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Abstract

The Loebl-Komlós-Sós conjecture says that any graph G on n ver-
tices with at least half of vertices of degree at least k contains each
tree of size k. We prove that the conjecture is true for paths as well
as for large values of k (k ≥ n− 3).

1 Introduction

We shall use standard graph theory notation. We consider only finite, undi-
rected graphs of order n = |V (G)| and size e(G) = |E(G)|. All graphs will
be assumed to have neither loops nor multiple edges.

The below conjecture was firstly formulated by Loebl in 1994 in the case
k = n

2
and next generalized by Komlós and Sós.

Conjecture 1 (Loebl-Komlós-Sós [3]) If G is a graph on n vertices and

at least n
2

vertices have degrees at least k, then G contains all trees of size at

most k.

The Loebl-Komlós-Sós conjecture has some similarity with the well known
Erdős-Sós conjecture.
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Conjecture 2 (Erdős-Sós) If G is a graph on n vertices and the number

of edges of G is e(G) > n(k−1)
2

then G contains all trees of size at most k.

As remarked in [5], the condition that the average degree of the graph G is
greater than k−1 from the Erdős-Sós conjecture is replaced in Loebl-Komlós-
Sós conjecture by the condition that the medium degree of G is greater than
k (for some special cases of the Erdős-Sós conjecture see for example [8] as
well as [2] and [7]).

For a graph satisfying the hypothesis of the Loebl-Komlós-Sós conjecture we
define B = {v ∈ V (G) | dG(v) ≥ k} and S = V (G)− B. The vertices of B
and S will be also referred as B-vertices and S-vertices, respectively. Some
additional definitions and notations will be given in next sections.

Observe first that the Loebl-Komlós-Sós conjecture is true for stars. For, if
G is a graph satisfying the hypothesis of the conjecture, we can identify the
center of a star with one B-vertex of G.

The Loebl-Komlós-Sós conjecture holds also for double-stars with at most k
edges. Indeed, let G be a graph satisfying the hypothesis of the conjecture.
It is easy to see that the set B contains at least one edge. For, otherwise,
if B is independent, then there are more than k|B| edges between B and S
and also there are less than (k − 1)|S| between S and B. Thus

k|B| ≤ (k − 1)|S| ≤ (k − 1)|B|.

The contradiction proves that B cannot be an independent set. Now, let v, w
be two vertices of B such that vw ∈ E(G). It suffices to identify the two
centers of a double star with v and w.

In this paper we shall consider some others special cases of the Loebl-Komlós-
Sós conjecture. In particular we shall prove that it holds for paths (Section 2).
We can also show that the conjecture holds for large values of parameter k,
namely k ≥ n− 3 (the proof of this result can be find in [1]).

Mention that using the Regularity Lemma, Ajtai, Komlós and Szemerédi
proved the following approximate form of the Loebl-Komlós-Sós conjecture
(see [5]).

2



Theorem 3 For every ǫ > 0 there is a threshold n0 such that for all n ≥ n0,

if G is a graph on n vertices and it has at least
(1+ǫ)n

2
vertices of degree at

least
(1+ǫ)n

2
, then G contains all trees with at most n

2
edges.

2 Paths

Recall first that Pr denote the path on r vertices (i.e. of length r − 1) and
Cr denote the cycle on r vertices (i.e. of length r).

For a given cycle C denote by
−→
C one of its orientations. Then the opposite

orientation is denoted by
←−
C . For v, w ∈ V (C) we denote by v

−→
C w the path

starting in v and ending in w which contains all vertices of C between v and
w following the orientation

−→
C . Similarly, we denote by v

←−
C w the path which

contains all vertices of C between v and w following the opposite orientation.
If C is a cycle with a given orientation and v a vertex of C we denote by

v+ and v− the successor and the predecessor, respectively, of the vertex v on
the cycle C with respect to this orientation.

We shall use analogous notations for paths with given orientation.

The aim of this section is to prove the Loebl-Komlós-Sós conjecture for paths
i.e. the following theorem.

Theorem 4 If G is a graph on n vertices and it has at least n
2

vertices with

the degrees at least k, then G contains a path of length at least k.

Observe that evidently the above theorem improves the well-known Dirac’s
result (1952) saying that if G is a graph of minimum degree k, then G con-
tains a path of length at least k. There is also the result of Posa [6] that if
in a graph G for each subset X with |X| ≤ k, |N(X)−X| ≥ 2|X| − 1, then
G has a path of length 3k − 2. However, this result and the other known
conditions implying the existence of such a path (for instance the conditions
concerning the average degree or the sum of degrees of nonadjacent vertices),
could not be compared with Theorem 4.

The rest of this section is devoted to the proof of the theorem. Let n be
the smallest integer such that there is an integer k and a graph on n vertices,
say G, such that G satisfies the hypothesis of Theorem 4 but the conclusion
does not hold. Subject to this choice we assume also that k is as small as
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possible. Since the claim of Theorem 4 is true for k ≤ 2, we have k ≥ 3.
Moreover, without loss of generality we can choose a graph G of the size as
small as possible.

We can suppose that G is connected. Otherwise, suppose that G has q
connected components Q1, . . . , Qq with n1, . . . , nq vertices, respectively. De-
note by pi the number of vertices with the degree at least k in Qi. Observe
that if in one of q components of G the hypothesis of the theorem is satisfied
(that is pi ≥

ni

2
) we can find a path with k edges in this components. Oth-

erwise, for all i we have pi < ni

2
which implies

∑q
i=1 pi < n

2
, a contradiction.

We can also suppose that S is an independent set, for otherwise the graph
obtained from G by removing the edges between the vertices of S also would
satisfy the hypothesis of the theorem.

Finally, we can also suppose that each B-vertex of G has at most one S-
neighbor with the degree one. Otherwise, let v1, v2 be two S-neighbors with
the degree one of a vertex b ∈ B. The graph G1 = G− {v1, v2} satisfies the
hypothesis of the Loebl-Komlós-Sós conjecture because G1 has n−2 vertices
and at least n

2
− 1 vertices with the degree no less than k.

This last remark can be generalized in the following way.

Lemma 5 Let X ⊆ S. Then |X| < 2|NG(X)|.

Proof. Suppose that there is a set of S-vertices X such that
|X| ≥ 2|NG(X)|. We will prove that in this case G − X (and also G)

contains a path with k edges.
Let us consider the graph G′ = G−X obtained from G by removing the

vertices X from G. In G − X the vertices of NG(X) could have the degree
less than k. The number of vertices of G − X with the degree at least k is
at least |B| − |NG(X)|.

If |X| ≥ 2|NG(X)| then 2(|B| − |NG(X)|) ≥ 2|B| − |X| ≥ |B|+ |S| − |X|
and thus, by the minimality of G, G−X contains a path of length k.

Lemma 6 There is no path Pk in G of length k − 1 with one extremity in

B and there is no path Pk−1 of length k − 2 with both extremities in B.

Proof. Suppose that P = x1, . . . , xk is a path of G with the orientation from
x1 to xk and such that x1 ∈ B. Then x1 has at least one neighbor v that
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is not on P and then vx1
−→
P xk is a path with k edges, a contradiction. The

second affirmation can be deduced from the first one.

Lemma 7 G contains no cycle of length k or k − 1.

Proof. Suppose first that C is a cycle with k vertices in G and denote by
−→
C one of its orientations. Since G is connected there is a vertex v ∈ V (G),

v /∈ V (C) and a vertex w ∈ V (C) such that vw ∈ E(G). Then vw
−→
C w− is a

path of size k in G, a contradiction.

Suppose now that C is a cycle in G of size k − 1. Denote by
−→
C one of the

orientations of C. We shall consider two cases:

Case 1. There is a B-vertex, say b, outside of C.

Since G is connected, there is a path P in G between b and a vertex x lying
on C with other vertices from G − C. By orientating P from b to x we see
that b

−→
P x
−→
C x− is a path in G with at least k− 1 edges having one extremity

in B, a contradiction with Lemma 6.

Case 2. All B-vertices of G are on C.

If two consecutive vertices on C, say x and x+ are B-vertices, then the path
x+−→C x is of size k − 2 and has two extremities in B. Once again we get a
contradiction with Lemma 6. Otherwise, all B-vertices on C are separated
by S-vertices. Hence, all vertices of G are on C. So, G is Hamiltonian and
contains the paths of all length, a contradiction.

Lemma 8 G contains no cycle of length k − 2.

Proof. Suppose, contrary to the conclusion that G contains a cycle C of size
k − 2. Denote by

−→
C one of the orientations of C. Without loss of generality

we can assume that the number of B-vertices on C is as large as possible.

We shall consider two main cases.

Case 1. There is a B-vertex, say b, outside of C.

5



Then, since G is connected, there is a path P in G, between b and a vertex
x on C. In fact, this path is of length one, since otherwise a path beginning
in b and having at least k−1 edges would be easy to find. Suppose first that
x− is a B-vertex. Then bx

−→
C x− is a path in G with k − 2 edges and with

two extremities in B, which is impossible by Lemma 6. Similarly we can get
a contradiction if x+ is a B-vertex. So, we can assume that if x ∈ V (C)
and bx ∈ E(G), then both vertices x− and x+ belong to S. Therefore we
conclude that x must be in B.

Observe now that b(x+)+ /∈ E(G). For, otherwise b(x+)+−→C xb would be a
cycle of the same size but with one B-vertex (namely (x+)+) more than
C, which contradicts the choice of C. So, between two neighbors of b on
C there are at least three vertices which are not neighbors of b. Hence
|NG(b) ∩ V (C)| ≤ k−2

4
and thus |NG−C(b)| ≥ 3k+2

4
≥ 2 for k ≥ 3. Moreover

all neighbors of b that are not on C are in S, otherwise we would have a path
of size k − 1 with one extremity in B.

By Lemma 5, at least one these neighbors, say s, is not of degree one and
since it is a S-vertex, all its neighbors are on C ∪{b}. Denote by v one of its

neighbors different from b. Then v−←−C vsb is a path of length k − 1 with one
extremity in B. Once again we get a contradiction by Lemma 6.

Case 2. All B-vertices are on C.

In this case k − 2 ≥ n
2

i.e. k ≥ n
2

+ 2. Denote by SC the set of S-vertices on
C and by SR the set of other S-vertices. We have

k − 2 = |B|+ |SC | (1)

Let A be the set of these B-vertices whose successors on C are also in B,
i.e. A = {x ∈ B ∩ V (C)| x+ ∈ B}.

The cardinality of A is equal with the number of edges of C with both
extremities in B and this number is exactly equal to |E(C)| − 2|SC| = k −
2− 2|SC |.

By (1) we have
|A| = |B| − |SC| (2)

Observe now that each B-vertex b ∈ V (C) has at least three S-neighbors
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outside of C. Let b1 and b2 be two vertices of A and suppose that there
exists a vertex s being the common neighbor of b1 and b2 outside of C (see

Figure 1). Then b+
1
−→
C b2sb1

←−
C b+

2 is a path with k−2 edges with two extremities
in B which is impossible by Lemma 6.
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Figure 1

Denote by ÑG(x) = NG(x) − V (C) i.e. the neighbors of x which are
outside of the cycle C. So, for each b1, b2 ∈ A we have: ÑG(b1)∩ ÑG(b2) = ∅.
Thus

ÑG(A) =
⋃

b∈A

ÑG(b) ⊆ SR.

Since |ÑG(b)| ≥ 3 for every B-vertex b we get 3|A| ≤ |SR|.
Using (2) we obtain 3|B| − 3|SC| ≤ |SR|. Hence

3|B| ≤ |SR|+ |SC |+ 2|SC| = |S|+ 2|SC| = n− |B|+ 2|SC|

and we have
n ≥ 4|B| − 2|SC | ≥ 2n− 2|SC |.

Finally |SC| ≥
n
2
. Since the cycle C contains also at least n/2 B-vertices,

thus C is a Hamiltonian cycle and G has the paths of all lengths, a contra-
diction.

Proof of Theorem 4.
We can assume that G contains a path of length k − 1 because of the

choice of n and k. By Lemma 6 this path has its two extremities in S. By
removing these two extremities we get a path we shall denote by P . Observe
that P is a path of length k − 3 and has its both extremities in B. Denote
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these vertices by b1 and b2, respectively and let
−→
P be the orientation of P

from b1 to b2.

It is easy to see that both b1 and b2 have at least three neighbors outside
of P because they have at most k − 3 neighbors on the path P . Moreover,
the neighbors of b1 and b2 outside of P are S-vertices. For, otherwise, if for
example b1 has a neighbor b in B, b /∈ V (P ) then bb1

−→
P b2 is a path with k−2

edges with both extremities in B.

Denote by W1 and W2 the set of these neighbors of b1 and b2, respectively,
which are not vertices of the path P . By Lemma 8, W1 ∩ W2 = Ø. As
remarked above, these two sets contain only S-vertices. So, all the neighbors
of the vertices belonging to W1 or W2 are in B, and, in consequence are
on P . Denote by A1 the set of all neighbors of vertices of W1 except b1,
A1 = NG(W1) − {b1} and, similarly, let A2 = NG(W2) − {b2}. Let us put
B1 = A1 ∪ A2.

We claim that for each b ∈ A1 its predecessor b− ∈ S. Otherwise, suppose
that b ∈ NG(v) where v ∈ W1. Then b−

←−
P b1vb

−→
P b2 is a path of length k − 2

and having its both extremities in B, a contradiction. By the same argu-
ment we can show that for each b ∈ A2 its successor b+ is in S. We put
A−

1 = {b− | b ∈ A1}, A+
2 = {b+ | b ∈ A2} and S1 = A−

1 ∪ A+
2 . In other

words, each B-vertex belonging to B1 generates one S-vertex belonging to
S1. We shall show that distinct vertices of B1 generate distinct vertices of
S1. Suppose now that there exists a vertex s such that s ∈ A−

1 ∩ A+
2 where

s+ ∈ NG(v) with v ∈W1 and s− ∈ NG(w) with w ∈W2 (see Figure 2).
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Then s+−→P b2ws−
←−
P b1vs+ is a cycle of length k−1 contradicting Lemma 7.

Hence A−
1 ∩ A+

2 = ∅. Thus we have

|A−
1 |+ |A

+
2 | = |S1| = |B1|

By Lemma 8 there is no vertex v ∈ V (P ) such that b1v ∈ E(G) and

v−b2 ∈ E(G), for, otherwise v
−→
P b2v

−←−P b1v would be a cycle of size k−2. For
the same reason b1b2 /∈ E(G).

Then |NG(b1)∩V (P )|+|NG(b2)∩V (P )| ≤ |P |−1 = k−3. Since b1, b2 ∈ B
this implies that |W1| + |W2| ≥ k + 3. Using Lemma 5 with X = W1 ∪W2

we get 2 + |B1| >
|W1|+|W2|

2
≥ k+3

2
.

Hence we obtain |B1|+ |S1| > k +3−4 = k−1. Therefore, together with
b1 and b2, the path P has at least k + 1 vertices, a contradiction. .

Corollary 9 Let n and k be two integers, k ≤ n−1 and let G be a graph on

n vertices with at least n
2

vertices of degree at least k. For any three integers

p, q, r such that p + q + r = k denote by T (p, q, r) the tree obtained from the

path P = x0, . . . , xp, xp+1, . . . , xp+q of length p + q by adding r new vertices

y1, . . . , yr and r new edges xpyi, i = 1, . . . , r. Then G contains T (p, q, r).

Proof. Denote by G′ the graph obtained from G by removing all edges
between the vertices of the set S. By Theorem 4, G′ contains a path of
length k. Denote by z0, . . . , zk the vertices of this path. Since the set S
is independent, either zp or zp+1 must be in B. Suppose that zp ∈ B and
consider the path P = z0, . . . , zp+q. Since zp ∈ B it has at least k− p− q = r
neighbors outside of P . Now it is easy to define a subgraph of G′ that is
isomorphic to the tree T (p, q, r).

If zp+1 ∈ B, we repeat the above reasoning with the path P defining by
P = z1, . . . , zp+q+1.

Remark. The following example, given in [5], shows that if the Loebl-
Komlós-Sós conjecture is true, then, in general, the condition on the number
of vertices in B is the best possible. We put n = 2m + 2, |B| = m and
|S| = m + 2. The graph G is defined as the join between the complete graph
on m vertices with vertex set B and the set of independent vertices S. Then,
each vertex of B is of degree n − 1, however G contains no path of length
n− 1.
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[1] C. Bazgan, H. Li and M. Woźniak, On the Loebl-Komlós-Sós con-
jecture......

[2] S. Brandt and E. Dobson, The Erdős-Sós conjecture for graphs of
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