
Disrete representation of the non-dominated set formulti-objetive optimization problems using kernels∗Cristina Bazgan† Florian Jamain Daniel Vanderpooten‡Université Paris-Dauphine, PSL Researh University,CNRS, LAMSADE, 75016 Paris, Frane{ristina.bazgan,�orian.jamain,daniel.vanderpooten}�lamsade.dauphine.frAbstratIn this paper, we are interested in produing disrete and tratable representations ofthe set of non-dominated points for multi-objetive optimization problems, both in theontinuous and disrete ases. These representations must satisfy some onditions ofoverage, i.e. providing a good approximation of the non-dominated set, spaing, i.e.without redundanies, and ardinality, i.e. with the smallest possible number of points.This leads us to introdue the new onept of (ε, ε′)-kernels, or ε-kernels when ε′ = εis possible, whih orrespond to ε-Pareto sets satisfying an additional ondition of ε′-stability. Among these, the kernels of small, or possibly optimal, ardinality are laimedto be good representations of the non-dominated set.We �rst establish some general properties on ε-kernels. Then, for the bi-objetive ase,we propose some generi algorithms omputing in polynomial time either an ε-kernel ofsmall size or, for a �xed size k, an ε-kernel with a nearly optimal approximation ratio
1 + ε. For more than two objetives, we show that ε-kernels do not neessarily exist butthat (ε, ε′)-kernels with ε′ ≤

√
1 + ε− 1 always exist. Nevertheless, we show that the sizeof a smallest (ε, ε′)-kernel an be very far from the size of a smallest ε-Pareto set.Keywords: Multiple objetive programming, Pareto set, non-dominated points, disrete rep-resentation, exat and approximation algorithms, kernel.1 IntrodutionIn multi-objetive optimization, in opposition to single objetive optimization, there is typi-ally no optimal solution i.e. one that is best for all the objetives. The solutions of interest,alled e�ient solutions, are suh that any solution whih is better on one riterion is ne-essarily worse on at least one other riterion. In other words, a solution is e�ient if itsorresponding vetor of riterion values is not dominated by any other vetor of riterionvalues orresponding to a feasible solution. These vetors, assoiated to e�ient solutions,are alled non-dominated points. For many multi-objetive optimization problems, one of themain di�ulties is the large ardinality of the set of non-dominated points (or Pareto set).
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For problems with ontinuous variables, the set of non-dominated points is usually in�nite.Even in the disrete ase, it is well-known that most lassi multi-objetive ombinatorial opti-mization problems, like shortest path, spanning tree, assignment, knapsak,..., are intratable,in the sense that they admit families of instanes for whih the number of non-dominatedpoints is exponential in the size of the instane [8℄. Therefore, in all these ases, it is nees-sary to determine a good representation of the Pareto set so as to provide deision makerswith a tratable set of points desribing as well as possible the di�erent hoies. The no-tion of representation is understood here in a broad sense, as in [23℄, as any set of pointsbeing representative of the Pareto set. This is more general than the same notion de�ned,e.g., in [21℄ where representations are supposed to be subsets of the set to be represented.Therefore we an aept that a representation of the Pareto set might inlude dominatedpoints. Indeed, provided that a set of points satis�es onditions of overage, spaing, andardinality presented hereafter, it fully quali�es to be a good representation. In partiular,adopting a broad de�nition allows us to onsider representations whose elements are obtainedthrough approximate optimization (in ases where exat optimization is not available or tooostly). Clearly, when dominated points are present in a representation, they must be rathergood (so as to satisfy the overage property). Moreover, when possible, guaranteeing that arepresentation only ontains non-dominated points is a desirable property. In this paper, wepropose two algorithms for the bi-objetive ase. The �rst one, based on exat optimization,produes a representation onsisting of non-dominated points only. The seond one, based onapproximate optimization, produes a representation that may ontain dominated points. Inboth ases, however, a priori guarantees on the quality of the returned set are provided.Measures of the quality of a disrete representation of the Pareto set have been disussedin [12, 21℄. As outlined in these papers three dimensions are relevant:
• overage whih ensures that any non-dominated point is represented or overed by atleast one point in the representation,
• spaing, also alled uniformity, whih ensures that any two points in the representationare su�iently spaed, avoiding redundanies,
• ardinality whih should be minimal so as to make the representation as tratable aspossible.Coverage is the most important dimension for the representation to be meaningful. How-ever, it must be ounterbalaned by the two other dimensions whih favor a uniform andsmall ardinality representation, respetively. While overage on the one hand and spaingand ardinality on the other hand are learly on�iting, the relationship between spaingand ardinality is not obvious. At �rst sight it ould seem that improving spaing will leadto a derease of the number of points in the representation. It must be observed, however,that imposing spaing is an additional onstraint that may impat negatively on the ardi-nality. An interesting result in our paper is that no negative impat is to be expeted in thebi-objetive ase, but it is no longer true when dealing with at least three objetives. Thisshows the interest of onsidering all three dimensions.Coverage and spaing may be implemented in several ways. A distane-oriented perspe-tive is used in [12, 21℄. The quality of overage is then measured by the distane betweenthe points in the Pareto set and the points in the representation (to be minimized) while2



the quality of spaing is measured by the distane between the points in the representation(to be maximized). Various de�nitions of distanes are possible leading to di�erent typesof representations, but the Eulidean norm is often used. Although natural, this geometrivision is not diretly related to the deision maker's preferenes. Consider a representationontaining a point y but not y′, based on the fat that y overs y′. In a distane-orientedperspetive, this is justi�ed by the fat that y and y′ are lose enough. In preferene-orientedperspetive, the justi�ation is that y is preferred to, or at least as good as, y′. We note thatin the seond ase the omparison is oriented, whih annot be represented by a distane.As to spaing, points y and y′′ belong to the representation sine they are far enough ina distane-oriented perspetive, whereas the justi�ation is that they are inomparable in apreferene-oriented perspetive. In a preferene-oriented perspetive, the de�nition of a pref-erene relation is required. When aiming at representing the whole non-dominated set, thisrelation should generalize the standard Pareto dominane relation, without favoring any typeof solution. A natural andidate is the (1+ ε)-dominane relation whih is an extension of thePareto dominane relation inluding a tolerane threshold. Given ε > 0, whih represents atolerane on eah objetive, this relation is de�ned as follows between any two points y and y′:
y (1 + ε)-dominates y′ if y is at least as good as y′ within a fator 1 + ε for all the objetives.This leads us to onsider that y overs y′ if y (1 + ε)-dominates y′, that is if y is at least asgood as y′ onsidering the tolerane ε. Moreover, given a tolerane ε′, y and y′′ are su�ientlyspaed if neither y (1+ ε′)-dominates y′′ nor y′′ (1+ ε′)-dominates y, that is there is no reasonto disard any of the points y and y′′ sine none of them an be onsidered at least as goodas the other one.This idea of overage leads to the onept of an ε-Pareto set, introdued in [17℄, whihis a set Pε of points suh that for any non-dominated point y′, there exists a point y ∈ Pεwhih (1+ ε)-dominates y′. Note that there may exist many ε-Pareto sets, some of whih aninlude redundanies and some of whih an have a more or less small size. An interestingproblem introdued in [24℄ and further studied in [5℄ is the e�ient onstrution of ε-Paretosets of size as small as possible.In this paper, we fous on the same issue but inluding also the spaing dimension. There-fore, the ε-Pareto sets studied in this work, alled (ε, ε′)-kernels, are required to satisfy anadditional property of stability whih imposes that the points in an (ε, ε′)-kernel have to bepairwise independent relatively to the (1 + ε′)-dominane relation, thus ontrolling spaing.A variety of methods have been proposed taking overage, spaing, and/or ardinalityinto aount (see [12, 20℄ for surveys). Two broad lasses of methods an be distinguished:(i) algorithms whih generate a set of points satisfying some properties with respet to someof the quality measures, (ii) �ltering tehniques whih start from an initial set of given points- possibly the whole Pareto set - and retain a subset of these so as to ensure properties withrespet to some of the quality measures. Among reent referenes that are not ited in thetwo previous surveys, we mention [1, 5, 9, 11, 13, 22℄ and [25℄ as examples of methods of type(i) and type (ii), respetively.Methods of type (i) are often based on exat or approximate iterative optimizations whihgenerate the points forming the representation. They are either generi like [5, 13℄ or spei� toa lass of problems like [22℄, [9℄, [1℄, and [11℄ whih deal respetively with multi-objetive linearprogramming, multi-objetive nonlinear onvex problems, multi-objetive knapsak problems,and bi-objetive ost �ow problems. Generi algorithms an also be used as methods of type(ii), where optimizations are simply performed by sanning an expliit list of given points. It3



should be observed that most methods are spei� to some problems and/or restrited to thebi-objetive ase.Among the previously mentioned referenes, [9, 11, 22, 25℄ are distane-oriented methods.They use a Eulidean norm to de�ne their distane. Referenes [1, 5, 13℄ are preferene-oriented methods. All of them use the (1+ ε)-dominane relation. However, they only ensureoverage, and sometimes ardinality, but do not onsider spaing.The algorithms we are proposing are generi preferene-oriented methods of type (i). Thesealgorithms an be applied to disrete or ontinuous, linear or nonlinear, bi-objetive optimiza-tion problems, depending on the availability of some problem-dependent routines. Besidesproviding a priori guarantees on the three quality measures, we also guarantee that our generialgorithms are polynomial when the routines are polynomial.Our paper is organized as follows. In the next setion, we de�ne the basi onepts, formal-ize the notion of (ε, ε′)-kernels, and reall some results of previous related works. In setion 3,we study the bi-objetive ase. We show some general results and present generi polynomialtime algorithms to onstrut small (ε, ε′)-kernels under some onditions. In setion 4, westudy the ase of three or more objetives, pointing out spei� di�ulties. Setion 5 presentssome experimental results whih demonstrate the pratial appliability of our approah. Weonlude with some possible extensions to this work.2 PreliminariesIn this paper, we onsider multi-objetive optimization problems where we try to minimize
p ≥ 2 riteria, i.e. minx∈S{f1(x), . . . , fp(x)}, where f1, . . . , fp are objetive funtions and S isthe set of feasible solutions. In ase of some or all objetive funtions to be maximized, ourresults are diretly extendable.We distinguish the deision spae X whih ontains the set S of feasible solutions of theinstane and the riterion spae Y ⊆ R

p
+ whih ontains the riterion vetors also alled, moresimply, points. We denote by Z = f(S) ⊆ Y the set of the images of feasible solutions alledfeasible points.We denote by yi the oordinate on objetive fi of a point y ∈ Y for i = 1, . . . , p. We saythat a point y dominates another point y′ if it is at least as good in all the objetives, i.e.

yi ≤ y′i for all i = 1, . . . , p. A feasible solution x ∈ S is alled e�ient if there is no otherfeasible solution x′ ∈ S suh that f(x) 6= f(x′) and f(x′) dominates f(x). If x is e�ient,
z = f(x) is alled a non-dominated point in the riterion spae. We denote by P the set ofnon-dominated points, also alled non-dominated set or Pareto set. A point z ∈ Z is weaklynon-dominated if there is no point z′ ∈ Z suh that z′i < zi for all i = 1, . . . , p.Given two points y, y′ ∈ Y and any ε > 0, we say that y (1 + ε)-dominates another point
y′, denoted by y �ε y

′, if y is at least as good as y′ up to a fator 1 + ε in all the objetives,i.e. yi ≤ (1 + ε)y′i for i = 1, . . . , p. The asymmetri part of relation �ε is denoted by ≺ε.Thus, we have y ≺ε y′ if yi ≤ (1 + ε)y′i for i = 1, . . . , p and there exists k ∈ {1, . . . , p} suhthat yk < y′k/(1 + ε).For any ε > 0, an ε-Pareto set of Z, denoted by Pε, is a subset of feasible points suh thatany point in Z, or equivalently in P , is (1+ ε)-dominated by at least one point in Pε. We usethis onept to implement the idea of overage.4



One way to ensure spaing is to impose a ondition of stability with respet to a (1 + ε′)-dominane relation. An ε-Pareto set satisfying this additional ondition will be alled an
(ε, ε′)-kernel and is de�ned preisely as follows.De�nition 1 Given a set Z of feasible points and ε, ε′ > 0, an (ε, ε′)-kernel of Z is a set ofpoints Kε,ε′ ⊂ Z satisfying the two following onditions:

(i) for any point z′ ∈ Z \Kε,ε′, there exists z ∈ Kε,ε′ suh that z �ε z
′ (ε-overage).

(ii) for any two distint points z, z′ ∈ Kε,ε′, we do not have z �ε′ z
′ (ε′-stability).Remark that if ε′ > ε an (ε, ε′)-kernel does not always exist. This is the ase for instanefor Z = {z1, z2} suh that neither z1 �ε z

2 nor z2 �ε z
1 but z1 �ε′ z

2 or z2 �ε′ z
1. Therefore,for a given ε, the goal is to �nd an (ε, ε′)-kernel with the largest ε′ ≤ ε. When ε′ = ε an

(ε, ε′)-kernel is alled an ε-kernel.In Figure 1 we present a small instane to illustrate the interest of this onept. Point z3,whih (1+ ε)-dominates all points exept z6, together with point z4, whih (1+ ε)-dominatesall points exept z1, form an ε-Pareto set of minimal ardinality. In spite of this, due totheir proximity, these two points do not represent well the whole set of points. Points z2and z5, whih also form an ε-Pareto set of minimal ardinality, satisfy the additional stabilityondition: none of them (1 + ε)-dominates the other one. This ε-kernel learly provides abetter representation of the whole set of points.
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1+εFigure 1: ε-kernels ompared to ε-Pareto sets.In the following, we are interested in the e�ient omputation of ε-kernels or (ε, ε′)-kernels. For this purpose, we need to represent numbers desribing instanes of multi-objetiveoptimization problems as well as parameters like ε. Therefore, we shall assume that all thesenumbers are positive rationals. The representation size of any rational number r will bedenoted by |r|. Similarly, the representation size of all the rational numbers desribing aninstane I will be denoted by |I|. Moreover, assuming that the objetive funtions takepositive rational values whose numerators and denominators have at most m bits, where
m ≤ p(|I|) for some polynomial p, any feasible point has a value between 2−m and 2m. It5



follows that (the absolute value of) the di�erene between the values of any two points is atleast 2−2m for any riterion.For a given instane I, there may exist several ε-Pareto sets, and these may have di�erentsizes. It is shown in [17℄ that, for every standard multi-objetive optimization problem, an
ε-Pareto set of size polynomial in |I|, and 1/ε always exists. Moreover, as also shown in [17℄,its omputation is related to the existene of a routine alled GAPδ where δ is an appropriatefuntion of ε, seleted so as to ensure obtaining an ε-Pareto set. This routine is de�ned asfollows.Routine GAPδ Given an instane I of a given problem, a point y and a rational δ ≥ 0,GAPδ(y) either returns a feasible point that dominates y or reports that there does not existany feasible point z suh that zi ≤ yi

1+δ
for all i = 1, . . . , p.Observe that, when alling GAPδ(y), if there exists a feasible point y′ dominating y butsuh that y′k > yk

1+δ
for some k ∈ {1, . . . , p} and if there does not exist any feasible point

z suh that zi ≤ yi
1+δ

for all i = 1, . . . , p, then GAPδ(y) may either return y′ or report thenon-existene of points like z.We say that routine GAPδ(y) runs in polynomial time (resp. fully polynomial time when
δ > 0) if its running time is polynomial in |I| and |y| (resp. |I|, |y|, |δ| and 1/δ). An ε-Paretoset is omputable in polynomial time (resp. fully polynomial time) if and only if the routineGAPδ runs in polynomial time [17℄.Sine an ε-Pareto set of polynomial size an still be quite large, Vassilvitskii and Yannakakisinvestigate in [24℄ the determination of ε-Pareto sets of minimal size. More preisely, theydistinguish the two following versions.Primal version: Given an instane of a multi-objetive problem and a rational ε > 0,determine an ε-Pareto set of minimal size.Dual version: Given an instane of a multi-objetive problem and an integer k > 0,determine an ε-Pareto set of size at most k with a minimal ε.These authors also propose generi algorithms to deal with these versions. An algorithmis alled generi if it does not depend on any partiular problem and makes use of generalpurpose routines for whih only the implementation is spei� to the problem (GAPδ is suha general purpose routine). In suh algorithms it is only required to have bounds on theminimum and maximum values of the objetive funtions.In order to design generi algorithms, Diakonikolas and Yannakakis introdued in [5℄ twoother general purpose routines alled Restritδ and DualRestritδ for the bi-objetive ase.Routine Restritδ Given an instane I, a rational bound b ≥ 0 and a rational δ ≥ 0,Restritδ(f1, f2 ≤ b) either returns a feasible point z satisfying z2 ≤ b and z1 ≤ (1 + δ) ·
min{f1(x) : x ∈ S and f2(x) ≤ b} or orretly reports that there does not exist any feasiblepoint z suh that z2 ≤ b.Routine DualRestritδ Given an instane I, a rational bound b ≥ 0 and a rational δ ≥ 0,DualRestritδ(f1, f2 ≤ b) either returns a feasible point z satisfying z2 ≤ b(1 + δ) and z1 ≤
min{f1(x) : x ∈ S and f2(x) ≤ b} or orretly reports that there does not exist any feasiblepoint z suh that z2 ≤ b. 6



We say that routine Restritδ(f1, f2 ≤ b) or DualRestritδ(f1, f2 ≤ b) runs in polynomialtime (resp. fully polynomial time when δ > 0) if its running time is polynomial in |I| and |b|(resp. |I|, |b|, |δ| and 1/δ). Routines Restritδ(f1, f2 ≤ b) and DualRestritδ(f2, f1 ≤ b′) arepolynomially equivalent as proved in [5℄.Remark that routines Restritδ(f1, f2 < b) and DualRestritδ(f1, f2 < b) with a stritonstraint, an easily be simulated respetively by routines Restritδ(f1, f2 ≤ b′) and Dual-Restritδ(f1, f2 ≤ b′) using b′ = b′′ − 2−2m where b′′ is the smallest multiple of 2−2m whih islarger than or equal to b.In the routines onsidered in this paper we assume that the error δ is a rational number,otherwise it is approximated from below by a rational number. We denote by P ∗
ε a smallest

ε-Pareto set and by optε its ardinality. It follows from [17℄ that optε is polynomial in theinput size and 1/ε.In the bi-objetive ase, the following results are known for the primal and dual versions.For the primal version, a generi algorithm that omputes an ε-Pareto set of size at most
3optε using routine GAPδ was established in [24℄. Moreover, if GAPδ runs in polynomialtime (resp. fully polynomial time) then the algorithm also runs in polynomial time (resp.fully polynomial time). Then, it is shown in [5℄ that an ε-Pareto set of size at most 2optε isomputable in polynomial time if there exist Restritδ routines omputable in polynomial timefor both objetives. These approximation results are tight for the lass of problems admittingsuh routines. An algorithm that omputes an ε-Pareto set of size at most k · optε is alled a
k-approximation algorithm.For the dual version, Vassilvitskii and Yannakakis [24℄ state that it is NP-hard even insimple ases but provide a polynomial time approximation sheme (fully polynomial timeapproximation sheme) when the bi-objetive problem admits a GAPδ routine that runs inpolynomial time (fully polynomial time).In this work, our goal is to establish some general properties on (ε, ε′)-kernels and proposesome algorithms for the primal and dual versions in the ase of (ε, ε′)-kernels. In the followingsetions, primal and dual versions refer to (ε, ε′)-kernels instead of ε-Pareto sets.The proposed onepts, and the resulting algorithms, are independent of the multi-objetiveproblem that is onsidered. In partiular, the appliability of our generi algorithms only de-pends on the availability of the involved routines (Restritδ and/or DualRestritδ) for theonsidered problem. Therefore, provided that suh routines are available, these generi algo-rithms an be applied to disrete or ontinuous, linear or nonlinear, multi-objetive optimiza-tion problems.3 Two objetivesWe �rst give some general results on ε-kernels in the bi-objetive ase (setion 3.1). Then weonsider the omputation of ε-kernels when an exat Restrit routine, that is Restritδ with
δ = 0, is available (setion 3.2) and when we only have an approximate Restrit routine, thatis Restritδ with δ > 0 (setion 3.3).

7



3.1 General resultsRelation �ε, as well as its asymmetri part ≺ε, are learly not transitive. Relation �ε aneven ontain yles. It appears, however, that ≺ε annot ontain yles as shown in the nextresult.Lemma 1 In the bi-objetive ase, relation ≺ε does not ontain yles.Proof : Suppose that we have the yle z1 ≺ε z2 . . . ≺ε zn ≺ε z1. Thus, for all i ∈
{1, . . . , n− 1} we have (i) zij ≤ (1 + ε)zi+1

j for eah j ∈ {1, 2} and (ii) there exists j ∈ {1, 2}suh that zij < zi+1
j /(1 + ε). Moreover, we have (i) znj ≤ (1 + ε)z1j for eah j ∈ {1, 2} and (ii)there exists j ∈ {1, 2} suh that znj < z1j /(1 + ε).Considering this yle, assume that we are tj times in ase (ii) for eah j ∈ {1, 2}. Wemust have t1 + t2 ≥ n. First, remark that it is not possible that tj = 0 for eah j ∈ {1, 2}.Indeed, assuming without loss of generality that t1 = 0, we get t2 = n leading to (1+ ε)n < 1.Now, observe that when we are tj times in ase (ii) for riterion j, we are also n− tj times inase (i). Sine tj > 0 for eah j ∈ {1, 2}, we have z1j < (1 + ε)n−2tjz1j , whih implies tj < n/2for eah j ∈ {1, 2}, ontraditing t1 + t2 ≥ n. ✷The previous lemma guarantees the existene of ε-kernels in the bi-objetive ase.Proposition 1 In the bi-objetive ase, an ε-kernel always exists.Proof : It is a diret onsequene of Lemma 1 sine any relation that does not admit ylesin its asymmetri part admits kernels as proved in Duhet [6℄. ✷In general ε-kernels may ontain dominated points. We prove the existene of ε-kernelsontaining only non-dominated points.Proposition 2 In the bi-objetive ase, an ε-kernel that ontains only non-dominated pointsalways exists.Proof : Let Kε be an ε-kernel of the Pareto set P assoiated to feasible set Z. Proposition 1implies that suh an ε-kernel does exist. Kε, whih ontains only non-dominated points byde�nition, is learly an ε-Pareto set with respet to Z. ✷In the following we give some bounds on the size of any ε-kernel.Theorem 1 In the bi-objetive ase, any ε-kernel has a ardinality less than or equal to 3optε.Proof : The proof is by ontradition. Let P ∗

ε be an ε-Pareto set of minimal size optε. Nowassume that there exists an ε-kernel Kε of size at least 3optε + 1. It means that at least onepoint z∗ of P ∗
ε (1 + ε)-dominates at least 4 points of Kε.Let zi for i = 1, 2, 3, 4 be 4 points of Kε suh that z∗ �ε z

i for eah i = 1, 2, 3, 4. Assumewithout loss of generality that zi+1
1 < zi1 and zi+1

2 > zi2 for i = 1, 2, 3. Sine Kε is an ε-kernel,the oordinates of the points zi must satisfy the following inequalities: zi+1
1 < zi1/(1 + ε)and zi+1

2 > zi2(1 + ε). Using these inequalities and sine z∗ �ε zi for eah i = 1, 2, 3, 4, itsoordinates satisfy z∗1 ≤ z41(1 + ε) < z31 < z21/(1 + ε) < z11/(1 + ε) and z∗2 ≤ z12(1 + ε) < z22 <
z32/(1+ε) < z42/(1+ε). Thus no point zi for i = 1, . . . , 4 (1+ε)-dominates z∗. If another point
z of Kε (1 + ε)-dominates z∗ the previous inequalities give z1 ≤ z∗1(1 + ε) < z31(1 + ε) < z218



and z2 ≤ z∗2(1 + ε) < z22(1 + ε) < z32 , whih involves that point z (1 + ε)-dominates points z2and z3. This would ontradit ε-stability for Kε. Thus, no point of Kε (1 + ε)-dominates z∗,whih ontradits ε-overage for Kε. ✷If we onsider ε-kernels ontaining non-dominated points only, we obtain a smaller upperbound on their size. The following result is even slightly stronger sine it deals with ε-kernelsontaining weakly non-dominated points only.Theorem 2 In the bi-objetive ase, any ε-kernel that ontains only weakly non-dominatedpoints has a ardinality less than or equal to 2optε.Proof : The proof is by ontradition. Let P ∗
ε be an ε-Pareto set of minimal size optε.Now assume that there exists an ε-kernel Kε of size at least 2optε +1 ontaining only weaklynon-dominated points. It means that at least one point z∗ of P ∗

ε (1 + ε)-dominates at least 3points of Kε.Let zi for i = 1, 2, 3 be 3 points of Kε suh that z∗ �ε zi for eah i = 1, 2, 3. Assumewithout loss of generality that zi+1
1 < zi1 and zi+1

2 > zi2. SineKε is an ε-kernel, the oordinatesof the points zi must satisfy the following inequalities: zi+1
1 < zi1/(1+ ε) and zi+1

2 > zi2(1+ ε)for i = 1, 2. Sine z∗ �ε zi for eah i = 1, 2, 3, the oordinates of point z∗ must satisfy
z∗1 ≤ z31(1 + ε) < z21 and z∗2 ≤ z12(1 + ε) < z22 . This ontradits the fat that z2 is a weaklynon-dominated point. ✷Corollary 1 In the bi-objetive ase, there exists an ε-kernel with a ardinality less than orequal to 2optε.Proof : It is a diret onsequene of Theorem 2 and Proposition 2. ✷We are interested now on ε-kernels of minimal size. An important fat is that an ε-kernelof minimal size is not larger than an ε-Pareto set of minimal size optε.Theorem 3 In the bi-objetive ase, there exists an ε-kernel of size optε.A onstrutive proof of Theorem 3 is given in setion 3.2.1, where an algorithm thatomputes an ε-kernel of size optε is provided (see Theorem 4).3.2 Algorithms for ε-kernels using exat Restrit routinesIn this setion, we provide algorithms for the primal version (setion 3.2.1) and the dualversion (setion 3.2.2) onsidering that a Restrit0 routine is available for both objetives.In partiular, suh a polynomial routine is available for (ontinuous) multi-objetive linearprogramming. Even if no polynomial Restrit0 routine is available for most disrete and/ornonlinear problems, optimal (non polynomial) routines will guarantee obtaining an ε-kernelof minimal size.3.2.1 Primal versionWe propose a generi algorithm that produes an ε-kernel of minimal size that ontains onlynon-dominated points. This improves signi�antly over the two generi algorithms proposedin [13℄. The �rst algorithm requires a more demanding exat Restrit routine, where restri-tions are imposed on both objetives, while the seond one only requires a Restrit0 routine9
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Figure 2: Illustration of Algorithm 1for one objetive. Eah of these algorithms produes an ε-Pareto set whose size is only guar-anteed to be at most three times the minimal size. In omparison, our algorithm guaranteesto produe an ε-Pareto set of minimal size whih in addition satis�es the ε-stability ondition.Algorithm desription The algorithm proeeds in two phases. The �rst phase (greedyphase) orresponds to a slightly modi�ed version of the algorithm presented in [5℄ whih returnsa set {q1, . . . , qs} of non-dominated points as an ε-Pareto set of minimal size. The seondphase (veri�ation phase) ensures ε-stability by heking, and possibly modifying, the returnedset. We denote by fmin
1 and fmin

2 the minimum values on the �rst and seond objetivesrespetively. In the �rst phase, the algorithm iteratively generates points r1, q1, . . . , rs, qs indereasing order aording to f1 and inreasing order aording to f2. Point r1 orrespondsto an optimal solution on objetive f2. Point q1 is the non-dominated point with the bestpossible value on f1 whih (1 + ε)-dominates r1. Point ri is a point with the smallest valueon f2 that is not (1 + ε)-dominated by the point qi−1. Point qi is the non-dominated pointwith the smallest value on f1 that (1+ε)-dominates point ri. The �rst phase of the algorithmstops when it determines a point qs that (1 + ε)-dominates the feasible points that have a�rst oordinate equal to fmin
1 . At the end of the �rst phase, ε-stability is ensured on the �rstobjetive, but not on the seond one. In the seond phase, points qi are heked, startingfrom qs, in dereasing order aording to f2. If point qi (1 + ε)-dominates point qi−1, wereplae point qi−1 by the non-dominated point with the smallest f1 value whih is not (1+ ε)-dominated by qi while having a stritly larger value on f1 than qi−1. This ensures ε-stabilityon the seond objetive, while preserving ε-stability on the �rst one.A formal desription of this algorithm is given in Algorithm 1.Before analyzing this algorithm, we illustrate its behavior in Figure 2 where 4 points

q1, q2, q3, q4 are seleted during the �rst phase. During the seond phase, the algorithm detetsthat point q3 (1 + ε)-dominates point q2, showing that ε-stability is not satis�ed. Therefore,it replaes q2 by q′2 whih is not (1+ ε)-dominated by q3 but (1+ ε)-dominates all the pointsthat were (1 + ε)-dominated by q2 only. This way, ε-stability is restored, while preserving
ε-overage. The resulting ε-kernel onsists of points q1, q′2, q3, q4.10



Algorithm 1: Algorithm Greedy and Veri�ationinput : An instane of a bi-objetive problem for whih routines Restrit0(f1, f2 ≤ b)and Restrit0(f2, f1 ≤ b) are availableoutput : An ε-kernel of size optε1 fmin
1 ← f1(Restrit0(f1, f2 ≤ 2m)); fmin

2 ← f2(Restrit0(f2, f1 ≤ 2m));2 r1 ← Restrit0(f2, f1 ≤ 2m);3 f2
1 ← (1 + ε)r12 ;4 q1 ← Restrit0(f1, f2 ≤ f2

1
);5 q1 ← Restrit0(f2, f1 ≤ q11);6 f1

1 ← q11/(1 + ε);7 Q← {q1};8 i← 1;/* greedy phase */9 while f1
i
> fmin

1 do10 i← i+ 1;11 ri ← Restrit0(f2, f1 < f1
i−1

);12 f2
i ← (1 + ε)ri2;13 qi ← Restrit0(f1, f2 ≤ f2

i
);14 qi ← Restrit0(f2, f1 ≤ qi1);15 f1

i ← qi1/(1 + ε);16 Q← Q ∪ {qi};/* verifiation phase */17 i← i− 1;18 while qi+1
2 /(1 + ε) > fmin

2 do19 if qi+1
2 /(1 + ε) ≤ qi2 then20 Q← Q− {qi};21 qi ← Restrit0(f1, f2 < qi+1

2 /(1 + ε));22 qi ← Restrit0(f2, f1 ≤ qi1);23 Q← Q ∪ {qi};24 i← i− 1;25 return Q;Algorithm analysis We show now that Algorithm 1 produes an ε-kernel of minimal size.Let R = {r1, . . . , rs} and Q = {q1, . . . , qs} be the set of feasible points produed by thealgorithm. We �rst show some preliminary results regarding points in Q and R.Proposition 3 Set Q ontains only non-dominated points.Proof : Points qi ∈ Q are omputed in two steps, both in the greedy phase (steps 13-14) andin the veri�ation phase (steps 21-22). The �rst step returns a point qi suh that there existsno point z ∈ Z suh that z1 < qi1 and z2 ≤ q2i . Thus, at this step, qi is only guaranteed tobe weakly non-dominated sine there may exist a point z suh that z1 = qi1 and z2 < qi2. Theseond step rules out this possibility, ensuring that qi is non-dominated. ✷11



Observe that the algorithm proposed in [5℄, whih orresponds to the greedy phase, doesnot inlude this seond step optimization. Therefore, the returned ε-Pareto set in [5℄ onsistsof weakly non-dominated points.Lemma 2 During the veri�ation phase, if a point q′i replaes a point qi in Q, we have (i)
q′i2 < qi2 and (ii) q′i1 > qi1.Proof : (i) Point q′i omputed at steps 21-22 satis�es q′i2 < qi+1

2 /(1 + ε) ≤ qi2.
(ii) Sine points in Q are non-dominated, inluding qi and q′i, (i) implies that q′i1 > qi1. ✷Lemma 3 Any feasible point z ∈ Z (1 + ε)-dominates at most one point from R.Proof : Suppose, by ontradition, that z (1+ ε)-dominates two points from R. Clearly, themost favorable situation is when these points are onseutive. Thus, let ri and ri−1 be twoonseutive points in R suh that z (1 + ε)-dominates them. Assuming that z �ε ri−1, wehave z2 ≤ (1 + ε)ri−1

2 . By steps 13-14, this inequality implies that qi−1
1 ≤ z1, whih implies

qi−1
1 /(1 + ε) ≤ z1/(1 + ε). From step 11, we have ri1 < qi−1

1 /(1 + ε) and thus ri1 < z1/(1 + ε),ontraditing z �ε r
i. ✷Lemma 4 The only point in R whih is (1 + ε)-dominated by qi is ri, for i = 1, . . . , s.Proof : By Lemma 3, we just need to show that qi �ε ri, for i = 1, . . . , s. We proeed byindution. By steps 13-14, the assertion is lear if qi has not be modi�ed. In partiular, for qswhih is not modi�ed, the assertion is true. Assuming now that qi+1 �ε r

i+1, we prove that
qi �ε ri. The only ase that ould me problemati is when qi has been modi�ed during theseond phase. By Lemma 3, we have not (qi+1 �ε ri), whih means that qi+1

2 > (1 + ε)ri2.Hene, by steps 21-22, we get qi1 ≤ ri1. Moreover, regarding the seond riterion, sine qiomputed during the �rst phase (1 + ε)-dominates ri, we have qi2 ≤ (1 + ε)ri2. Consideringthat qi has been modi�ed, using Lemma 2-(i) we get qi2 < (1 + ε)ri2. Therefore, we get �nally
qi �ε r

i. ✷We an now prove that Q satis�es the two onditions required to be an ε-kernel.Proposition 4 Set Q satis�es the ε-overage ondition.Proof : We show that the points in Q over all the feasible points by partitioning the rangeof feasible values on f1. More preisely, we show that:
(i) Point q1 (1+ε)-dominates all the feasible points with an f1 value greater than or equalto q11/(1 + ε).
(ii) For eah i = 2, . . . , s, point qi (1 + ε)-dominates all the feasible points that have their

f1 value in the interval [qi1/(1 + ε), qi−1
1 /(1 + ε)

).
(iii) There is no feasible point with a f1 value smaller than qs1/(1 + ε).

(i) Let z be a feasible point with z1 ≥ q11/(1 + ε) and, by de�nition, z2 ≥ fmin
2 . Point q1omputed in steps 4-5 satis�es q12 ≤ (1 + ε)fmin

2 ≤ (1 + ε)z2, whih shows that q1 (1 + ε)-dominates z. If point q1 is modi�ed during the veri�ation phase, using Lemma 2-(i) we alsohave q12 ≤ (1 + ε)z2.
(ii) Let z be a feasible point satisfying qi1/(1 + ε) ≤ z1 < qi−1

1 /(1 + ε). In order to prove that
z is (1 + ε)-dominated by qi, we have to show that qi2 ≤ z2(1 + ε). We onsider three ases.12



• If points qi and qi−1 have not been modi�ed during the veri�ation phase, then qi, whihis de�ned in steps 13-14, veri�es qi2 ≤ (1 + ε)ri2. From step 11, we have ri2 ≤ z2, whihleads to qi2 ≤ (1 + ε)z2.
• If point qi has been modi�ed but not point qi−1, then by Lemma 2-(i), the inequality ispreserved.
• Finally if point qi−1 has been modi�ed during the veri�ation phase, step 21 ensuresthat there is no feasible point z′ suh that z′2 < qi2/(1 + ε) and z′1 < qi−1

1 . Sine
z1 < qi−1

1 /(1 + ε), it follows that z1 < qi−1
1 and thus z2 ≥ qi2/(1 + ε).

(iii) Point qs, whih is not modi�ed in the veri�ation phase, is the last point obtained in thewhile loop 9-16. By step 15 and ondition in step 9, we have qs1/(1 + ε) ≤ fmin
1 . ✷Proposition 5 Set Q satis�es the ε-stability ondition.Proof : We just need to show that ε-stability holds for onseutive points in Q, that is for all

i = 2, . . . , s we have (i) not (qi−1 �ε q
i) and (ii) not (qi �ε q

i−1).
(i) From Lemma 4, we have not(qi−1 �ε r

i). This ours beause we have on the �rst riterion
qi−1
1 > (1 + ε)ri1. Sine we have ri1 ≥ qi1, we get qi−1

1 > (1 + ε)qi1, that is not(qi−1 �ε q
i).

(ii) Test 19-23 ensures that qi−1
2 < qi2/(1 + ε). ✷Combining the previous results, we obtain the main result of this setion.Theorem 4 For any ε > 0, Algorithm 1 omputes an ε-kernel of minimal size optε thatontains only non-dominated points using O(optε) routine alls to Restrit0.Proof : Q is an ε-kernel ontaining only non-dominated points from Propositions 3, 4, and5. Moreover, set Q has minimal size optε sine, from Lemma 3, at least |R| points are requiredfor any ε-Pareto set, whereas Algorithm 1 returns a set Q with |Q|=|R|.Sine the algorithm uses at most 3 |Q| + 2 |Q| = 5 |Q| times the Restrit0 routine, thenumber of routine alls is bounded by 5optε. ✷Sine optε is polynomially bounded in the input size and 1/ε [17℄, we have the followingorollary.Corollary 2 For any ε > 0, if Restrit0 routines are omputable in polynomial time for bothobjetives, then we an determine an ε-kernel of minimal size that ontains only non-dominatedpoints in polynomial time in the size of the input and 1/ε.3.2.2 Dual versionWe show that the minimal ratio 1 + ε∗ is approximable within any fator 1 + θ in polynomialtime in the input size and 1/θ.Theorem 5 Let k be a nonnegative integer and let 1 + ε∗ be the minimal ratio for whih an

ε∗-kernel of size at most k exists. For any rational θ > 0, we an determine an ε-kernel ofsize at most k with 1 + ε ≤ (1 + ε∗)(1 + θ). This an be done using O(k log(m/θ)) routinealls to Restrit0. 13



Proof : We �rst apply Algorithm 1 with ε = θ. If the returned ε-kernel has size at most k,then the required ondition is satis�ed. Otherwise, the minimal ratio 1 + ε∗ belongs to therange [1 + θ, 22m], where the upper bound orresponds to the extreme situation with k = 1and Z = {z1 = (2m, 1/2m), z2 = (1/2m, 2m)}. Let 1 + εi = (1 + θ)i be the andidate ratiosfor i = 1, . . . , ⌈2m/ log(1 + θ)⌉. We perform a binary searh on i values. At eah step we allAlgorithm 1 in order to obtain an εi-kernel of minimal size. If this size is greater than k thenwe ontinue the searh in the right part, otherwise in the left part. Observe that, at eah step,the searh is between the indies iℓ and ir suh that the size of the smallest iℓ-kernel is morethan k and the size of the smallest ir-kernel is at most k. Thus, 1 + εℓ < 1 + ε∗ ≤ 1 + εr.The searh is stopped when ir = iℓ + 1, i.e. when 1 + εr = (1 + εℓ)(1 + θ). Then the urrent
εir -kernel is of size at most k and suh that 1 + εir = (1 + εiℓ)(1 + θ) ≤ (1 + ε∗)(1 + θ).The number of alls to Algorithm 1 is O(log(2m/ log(1 + θ))) ≈ O(log(m/θ)). Sine wean stop eah all to Algorithm 1 when it tries to ompute a (k + 1)th point, eah suh alluses O(k) alls to Restrit0. Thus, the total running time is O(k log(m/θ)) Restrit0 alls. ✷Corollary 3 Let k be a nonnegative integer and let 1 + ε∗ be the minimal ratio for whih an
ε∗-kernel of size at most k exists. If Restrit0 routines are omputable in polynomial time forboth objetives, then we an determine an ε-kernel of size at most k with 1+ε ≤ (1+ε∗)(1+θ)in polynomial time in the size of the input and 1/θ.3.3 Algorithms for (ε, ε′)-kernels using approximate Restrit routinesIn this setion, we provide algorithms for the primal version (setion 3.3.1) and the dualversion (setion 3.3.2) onsidering that a Restritδ routine is available for both objetives.Suh polynomial routines are available for various problems: fully polynomial time routinesfor shortest path [16, 10℄ and polynomial time routines for spanning tree [19℄, mathing andmatroid intersetion [3℄.Assuming that fully polynomial time Restritδ routines, with δ > 0, are available forboth objetives, Diakonikolas and Yannakakis [5℄ showed that (i) there is no polynomial timegeneri algorithm based on these routines able to ompute an ε-Pareto set of size better than
2optε, but (ii) it is possible to ompute an ε-Pareto set of size 2optε in polynomial time. Then,from Theorem 1, it follows that, using suh routines, we an only hope to ompute an ε-kernelof size between 2optε and 3optε in polynomial time. In fat, using the same routines, we evenshow that �nding an ε-kernel in polynomial time annot be guaranteed.Proposition 6 Consider the lass of bi-objetive problems that possess a fully polynomial timeRestritδ routine, with δ > 0, for both objetives. Then, for any ε > 0, there is no polynomialtime generi algorithm using Restritδ that omputes an ε-kernel.Proof : Consider the following set of feasible points Z = {z, z1, z2, z3, z4} (see Figure 3)where: z = (z1, z2), with z1, z2 ≥ 1/ε, z1 = ((z1 + 1)(1 + ε), z2/(1 + ε)2), z2 = (z1 + 1, z2),
z3 = (z1, z2 + 1) and z4 = (z1/(1 + ε)2, (z2 + 1)(1 + ε)). Then, note that eah point of
{z, z2, z3} (1 + ε)-dominates only these three points, and that z1 (1+ ε)-dominates z2 and z4

(1 + ε)-dominates z3. Then, there are exatly three minimal ε-Pareto sets: Pε = {z, z1, z4},
P ′
ε = {z2, z1, z4}, P ′′

ε = {z3, z1, z4} and only Pε is an ε-kernel.We show that a generi algorithm using Restritδ is guaranteed to return the ε-kernel onlyif 1/δ is exponential in the size of the input. Let z1 = z2 = M , where M is an integer value14
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Figure 3: No polynomial time generi algorithm an ompute an ε-kernel (Proposition 6).exponential in the size of the input and 1/ε. Assume that we all Restritδ(f1, f2 ≤ C) with
C ∈ [M,M+1). Then, it an return point z2 instead of z as long as δ ≥ 1/M . Symmetrially,if we all Restritδ(f2, f1 ≤ C) with C ∈ [M,M + 1) we an obtain z3 instead of z. But,sine we want a polynomial time algorithm, 1/δ has to be polynomial in logM . Therefore,a polynomial time generi algorithm annot guarantee to ompute the unique ε-kernel whihontains point z. ✷In spite of this negative result, if we relax the stability ondition using ε′ < ε, we showthat (ε, ε′)-kernel an be omputed in polynomial time. Therefore, in the following, we assumethat ε′ < ε.3.3.1 Primal versionWe propose an algorithm that produes an (ε, ε′)-kernel of size at most twie the size of aminimal ε-Pareto set.Algorithm desription The algorithm proeeds in two phases. The �rst phase (greedyphase) orresponds to the algorithm presented in [5℄ whih returns a 2-approximation algo-rithm for �nding an ε-Pareto set of minimal size. The seond phase (veri�ation phase) isbasially the same as Algorithm 1 but using ε′ instead of ε.The algorithm is shown to produe an (ε, ε′)-kernel when δ < (1+ε)/(1+ε′)−1 (Proposi-tions 7 and 8) and the size of this (ε, ε′)-kernel is proved to be at most 2optε if δ ≤ 3

√
1 + ε−1(Theorem 6). Therefore, we assume that δ < min{(1 + ε)/(1 + ε′)− 1, 3

√
1 + ε− 1}.A formal desription of this algorithm is given in Algorithm 2.Note that, when a Restritδ routine is available only for one objetive, we have anotherversion of this algorithm that requires δ < min{

√

(1 + ε)/(1 + ε′)−1, 3
√
1 + ε−1} by replaingstep 19 by qi ← DualRestrit δ(f1, f2 < qi+1

2 /(1 + ε′)(1 + δ)2).Algorithm analysis We show now that Algorithm 2 produes an (ε, ε′)-kernel whose sizeis at most 2optε. Let Q = {q1, . . . , qs} be the set of feasible points produed by the algorithm.15



First, observe that in steps 23-24 Algorithm 2 disards points that are proved unneessaryin the next result. The returned set may thus be of smaller ardinality than the ε-Pareto setobtained at the end of the greedy phase.Lemma 5 During the veri�ation step, if a point q′i, replaing a point qi, is suh that q′i1 ≥
qi−1
1 /(1 + ε′), then point q′i is unneessary.Proof : Point q′i, with q′i1 ≥ qi−1

1 /(1 + ε′), is omputed in step 19 using Restritδ(f1, f2 <
qi+1
2 /(1 + ε)) where δ < (1 + ε)/(1 + ε′)− 1. This implies that any feasible point z satisfying
z2 < qi+1

2 /(1 + ε) is suh that z1 ≥ q′i1 /(1 + δ) > q′i1 (1 + ε′)/(1 + ε) ≥ qi−1
1 /(1 + ε). Therefore,there is no feasible point z suh that z1 < qi−1

1 /(1 + ε) and z2 < qi+1
2 /(1 + ε). Thus, a pointthat is (1 + ε)-dominated by point q′i is (1 + ε)-dominated by point qi−1 or qi+1. ✷In the following, for proving the orretness of our algorithm, the ase of points whih arenot inluded (steps 23-24) an be ignored. Indeed, when this happens, the onsequene ofreindexing at step 23 is that points qi+1 and qi−1 beome respetively points qi+1 and qi atthe next iteration, without any impat on the ε-overage ondition as shown by Lemma 5.Lemma 6 During the veri�ation step, if a point q′i replaes a point qi in Q, we have (i)

q′i2 < qi2 and (ii) q′i1 ≥ qi1.

16



Algorithm 2: Algorithm Greedy and Veri�ation Extendedinput : An instane of a bi-objetive problem for whih routines Restritδ(f1, f2 ≤ b)and Restritδ(f2, f1 ≤ b) are availableoutput : An (ε, ε′)-kernel of size at most 2optε1 fmin
1 ← f1(DualRestrit δ(f1, f2 ≤ 2m)); fmin

2 ← f2(DualRestrit δ(f2, f1 ≤ 2m));2 r1 ← Restritδ(f2, f1 ≤ 2m);3 f2
1 ← 1+ε

(1+δ)2 r
1
2;4 q1 ← DualRestrit δ(f1, f2 ≤ f2

1
);5 f1

1 ← q11/(1 + ε);6 Q← {q1};7 i← 1;/* greedy phase */8 while f1
i
> fmin

1 do9 i← i+ 1;10 ri ← Restritδ(f2, f1 < f1
i−1

);11 f2
i ← 1+ε

1+δ
max{f2

i−1
, ri2/(1 + δ)};12 qi ← DualRestrit δ(f1, f2 ≤ f2

i
);13 f1

i ← qi1/(1 + ε);14 Q← Q ∪ {qi};/* verifiation phase */15 s← i, i← i− 1;16 while qi+1
2 /(1 + ε) > fmin

2 do17 if qi+1
2 /(1 + ε′) ≤ qi2 then18 Q← Q− {qi};19 qi ← Restrit δ(f1, f2 < qi+1

2 /(1 + ε));20 if qi1 < qi−1
1 /(1 + ε′) then21 Q← Q ∪ {qi};22 else23 reindex {qi+1, . . . , qs} by {qi, . . . , qs−1};24 s← s− 1;25 i← i− 1;26 return Q;Proof : (i) Point q′i omputed at step 19 satis�es q′i2 < qi+1

2 /(1 + ε) < qi+1
2 /(1 + ε′) ≤ qi2.

(ii) Remark that point qi was omputed in step 12 using routine DualRestritδ during thegreedy phase. It follows that there is no feasible point z suh that z1 < qi1 and z2 < qi2/(1+δ).Sine ε′ < (1 + ε)/(1 + δ)− 1, point q′i is omputed in step 19 suh that q′i2 < qi+1
2 /(1 + ε) <

qi+1
2 /(1 + ε′)(1 + δ) ≤ qi2/(1 + δ). It follows that q′i1 ≥ qi1. ✷We an now prove that Q satis�es the two onditions required to be an (ε, ε′)-kernel.Proposition 7 Set Q satis�es the ε-overage ondition.17



Proof : We show that the points in Q over all the feasible points by partitioning the rangeof feasible values on f1. More preisely, we show that:
(i) Point q1 (1+ε)-dominates all the feasible points with an f1 value greater than or equalto q11/(1 + ε).
(ii) For eah i = 2, . . . , s, the point qi (1 + ε)-dominates all the feasible points that havetheir f1 value in the interval [qi1/(1 + ε), qi−1

1 /(1 + ε)
).

(iii) There is no feasible point with a f1 value smaller than qs1/(1 + ε).
(i) Let z be a feasible point with z1 ≥ q11/(1 + ε) and, by de�nition, z2 ≥ fmin

2 . Point q1omputed in step 4 satis�es q12 ≤ (1 + ε)fmin
2 ≤ (1 + ε)z2, whih shows that q1 (1 + ε)-dominates z. If point q1 is modi�ed during the veri�ation phase, using Lemma 6-(i) we alsohave z2 ≥ q12/(1 + ε).

(ii) Let z be a feasible point satisfying qi1/(1 + ε) ≤ z1 < qi−1
1 /(1 + ε). In order to prove that

z is (1 + ε)-dominated by qi, we have to show that qi2 ≤ (1 + ε)z2. We onsider three ases.
• If points qi and qi−1 have not been modi�ed during the veri�ation phase, then qi, whihis de�ned in step 12, veri�es qi2 ≤ (1 + ε) · max{f2

i−1
, ri2/(1 + δ)}. From step 10 wehave z2 ≥ ri2/(1 + δ) and from step 12 for i − 1 we have z2 ≥ f2

i−1. Thus we have
max{f2

i−1
, ri2/(1 + δ)} ≤ z2 whih leads to qi2 ≤ (1 + ε)z2.

• If point qi has been modi�ed but not point qi−1, then by Lemma 6-(i), the inequality ispreserved.
• Finally if point qi−1 has been modi�ed during the veri�ation phase, step 19 ensuresthat there is no feasible point z′ suh that z′2 < qi2/(1 + ε) and z′1 < qi−1

1 /(1 + δ). Sine
z1 < qi−1

1 /(1 + ε) it follows that z1 < qi−1
1 /(1 + δ) and thus z2 ≥ qi2/(1 + ε).

(iii) Point qs, whih is not modi�ed during the veri�ation phase, is the last point obtainedin the while loop 8-14. By step 13 and ondition in step 8, we have qs1/(1 + ε) ≤ fmin
1 . ✷Proposition 8 Set Q satis�es the ε′-stability ondition.Proof : We just need to show that ε′-stability holds for onseutive points in Q, that is forall i = 2, . . . , s we have (i) not (qi−1 �ε′ q

i) and (ii) not (qi �ε′ q
i−1).

(i) We onsider three ases.
• If points qi and qi−1 have not been modi�ed during the veri�ation phase, then point ri,omputed in step 10, is suh that ri1 < qi−1

1 /(1 + ε). Moreover sine point qi, omputedin step 12, is suh that qi1 ≤ ri1, we get qi1 < qi−1
1 /(1 + ε) < qi−1

1 /(1 + ε′), that is not(qi−1 �ε′ q
i).

• If point qi is modi�ed and point qi−1 is not modi�ed, then sine qi is added to Q instep 21, it satis�es qi1 < qi−1
1 /(1 + ε′), that is not (qi−1 �ε′ q

i).
• The �nal ase is when point qi−1 hanges during the veri�ation phase and is replaedby a point q′i−1. Then, aording to Lemma 6-(ii) the inequality is preserved.18



(ii) Test 17-24 and the de�nition of point qi−1 at step 19 ensures that qi−1
2 < qi2/(1 + ε) <

qi2/(1 + ε′). ✷Lemma 7 Any point z ∈ Z (1 + ε)-dominates at most two points from R.Proof : Suppose, by ontradition, that z (1+ε)-dominates three points from R. Clearly, themost favorable situation is when these points are onseutive. Thus, let ri, ri−1, and ri−2 bethree onseutive points in R suh that z (1 + ε)-dominates them. Assuming that z �ε r
i−2,we have z2 ≤ (1 + ε)ri−2

2 . By step 11, for i − 2 and i − 1, we get f2
i−2 ≥ 1+ε

(1+δ)2
ri−2
2 and

f2
i−1 ≥ 1+ε

1+δ
f2

i−2 and thus f2
i−2 ≥ (1+ε)2

(1+δ)3
ri−2
2 . Sine (1 + δ)3 < 1 + ε, we have z2 ≤ f2

i−1.From this last inequality, by step 12, for i−1, we have qi−1
1 ≤ z1, whih implies qi−1

1 /(1+ε) ≤
z1/(1 + ε). From step 10, we have ri1 < qi−1

1 /(1 + ε) and thus ri1 < z1/(1 + ε), ontraditing
z �ε r

i. ✷Combining the previous results, we obtain the following result.Theorem 6 For any ε, ε′ suh that ε > ε′ > 0, Algorithm 2 omputes an (ε, ε′)-kernel of sizeless than or equal to 2optε using O(optε) routine alls to Restritδ or DualRestritδ, where
δ < min{(1 + ε)/(1 + ε′)− 1, 3

√
1 + ε− 1}.Proof : Q is an (ε, ε′)-kernel from Propositions 7 and 8. Moreover, set Q has a size less thanor equal to 2optε sine, from Lemma 7, at least ⌈|R|/2⌉ points are required for any ε-Paretoset, whereas Algorithm 2 returns a set Q with |Q| ≤ |R|.Sine the algorithm uses at most 2 |Q|+ |Q| = 3 |Q| times the routines Restritδ or Dual-Restritδ, the number of routine alls is bounded by 3optε. ✷Sine optε is polynomially bounded in the input size and 1/ε [17℄, we have the followingorollary.Corollary 4 For any ε, ε′ suh that ε > ε′ > 0, if routines Restritδ and DualRestritδ with

δ > 0 are omputable in (fully) polynomial time for both objetives, then we an determine an
(ε, ε′)-kernel of size less than or equal to 2optε in (fully) polynomial time.We reall that it is not possible to produe an ε-Pareto set of size optε in polynomial timeusing Restritδ routines [5℄. Nevertheless, Vassilvitskii and Yannakakis showed in [24℄ thatit is possible to produe in polynomial time an ε-Pareto set of size bounded by optε̂ for any
ε̂ < ε. In the following we present a similar result for (ε, ε′)-kernels. More preisely, we showthat Algorithm 2 used with δ < min{

√

(1 + ε)/(1 + ε̂)− 1, (1 + ε)/(1 + ε′)− 1} omputes an
(ε, ε′)-kernel of size bounded by optε̂, for any ε̂ < ε and ε′ < ε. Let Q be the set of feasiblepoints produed by the algorithm.Sine δ < (1 + ε)/(1 + ε′)− 1, Q is an (ε, ε′)-kernel from Propositions 7 and 8. Therefore,we only need to show that set Q has a size less than or equal to optε̂.Proposition 9 When δ ≤

√

(1 + ε)/(1 + ε̂)−1, Algorithm 2 returns a set Q with |Q| ≤ optε̂.
19



Proof : Let P ∗
ε̂ = {p∗1, . . . , p∗k} be an ε̂-Pareto set of minimal size, where points p∗i for

i = 1, . . . , k are in inreasing order of their oordinates on f2 and dereasing order of theiroordinates on f1. Let Q̃ = {q̃1, . . . , q̃r} be the set of points returned by the greedy phase ofAlgorithm 2. We have |Q̃| ≥ |Q| due to the possible omission of points in steps 23-24 of theveri�ation step. We show now that |Q̃| ≤ |P ∗
ε̂ |. For this purpose, we show by indution on ithat for eah point q̃i in Q̃ there exists a point p∗i in P ∗

ε̂ suh that q̃i1 ≤ p∗i1 .Initialization (i = 1). The fat that P ∗
ε ontains at least one point is trivially true. We needto show that q̃11 ≤ p∗11 . Sine point q̃1 is omputed in step 4 using DualRestritδ(f1, f2 ≤ f2

1
),to show the statement it su�es to prove that f21 ≥ p∗12 . Sine P ∗

ε̂ is an ε̂-Pareto set where itspoints p∗j for j = 1, . . . , k are in inreasing order of their oordinates on f2, it follows that point
p∗1 must (1 + ε̂)-dominates fmin

2 and so p∗12 ≤ (1 + ε̂)fmin
2 . Sine δ ≤

√

(1 + ε)/(1 + ε̂) − 1,it follows that p∗12 ≤ 1+ε
(1+δ)2

fmin
2 . From step 2 we have r12 ≥ fmin

2 and from step 3 we have
f2

1
= 1+ε

(1+δ)2
r12, thus it follows that f21 ≥ p∗12 .Indution step. Assume the result is true until index i− 1, we prove it for index i. By thetermination ondition of the greedy phase of Algorithm 2 (step 8), we have q̃i−1

1 > (1+ε)fmin
1and by the indution hypothesis that p∗i−1

1 ≥ q̃i−1
1 , it follows that p∗i−1

1 > (1 + ε)fmin
1 . Thus,point p∗i−1 does not (1 + ε)-dominate the feasible points that have a �rst oordinate equalto fmin

1 , and so P ∗
ε̂ must ontain another point p∗i. Sine point q̃i is omputed in step 12using DualRestritδ(f1, f2 ≤ f2

i
), to show the statement it su�es to prove that f2

i ≥ p∗i2 .Sine P ∗
ε is an ε̂-Pareto set where its points p∗j for j = 1, . . . , k are in inreasing order oftheir oordinates on f2, it follows that point p∗i must (1 + ε̂)-dominates point ri and so

p∗i2 ≤ (1 + ε̂)ri2. Sine δ ≤
√

(1 + ε)/(1 + ε̂)− 1, it follows that p∗i2 ≤ 1+ε
(1+δ)2

ri2. From step 11we have f2
i ≥ 1+ε

(1+δ)2
ri2, thus it follows that f2i ≥ p∗i2 . ✷The seond main result of this setion follows.Theorem 7 For any ε̂, ε, ε′ suh that ε > ε̂ > 0 and ε > ε′ > 0, Algorithm 2 omputesan (ε, ε′)-kernel of size less than or equal to optε̂ using O(optε̂) routine alls to Restritδ orDualRestritδ, with δ < min{

√

(1 + ε)/(1 + ε̂)− 1, (1 + ε)/(1 + ε′)− 1}.Proof : Set Q returned by Algorithm 2 is an (ε, ε′)-kernel sine Propositions 7 and 8 hold.Moreover, the size of Q is less than or equal to optε̂ by Proposition 9. Sine the algorithm uses
3 |Q| times the Restritδ or DualRestritδ routines, the number of routine alls is bounded by
3optε̂. ✷Corollary 5 For any ε̂, ε, ε′ suh that ε > ε̂ > 0 and ε > ε′ > 0, if routines Restritδ andDualRestritδ with δ > 0 are omputable in (fully) polynomial time for both objetives, thenwe an determine an (ε, ε′)-kernel of size less than or equal to optε̂ in (fully) polynomial time.3.3.2 Dual versionWe show that the minimal ratio 1 + ε∗ is approximable within any fator 1 + θ in polynomialtime in the input size and 1/θ.Theorem 8 Let k be a nonnegative integer and let 1 + ε∗ be the minimal ratio for whih an
ε∗-kernel of size at most k exists. For any rational θ > 0, we an determine an (ε, ε′)-kernel20



with 1+ ε ≤ (1+ ε∗)(1+ θ), for all ε′ < ε, of size at most k using O(k log(m/θ)) routine allsto Restritδ or DualRestritδ.Proof : We �rst apply Algorithm 2 with ε = θ, ε′ < ε, and δ < min{ 4
√
1 + θ− 1, (1+ ε)/(1+

ε′)− 1}, where δ < 4
√
1 + θ − 1 results from onsidering 1 + ε̂ =

√
1 + θ in Theorem 7. If thereturned (ε, ε′)-kernel has size at most k, then the required ondition is satis�ed. Otherwise,from Theorem 7, the minimal ratio 1 + ε∗ belongs to the range [
√
1 + θ, 22m]. Let 1 + εi =

(
√
1 + θ)i be the andidate ratios for i = 2, . . . , ⌈4m/ log(1 + θ)⌉ and let 1 + ε̂i = (1 +

εi)/
√
1 + θ. We perform a binary searh on i values. At eah step we all Algorithm 2with δ < min{ 4

√
1 + θ − 1, (1 + εi)/(1 + ε′i) − 1}, where ε′i is an arbitrary number suh that

ε′i < εi, in order to obtain an (εi, ε
′
i)-kernel of size at most optε̂i (see Theorem 7). If thissize is greater than k then we ontinue the searh in the right part, otherwise in the left part.Observe that, at eah step, the searh is between the indies iℓ and ir suh that the size ofthe (εiℓ , ε

′
iℓ
)-kernel is more than k and the size of the (εir , ε

′
ir
)-kernel is at most k. Thus,

(1 + εiℓ)/
√
1 + θ < 1 + ε∗ ≤ 1 + εir . The searh is stopped when ir = iℓ + 1, i.e. when

1 + εir = (1 + εiℓ)
√
1 + θ. Then, the urrent (εir , ε′ir )-kernel is of size at most optε̂ir ≤ k andsuh that 1 + εir = (1 + εiℓ)

√
1 + θ ≤ (1 + ε∗)(1 + θ).The number of alls to Algorithm 2 is O(log(4m/ log(1 + θ))) ≈ O(log(m/θ)). Sine wean stop eah all to Algorithm 2 when it tries to ompute a (k + 1)th point, eah suh alluses O(k) alls to Restritδ or DualRestritδ . Thus, the total running time is O(k log(m/θ))Restritδ or DualRestritδ alls. ✷Corollary 6 Let k be a nonnegative integer and let 1 + ε∗ be the minimal ratio for whihan ε∗-kernel of size at most k exists. If routines Restritδ and DualRestritδ with δ > 0are omputable in (fully) polynomial time for both objetives, for any rational θ > 0, we andetermine an (ε, ε′)-kernel with 1 + ε ≤ (1 + ε∗)(1 + θ), for all ε′ < ε, of size at most k in(fully) polynomial time.4 More than two objetivesFor more than two objetives, the onept of ε-kernel is not really operational sine an ε-kerneldoes not always exist.Proposition 10 For p ≥ 3 objetives, an ε-kernel may not exist.Proof : Let p = 3 and z1, z2, and z3 be three points with the following oordinates: z1 =

(a(1+ ε), b/(1 + ε), c), z2 = (a, b(1+ ε), c/(1 + ε)), z3 = (a/(1+ ε), b, c(1 + ε)) where a, b, and
c are three nonnegative rational numbers.Clearly z1 (1+ε)-dominates z2, z2 (1+ε)-dominates z3 and z3 (1+ε)-dominates z1. Sineany ε-kernel must satisfy the ε-stability ondition, it follows that an ε-kernel must ontain atmost one point. Moreover, no point (1+ε)-dominates the two others. Sine any ε-kernel mustsatisfy the ε-overage ondition, it follows that an ε-kernel must ontain at least two points.This is learly impossible. ✷Moreover, even if an ε-kernel exists, we have no guarantee on its size like Theorems 1, 2,and 3 for the bi-objetive ase. On the opposite, we an show that a smallest ε-kernel mayhave a very large size ompared with optε. 21



Proposition 11 For p ≥ 3 objetives, the size of a smallest ε-kernel, when it exists, an begreater than k · optε for any integer k.Proof : Let p = 3 and z1, z2, and z3 be de�ned as in the proof of Proposition 10. Let
z = (z21 , z

3
2 , z

1
3) = (a, b, c). Fix any rational ε̂ > ε and onsider the 3k points z1j = (z11(1 +

ε̂)j , z12/(1 + ε), z13(1 + ε̂)k−j) , z2j = (z21(1 + ε̂)k−j, z22(1 + ε̂)j , z23/(1 + ε)) and z3j = (z31/(1 +
ε), z32(1 + ε̂)k−j, z33(1 + ε̂)j) for j = 1, . . . , k.For this instane, the only ases of (1 + ε)-dominane are: z1 �ε z2, z2 �ε z3, z3 �ε z1,
z �ε z

i and zi �ε z for i = 1, 2, 3, and zi �ε z
ij for i = 1, 2, 3 and j = 1, . . . , k.The set onstituted by points z1, z2, and z3 is learly an ε-Pareto set of minimal size.Moreover, any ε-kernel must ontain point z and thus points zij for i = 1, 2, 3 and j = 1, . . . , k.This is the only ε-kernel and it ontains 3k + 1 points. ✷However, if we onsider ε′ ≤ √1 + ε− 1, we an show that an (ε, ε′)-kernel always exists.For this purpose, we reall the notion of quasi-kernel (also alled semi-kernel).De�nition 2 Given a direted graph G = (V,A), a quasi-kernel is a set S ⊆ V suh that

(i) for any v ∈ V − S, there exists v′ ∈ S suh that (v′, v) ∈ A or there exist v′ ∈ S and
v′′ ∈ V − S suh that (v′, v′′) ∈ A and (v′′, v) ∈ A (ii) for any u, v ∈ S, u 6= v, (u, v) /∈ A.The following result is well-known.Theorem 9 (Chvátal and Lovász [4℄) Any �nite direted graph G admits a quasi-kernel.Applied in our ontext, this gives rise to the following result.Proposition 12 For any number of objetives p ≥ 3 and any �nite set Z of points an (ε, ε′)-kernel exists if and only if ε′ ≤ √1 + ε− 1.Proof : ⇐ Consider the graph G = (Z,�ε′) and apply Theorem 9.
⇒ Assuming that ε′ > √1 + ε − 1, we show the existene of an instane whih does notadmit an (ε, ε′)-kernel.Let Z = {z1, z2, z3} where z1, z2, and z3 are three points in the riterion spae and assumethat their oordinates are the following: z1 = (a(1+ ε′), b/(1+ ε′), c), z2 = (a, b(1+ ε′), c/(1+

ε′)), z3 = (a/(1 + ε′), b, c(1 + ε′)) with a, b, and c three nonnegative rational numbers.Remark that z1 (1 + ε′)-dominates z2, z2 (1 + ε′)-dominates z3 and z3 (1 + ε′)-dominates
z1. In order to satisfy the ε′-stability ondition an (ε, ε′)-kernel ontains at most one pointamong z1, z2, and z3. Moreover, sine ε′ >

√
1 + ε − 1, no point (1 + ε)-dominates the twoothers and thus in order to satisfy the ε-overage ondition, an (ε, ε′)-kernel must ontain atleast two points. This is learly impossible. ✷Moreover, when the points Z are given expliitly and ε′ ≤

√
1 + ε − 1 it is possible toompute an (ε, ε′)-kernel in polynomial time. Indeed, the problem an be redued to �nding akernel in a direted ayli graph [7℄. We brie�y desribe the method of Duhet et al. from [7℄.Consider the direted graph G = (Z,�ε′) and any arbitrary order < on the verties. We �rstpartition the set of ars into two disjoint subsets A1 = {(i, j) ∈�ε′ : i < j}, A2 = {(i, j) ∈�ε′ :

i > j}. The two direted graphs (Z,A1) and (Z,A2) ontain no yle. Sine a (unique) kernelan be easily omputed in polynomial time in direted ayli graphs, �rst onstrut the kernel22



K of (Z,A1) and then the kernel K ′ of (K,A2). The resulting subset K ′ is a quasi-kernel of
G, i.e. an (ε, ε′)-kernel.In the general ase, when the points of the riterion spae are not given expliitly, we havethe following result.Proposition 13 For p ≥ 3 objetives and any 0 < ε′ ≤ 3

√
1 + ε − 1, an (ε, ε′)-kernel isomputable in polynomial time when the assoiated GAPδ routine runs in polynomial time.Proof : First we onstrut a grid in the riterion spae as in the proof of the e�ientonstrutability of an ε-Pareto set presented in [17℄. Consider a subdivision of the riterionspae into hyperretangles suh that, in eah dimension, the ratio of the largest to the smallestoordinate of eah hyperretangle is 6

√
1 + ε. In eah orner point, all the GAPδ routine with

δ = 6
√
1 + ε − 1 and denote by S the resulting set of points. Set S (after removing thedominated points) is learly an ( 3

√
1 + ε− 1)-Pareto set.On set S, we use the method of Duhet et al. [7℄ to onstrut a quasi-kernel in a diretedgraph. Thus, we obtain a subset K ⊆ S whih is an (( 3

√
1 + ε)2 − 1, 3

√
1 + ε − 1)-kernel forthe points in S. Sine S is an ( 3

√
1 + ε − 1)-Pareto set, it implies that K is an (( 3

√
1 + ε)2 ·

3
√
1 + ε− 1, 3

√
1 + ε− 1)-kernel i.e. an (ε, ε′)-kernel. ✷Nevertheless, we an show a result similar to Proposition 11 for (ε, ε′)-kernels.Proposition 14 For p ≥ 3 objetives and any 0 < ε′ ≤

√
1 + ε − 1, the size of a smallest

(ε, ε′)-kernel an be greater than k · optε for any integer k.Proof : Let p = 3 and z1, z2, and z3 be three points with the following oordinates: z =
(a, b, c), z1 = (a(1+ε′), b/(1+ε′), c), z2 = (a, b(1+ε′), c/(1+ε′)), z3 = (a/(1+ε′), b, c(1+ε′))where a, b, and c are three nonnegative rational numbers. Fix any rational ε̂ and onsider 6kpoints z1j = (z11(1+ ε̂)j, z12/(1+ ε), z13 (1+ ε̂)2k−j) , z2j = (z21(1+ ε̂)2k−j, z22(1+ ε̂)j , z23/(1+ ε))and z3j = (z31/(1 + ε), z32(1 + ε̂)2k−j, z33(1 + ε̂)j) for j = 1, . . . , 2k.Remark that points z, z1, z2, and z3 (1+ε)-dominates eah other and zi �ε z

ij for i = 1, 2, 3and j = 1, . . . , k. For this instane, the only ases of (1 + ε′)-dominane are: z1 �ε′ z2,
z2 �ε′ z

3, z3 �ε′ z
1, z �ε′ z

i and zi �ε′ z for i = 1, 2, 3.The set onstituted by points z1, z2, and z3 is learly an ε-Pareto set of minimal size.Moreover, a smallest (ε, ε′)-kernel ontains a point zi with i = 1, 2, 3 and all the points zi
′jfor i′ = 1, 2, 3 with i 6= i′ and j = 1, . . . , 2k, and it ontains 4k + 1 points. ✷5 ExperimentsWe show now the implementation of our exat algorithm in the bi-objetive ase in order togenerate an ε-kernel (Algorithm 1). We �rst illustrate this algorithm in the ontext of (on-tinuous) Multi-Objetive Linear Programming (Setion 5.1). Then we report experiments ontwo standard multi-objetive ombinatorial optimization problems, the bi-objetive shortestpath problem (Setion 5.2) and the bi-objetive assignment problem (Setion 5.3). Theseexperiments are performed on a PC (i7-2600, 3.4GHz, 8GB) using CPLEX 12.6.3 with onethread. Reported omputation times are CPU times expressed in seonds. We reall fromTheorem 4 that the disrete representations provided by Algorithm 1 (i) guarantee both ε-overage and ε-stability,(ii) are of minimum size among all the representations guaranteeingthese properties, and (iii) ontain only non-dominated points.23



5.1 Bi-objetive linear programmingThe use of Algorithm 1 is partiularly e�etive for bi-objetive linear programs sine polyno-mial routines Restrit0 are available. In pratie, we just need to solve a sequene of linearprograms.To illustrate our algorithm, we apply it on a manpower planning problem stated in thereferene textbook by Williams [26℄. In a ontext where new mahinery is installed, a ompanymust deide, over a 3 years horizon, whether to reruit, retrain, or make redundant someemployees of di�erent ategories. The �rst objetive is to minimize the number of employeesmade redundant (f1) while the seond objetive is to minimize the total ost of retraining,redundany, hiring additional employees (f2). This gives rise to a linear program with 60(ontinuous) variables and 24 onstraints preisely desribed in [26℄. Williams also providesthe two extreme optimal solutions: the one minimizing redundany, orresponding to point y∗1,leads to a (rounded) number of 842 employees made redundant for a total ost of ¿1 438 383,and the one minimizing the total ost, orresponding to point y∗2, leads to a (rounded) numberof 1 424 employees made redundant for a total ost of ¿498 677. The author observes that thisseond solution saves ¿939 706 but results in 582 extra redundanies and onludes that theost of saving eah job ould, therefore, be regarded as ¿1 615.
ε-kernels are represented in Figure 4 for di�erent values of ε. The orresponding numberof points and CPU times are reported for eah ase.Considering the ε-kernel for ε = 0.001, whih provides a preise representation of the non-dominated set, the previous onlusion an be re�ned. Indeed, for eah of the optimal points,and partiularly for y∗1, a very small deay on the optimal value of the optimized riterionleads to a substantial improvement on the other riterion. Quite interestingly, the ε-kernelsfor larger values of ε tend to fous on the entral points and ignore the extreme optimal points.In partiular for ε = 0.05, the representation whih ontains only 6 points proposes a point

y1 = (877, 967 055) with the best evaluation on objetive f1 and a point y2 = (1 299, 523 611)with the best evaluation on objetive f2. We hek that yi does indeed (1 + ε)-dominate y∗i,
i = 1, 2, whih means that the loss on optimality remains within the tolerane margin. Aboveall the gain on the other riterion is muh larger than 5%: for y1, the gain on riterion f2 is1 438 383 - 967 055 = 471 328, representing a 32.77% gain and for y2, the gain on riterion f1is 1 424 - 1 299 = 125, representing a 8.37% gain.This explains why points between y∗i and yi, i = 1, 2, are not part of the representation.5.2 Bi-objetive shortest path problemWe onsider here the well known pathologial family of instanes introdued in Hansen [14℄,and depited in Figure 5. Eah of the 2n feasible paths from vertex v0 to vertex vn orre-sponds to a non-dominated point, illustrating the intratability of the bi-objetive shortestpath problem.We tested our algorithm when n = 25, orresponding to 225 = 33 554 432 non-dominatedpoints. Due to the size of the non-dominated set, it is pratially impossible to omputethis set. However, an appropriate representation an be omputed extremely quikly usingAlgorithm 1. Information on the size and time required to ompute ε-kernels of minimum sizeis reported in Table 1.The graphial representation of this instane is given in Figure 6. Representing about 33.5millions points with only 21 points, while guaranteeing that any other point an be at most24



ε = 0.001 � 303 points � 9.04 s.400
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ε = 0.005 � 61 points � 1.15 s.400
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ε = 0.01 � 31 points � 0.64 s.400
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ε = 0.05 � 6 points � 0.11 s.400
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Figure 4: The manpower planning problem: di�erent ε-kernels
v0 v1 v2 vn−1 vn
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. . .

(2n−1, 0)

(0, 2n−1)Figure 5: Intratable instanes for the bi-objetive shortest path problem5% better than one of these points, is quite remarkable. We also notie that, unlike in theprevious linear programming example, the points are extremely well-dispersed. This is due tothe fat that in these very spei� instanes there is a onstant tradeo� of one unit betweenonseutive non-dominated points. 25



ε size CPU time (s.)0.01 101 5.270.05 21 1.530.1 11 0.61Table 1: Di�erent ε-kernels for the bi-objetive shortest path problem(Hansen instane, n = 25)
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Figure 6: ε-kernel for the bi-objetive shortest path problem(Hansen instane, n=25), ε = 0.055.3 Bi-objetive assignment problemWe onsider now the bi-objetive assignment problem, whih onsists in assigning n resouresto n tasks taking into aount two total ost funtions to be minimized. A resoure is assignedto one and only one task and a task is assigned to one and only one resoure. Eah resoure-task assignment involves two osts. Eah total ost of an assignment is omputed by addingup the osts of every hosen resoure-task assignment.We test our algorithm using the largest and most di�ult instane used in [18℄, where a spe-i� two-phase algorithm is proposed for the bi-objetive assignment problem. This instane,alled 2AP100-1A100, is available on GuepardLib, a library of multi-objetive ombinato-rial optimization instanes (http://guepard.lip6.fr/Main/GuepardLib). For this instane,
n = 100 and eah ost is generated randomly, independently, uniformly in {0, . . . , 99}.We �rst used a standard e-onstraint approah to generate the whole non-dominated set.Information on the size and time required to ompute ε-kernels of minimum size is reportedin Table 2. 26



ε size CPU time (s.)0 947 684.31(e-onstraint)0.01 197 263.950.05 40 50.450.1 21 23.20Table 2: Di�erent ε-kernels for the bi-objetive assignment problem(2AP100-1A100 instane)The graphial representation of this instane is given in Figure 7. We observe, here again,the modulation of the dispersion of points depending on the shape of the non-dominated set.
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Figure 7: Instane 2AP100-1A100: non-dominated set and ε-kernel6 ConlusionsThe purpose of this work was to produe disrete and tratable representations of the setof non-dominated points for multi-objetive optimization problems. We onsidered that rep-resentations should satisfy some onditions of overage, spaing, and ardinality. For thispurpose, we introdued the onept of (ε, ε′)-kernel whih is a partiular ε-Pareto set thatsatis�es an additional ondition of stability implementing spaing. We proposed some generimethods to produe (ε, ε′)-kernels. Our algorithms run in polynomial time if and only if theroutines alled in the algorithms run in polynomial time.The situation for the bi-objetive ase is quite lear and the onept of (ε, ε′)-kernel, or even
ε-kernel, seems quite relevant to provide a good disrete representation of the non-dominatedset. Our experiments demonstrate the pratial appliability of our algorithm. For more thantwo objetives, we showed that imposing a ondition of spaing may impat negatively on theardinality. Sine a overage ondition must neessarily be imposed, the hoie is between27



emphasizing spaing or ardinality. If the ondition on spaing prevails, we showed that it ispossible to onstrut an (ε, ε′)-kernel, with ε′ ≤ 3
√
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