NP -complete for graphs of maximum degree D.
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