
Complexity of determining the most vitalelements for the p-median and p-enterloation problemsCristina Bazgan Sonia ToubalineDaniel VanderpootenUniversité Paris-Dauphine, LAMSADE,Plae du Maréhal de Lattre de Tassigny, 75775 Paris Cedex 16, Frane.Cristina.Bazgan, Sonia.Toubaline, Daniel.Vanderpooten�dauphine.frAbstratWe onsider the k most vital edges (nodes) and min edge (node)bloker versions of the p-median and p-enter loation problems. Given aweighted onneted graph with distanes on edges and weights on nodes,the k most vital edges (nodes) p-median (respetively p-enter) problemonsists of �nding a subset of k edges (nodes) whose removal from thegraph leads to an optimal solution for the p-median (respetively p-enter)problem with the largest total weighted distane (respetively maximumweighted distane). The omplementary problem, min edge (node) bloker
p-median (respetively p-enter), onsists of removing a subset of edges(nodes) of minimum ardinality suh that an optimal solution for the
p-median (respetively p-enter) problem has a total weighted distane(respetively a maximum weighted distane) at least as large as a spe-i�ed threshold. We show that k most vital edges p-median and k mostvital edges p-enter are NP -hard to approximate within a fator 7

5
−ǫ and

4

3
− ǫ respetively, for any ǫ > 0, while k most vital nodes p-median and

k most vital nodes p-enter are NP -hard to approximate within a fator
3

2
− ǫ, for any ǫ > 0. We also show that the omplementary versions ofthese four problems are NP -hard to approximate within a fator 1.36.Keywords: most vital edges and nodes, min edge and node bloker, p-median,

p-enter, omplexity, approximation.1 IntrodutionFor problems of seurity or reliability, it is important to assess the ability of asystem to resist to a destrution or a failure of a number of its entities. Thisamounts to identifying ritial entities whih an be determined with respet toa measure of performane or a ost assoiated to the system. In this paper we1



fous on simple loation problems. Consider for instane the following problem.We aim at loating p hospitals or p supermarkets in order to serve n areas. Eaharea is haraterized by a population whih represents a potential demand.The areas are onneted by roads with a given distane. The objetive forloating these hospitals or supermarkets is not the same. Indeed, for hospitals,we aim at �nding the loations that minimize the maximum distane weightedby population from the losest hospital to all areas while for supermarkets weaim at �nding the loations that minimize the total weighted distane from thelosest supermarket to all areas. However, there may our inidents suh asworks on road or �oods that make some roads inaessible. In this ase severalproblems may arise. We an aim at deteting the ritial roads whose failureauses the largest inrease in the weighted distane. Alternatively, we an aimat determining the maximum number of damaged roads whih still ensures aertain quality of servie level. Modeling the onsidered network by a weightedonneted graph with distanes on edges and weights on nodes, where roads areedges and areas are nodes, these problems onsist either of �nding a subset ofedges or nodes whose removal from the graph generates the largest inrease inthe total or maximum weighted distane or of determining a subset of edges ornodes of minimal ardinality suh that, when we remove this subset from thegraph, the total or maximum weighted distane is at least as large as a spei�edthreshold. In the literature these problems are referred respetively to as the kmost vital edges/nodes and the min edge/node bloker problems.The k most vital edges/nodes and min edge/node bloker versions have beenstudied for several problems, inluding shortest path, minimum spanning tree,maximum �ow, maximum mathing and independent set. The k most vitaledges problem with respet to shortest path was proved NP -hard [2℄. Later, kmost vital edges/nodes shortest path (and min edge/node bloker shortest path,respetively) were proved to be not 2-approximable (not 1.36-approximable, re-spetively) if P 6= NP [8℄. For minimum spanning tree, k most vital edges isNP-hard [6℄ and O(log k)-approximable [6℄. In [11℄ it is proved that k most vi-tal edges maximum �ow is NP -hard. For maximum mathing, min edge blokeris NP -hard even for bipartite graphs [12℄, but polynomial for grids and trees [10℄.In [3℄, the k most vital nodes and min node bloker versions with respet to in-dependent set for bipartite graphs remain polynomial on the unweighted graphsand beome NP -hard for weighted graphs. For bounded treewidth graphs andographs these versions remain polynomial [3℄. Conerning the approximationon bipartite weighted graphs, k most vital nodes with respet to independentset has no ptas [3℄.In this paper the k most vital edges (nodes) and min edge (node) blokerversions for the p-median and p-enter problems are studied.After introduing some preliminaries in Setion 2, we prove in Setions 3 and4 that k Most Vital Edges (Nodes) p-median (p-enter) andMin Edge(Node) Bloker p-median (p-enter) are not onstant approximable forsome onstants, unless P=NP. Final remarks are provided in Setion 5.2



2 Basi onepts and de�nitionsConsider G = (V, E) a onneted weighted graph with |V | = n and |E| = m.Let dvivj
be the distane between vi and vj for (vi, vj) ∈ E and wvi

be theweight assoiated to node vi for i = 1, . . . , n (wvi
represents the demand o-urring at node vi). Denote by d(vi, vj) the minimum distane between twonodes vi and vj of G and let d(F, vi) = minf∈F d(f, vi), for any F ⊆ V . The

p-median (respetively p-enter) problem onsists of �nding a subset F of pnodes whih minimizes the total weighted distane (respetively the maximumweighted distane) to all nodes of the graph given by ∑

vi∈V

wvi
d(F, vi) (respe-tively max

vi∈V
wvi

d(F, vi)).Denote by G − R the graph obtained from G by removing the subset R ofedges or nodes.We onsider in this paper the k most vital edges (nodes) and min edge(node) bloker versions of the p-median and p-enter problems. These problemsare de�ned as follows:
k Most Vital Edges p-median (p-enter)Input: A onneted graph G = (V, E) weighted by two funtions d : E → Nand w : V → N and a positive integer k.Output: A subset S∗ ⊆ E, with |S∗| = k, whose removal generates an optimalsolution for the p-median (p-enter) problem in the graph G − S∗ of maximalvalue.
k Most Vital Nodes p-median (p-enter)Input: A onneted graph G = (V, E) weighted by two funtions d : E → Nand w : V → N and a positive integer k.Output: A subset N∗ ⊆ V , with |N∗| = k, whose removal generates an optimalsolution for the p-median (p-enter) problem in the graph G − N∗ of maximalvalue.Min Edge Bloker p-median (p-enter)Input: A onneted graph G = (V, E) weighted by two funtions d : E → Nand w : V → N and a positive integer U .Output: An edge bloker S∗ ⊆ E of minimal ardinality where an edge blokeris a subset of edges suh that the value of an optimal solution for the p-median(p-enter) problem in the graph G − S∗ is greater than or equal to U .Min Node Bloker p-median (p-enter)Input: A onneted graph G = (V, E) weighted by two funtions d : E → Nand w : V → N and a positive integer U .Output: A node bloker N∗ ⊆ V of minimal ardinality where a node blokeris a subset of nodes suh that the value of an optimal solution for the p-median(p-enter) problem in the graph G − N∗ is greater than or equal to U .3



Given an NPO optimization problem and an instane I of this problem, weuse |I| to denote the size of I, opt(I) to denote the optimum value of I, and
val(I, S) to denote the value of a feasible solution S of instane I. The perfor-mane ratio of S (or approximation fator) is r(I, S) = max

{

val(I,S)
opt(I) ,

opt(I)
val(I,S)

}

.The error of S, ε(I, S), is de�ned by ε(I, S) = r(I, S) − 1.For a funtion f , an algorithm is an f(|I|)-approximation, if for every in-stane I of the problem, it returns a solution S suh that r(I, S) ≤ f(|I|).The notion of a gap-redution was introdued in [1℄ by Arora and Lund. Inthis paper we use gap-redutions from minimization problems to maximizationproblems. A minimization problem Π is alled gap-reduible to a maximizationproblem Π′ with parameters (c, ρ) and (c′, ρ′), if there exists a polynomial timeomputable funtion f suh that f maps an instane I of Π to an instane I ′ of
Π′, while satisfying the following properties.

• If opt(I) ≤ c then opt(I ′) ≥ c′

• If opt(I) > cρ then opt(I ′) < c′

ρ′Parameters c and ρ are funtion of |I| and parameters c′ and ρ′ are funtionof |I ′|. Also, we have ρ, ρ′ ≥ 1.The interest of a gap-redution is that if Π is not approximable within afator ρ then Π′ is not approximable within a fator ρ′.The notion of an E-redution (error-preserving redution) was introduedin [9℄ by Khanna et al. A problem Π is alled E-reduible to a problem Π′, ifthere exist polynomial time omputable funtions f , g and a onstant β suhthat
• f maps an instane I of Π to an instane I ′ of Π′ suh that opt(I) and

opt(I ′) are related by a polynomial fator, i.e. there exists a polynomial
p suh that opt(I ′) ≤ p(|I|)opt(I),

• g maps any solution S′ of I ′ to one solution S of I suh that ε(I, S) ≤
βε(I ′, S′).An important property of an E-redution is that it an be applied uniformlyto all levels of approximability; that is, if Π is E-reduible to Π′ and Π′ belongsto C then Π belongs to C as well, where C is a lass of optimization problemswith any kind of approximation guarantee (see also [9℄).3 Inapproximability results for the k Most VitalEdges (Nodes) p-median and p-enter problemsWe prove that k Most Vital Edges (Nodes) p-median and k Most VitalEdges (Nodes) p-enter are not onstant approximable for some onstants,4



unless P=NP. For this, we onstrut, in Theorems 1 to 4, gap-redutions fromMin Vertex Cover restrited to tripartite graphs. This problem is shownNP -hard in [7℄ where Garey et al. prove that it is NP -hard to �nd a minimumvertex over in graphs with maximum degree 3, onsidering also that thesegraphs, with the exeption of the lique K4, are 3-olorable [4℄.Theorem 1 k Most Vital Edges p-median is NP-hard to approximate withina fator 7
5 − ǫ, for any ǫ > 0 and p ≥ 1.Proof : We �rst prove the statement for p = 1. Let I be an instane ofMin Vertex Cover formed by a graph G = (V, E) with a tripartition V =

V1 ∪ V2 ∪ V3 and |V | = n. We onstrut an instane I ′ of k Most VitalEdges 1-median onsisting of a graph G′ = (V ′, E′) with k < n as follows(see Figure 1). We assoiate for eah node vi
ℓ ∈ Vi, two nodes vi

ℓ,1 and vi
ℓ,2 in

V ′ and onnet them in E′, for i = 1, 2, 3 and ℓ = 1, . . . , |Vi|. We add for eahedge (vi
ℓ, v

j
r) ∈ E, with i < j, the edge (vi

ℓ,2, v
j
r,1) to E′. We also add four nodes

x1, x2, x
′

2, x3 onneted by the path (x1, x
′

2), (x
′

2, x2), (x2, x3). We onnet x1 to
v1

ℓ,1 for ℓ = 1, . . . , |V1|, x′

2 to v2
ℓ,1 and x2 to v2

ℓ,2 for ℓ = 1, . . . , |V2| and x3 to v3
ℓ,2for ℓ = 1, . . . , |V3|. We assign a distane 1 to edges (x1, x

′

2), (x1, v
1
ℓ,1), (x′

2, v
2
j,1),

(x2, v
2
j,2) and (x′

2, x3) for ℓ = 1, . . . , |V1| and j = 1, . . . , |V2|, a distane 2 for theedge (x′

2, x2) and a distane 0 for all the other edges in E′. We set wx1
= 8,

wx2
= wx3

= 1 and assign a weight 0 to all other nodes in V ′. We replae alledges of E′, exept the edges (vi
ℓ,1, v

i
ℓ,2), for i = 1, 2, 3 and ℓ = 1, . . . , |Vi|, by thegadget given in Figure 2. For eah edge to be replaed, one hooses indi�erentlythe vertex playing the role of i in Figure 2, exept for all edges inident to x1for whih we take x1 as i. We show in the following that:1. opt(I) ≤ k ⇒ opt(I ′) ≥ 72. opt(I) > k ⇒ opt(I ′) ≤ 5whih proves that k Most Vital Edges 1-median is NP -hard to approx-imate within a fator 7

5 − ǫ, for any ǫ > 0.First observe that there exists at least one optimal solution of k MostVital Edges 1-median ontaining only edges among the edges (vi
ℓ,1, v

i
ℓ,2), for

i = 1, 2, 3 and ℓ = 1, . . . , |Vi|. Indeed, if a solution ontains edges from a gadgetorresponding to an initial edge (i, j), it must ontain at least n edges from thisgadget in order to have a hane to inrease the solution value by suppressingommuniation between i and j. Therefore, sine k < n, it is at least as goodto selet k edges among those whih do not belong to the gadgets.Observe also that G′ is designed so as to ensure that x1 will always be theoptimal 1-median node. Indeed, sine the weight of vertex x1 is 8 and all edgesinident to x1 have distane 1, any other node would have a total weighteddistane of at least 8. In the following, x1 has always a total distane of atmost 7. 5
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1. If there exists a vertex over V ′ ⊆ V of ardinality less than k in Gthen onsider any set of verties V ′′ ⊃ V ′ of ardinality k, and remove
S′′ = {(vi

ℓ,1, v
i
ℓ,2) : vi

ℓ ∈ V ′′} from G′. The optimal 1-median node in
G′−S′′ is x1 with a total weighted distane d(x1, x2)+d(x1, x3) = 3+4 = 7.Hene, opt(I ′) ≥ 7.2. Let S∗ be any solution of k Most Vital Edges 1-median whih ontainsonly edges (vi

ℓ,1, v
i
ℓ,2), for i = 1, 2, 3 and ℓ = 1, . . . , |Vi|. The optimal 1-median node in G′ − S∗ is x1 with opt(I ′) = d(x1, x2) + d(x1, x3). Eahedge (vi

ℓ,1, v
i
ℓ,2) of S∗ orresponds to a node vi

ℓ ∈ Vi in the graph G, for
i = 1, 2, 3 and ℓ = 1, . . . , |Vi|. Let N∗ be the subset of nodes in G thatorrespond to edges of S∗. Sine |N∗| = k and opt(I) > k, N∗ is not avertex over in G. Thus, there exists at least one edge (vi

ℓ, v
j
r) ∈ E whihis not overed. This implies in G′ the existene of a path from xi (or x′

i)to xj , with i < j, passing through the gadget orresponding to the edge
(vi

ℓ,2, v
j
r,1), enabling a derease of some shortest path distanes. Hene,

• if i = 1 and j = 2 then opt(I ′) ≤ 5

• if i = 1 and j = 3 then opt(I ′) ≤ 3

• if i = 2 and j = 3 then opt(I ′) ≤ 5Therefore, opt(I ′) ≤ 5.We now prove the statement for p ≥ 2. We use the same onstrution asabove for p = 1, and we add p− 1 nodes x1
1, . . . , x

p−1
1 . We onnet xr

1 to x′

2 and
v1

ℓ,1, for r = 1, . . . , p − 1 and ℓ = 1, . . . , |V1|, and we assign a distane 1 to allthese edges. We assign a weight 8 to eah node xr
1, for r = 1, . . . , p− 1. Finally,we replae all edges (xr

1, x
′

2) and (xr
1, v

1
ℓ,1) for ℓ = 1, . . . , |V1| and r = 1, . . . , p−1,by the gadget given in Figure 2 where we take xr

1 as i, for r = 1, . . . , p − 1.As previously, there exists at least one optimal solution of k Most VitalEdges p-median ontaining only edges among the edges (vi
ℓ,1, v

i
ℓ,2), for i =

1, 2, 3 and ℓ = 1, . . . , |Vi|. Furthermore, observe that G′ is designed so as toensure that x1 and xr
1 for r = 1, . . . , p − 1 will always be the optimal p-mediannodes. Indeed, sine the weight of these verties is 8 and all edges inident tothem have distane 1, any other node would have a total weighted distane ofat least 8. Therefore, we an prove similarly as for p = 1, that:1. opt(I) ≤ k ⇒ opt(I ′) ≥ 72. opt(I) > k ⇒ opt(I ′) ≤ 5whih proves that k Most Vital Edges p-median is NP -hard to approx-imate within a fator 7
5 − ǫ, for any ǫ > 0. 27



Theorem 2 k Most Vital Edges p-enter is NP-hard to approximate withina fator 4
3 − ǫ, for any ǫ > 0 and p ≥ 1.Proof : We �rst prove the statement for p = 1. We use the same onstrutionas in Theorem 1 for p = 1. We show that:1. opt(I) ≤ k ⇒ opt(I ′) ≥ 42. opt(I) > k ⇒ opt(I ′) ≤ 3whih proves that k Most Vital Edges 1-enter is NP -hard to approx-imate within a fator 4

3 − ǫ, for any ǫ > 0.Similarly as above, there exists at least one optimal solution of k MostVital Edges 1-enter ontaining only edges among the edges (vi
ℓ,1, v

i
ℓ,2), for

i = 1, 2, 3 and ℓ = 1, . . . , |Vi|. Moreover, as before, x1 will always be the optimal1-enter node.1. If there exists a vertex over V ′ ⊆ V of ardinality less than k in Gthen onsider any set of verties V ′′ ⊃ V ′ of ardinality k, and remove
S′′ = {(vi

ℓ,1, v
i
ℓ,2) : vi

ℓ ∈ V ′′} from G′. The optimal 1-enter node in G′−S′′is x1 with a maximum weighted distane max{d(x1, x2), d(x1, x3)} = 4.Hene, opt(I ′) ≥ 4.2. Let S∗ be any solution of k Most Vital Edges 1-enter whih ontainsonly edges (vi
ℓ,1, v

i
ℓ,2), for i = 1, 2, 3 and ℓ = 1, . . . , |Vi|. The optimal 1-enter node in G′ − S∗ is x1 with opt(I ′) = max{d(x1, x2), d(x1, x3)}.Eah edge (vi

ℓ,1, v
i
ℓ,2) of S∗ orresponds to a node vi

ℓ ∈ Vi in the graph
G, for i = 1, 2, 3 and ℓ = 1, . . . , |Vi|. Let N∗ be the subset of nodes of Gorresponding to edges in S∗. Sine |N∗| = k and opt(I) > k, N∗ is not avertex over in G. Thus, there exists at least one edge (vi

ℓ, v
j
r) ∈ E whihis not overed. This implies in G′ the existene of a path from xi (or x′

i)to xj , with i < j, passing through the gadget orresponding to the edge
(vi

ℓ,2, v
j
r,1). Hene,

• if i = 1 and j = 2 then opt(I ′) ≤ 3

• if i = 1 and j = 3 then opt(I ′) ≤ 3

• if i = 2 and j = 3 then opt(I ′) ≤ 3Therefore, opt(I ′) ≤ 3.We now prove the statement for p ≥ 2. We use the same onstrution as inTheorem 1 for p ≥ 2.Similarly as for k Most Vital Edges p-median, there exists at least oneoptimal solution of k Most Vital Edges p-enter ontaining only edgesamong the edges (vi
ℓ,1, v

i
ℓ,2), for i = 1, 2, 3 and ℓ = 1, . . . , |Vi|. Moreover, as inTheorem 1, x1 and xr

1, for r = 1, . . . , p − 1, will always be the optimal p-enternodes. Therefore, we an prove similarly as for p = 1, that:8



1. opt(I) ≤ k ⇒ opt(I ′) ≥ 42. opt(I) > k ⇒ opt(I ′) ≤ 3whih proves that k Most Vital Edges p-enter is NP -hard to approx-imate within a fator 4
3 − ǫ, for any ǫ > 0. 2Theorem 3 k Most Vital Nodes p-median is NP-hard to approximate withina fator 3

2 − ǫ, for any ǫ > 0 and p ≥ 1.Proof : We begin by proving the statement for p = 1. Let I be an instaneof Min Vertex Cover formed by a graph G = (V, E) with a tripartition
V = V1 ∪ V2 ∪ V3 and |V | = n. We onstrut an instane I ′ of k Most VitalNodes 1-median onsisting of a graph G′ = (V ′, E′) with k < n as follows(see Figure 3). G′ is a opy of G to whih we add omplete graphs Ki

n with nnodes x1
i , . . . , x

n
i for i = 1, 2, 3. We onnet eah node vi

ℓ ∈ Vi with eah node
xr

i , for i = 1, 2, 3, ℓ = 1, . . . , |Vi| and r = 1, . . . , n. We onnet also eah node
xr

i to eah node xr
i+1 for i = 1, 2 and r = 1, . . . , n. We assign a distane 2 toedges (xr

i , x
r
i+1) for i = 1, 2 and r = 1, . . . , n, a distane 1 to edges (xr

1, v
1
ℓ ) for

ℓ = 1, . . . , |V1| and r = 1, . . . , n and a distane 0 to all other edges in E′. Weset wxr
1

= 7 and wxr
2

= wxr
3

= 1 for r = 1, . . . , n, and wvi
ℓ

= 0 for i = 1, 2, 3,
ℓ = 1, . . . , |Vi|. We show in the following that:1. opt(I) ≤ k ⇒ opt(I ′) ≥ 6n2. opt(I) > k ⇒ opt(I ′) ≤ 4nwhih proves that k Most Vital Nodes 1-median is NP -hard to approx-imate within a fator 3

2 − ǫ, for any ǫ > 0.First observe that there exists at least one optimal solution of k MostVital Nodes 1-median ontaining only nodes of V . Indeed, if a solutionontains nodes from Ki
n for some i, it must ontain all nodes of Ki

n in order tohave a hane to inrease the solution value by disonneting these nodes fromthe graph. Therefore, sine k < n, it is at least as good to selet k nodes in Vonly.Observe also that G′ is designed so as to ensure that any node xr
1 for r =

1, . . . , n will always be an optimal 1-median node. Indeed, sine the weightof a vertex xr
1 is 7 and all edges inident to xr

1, exept the edges (xr
1, x

j
1) for

j = 1, . . . , n and j 6= r have distane at least 1, any other node would havea total weighted distane of at least 7, while any node xr
1 has always a totalweighted distane of at most 6. We onsider arbitrarily in the following that x1

1is the seleted optimal 1-median node.1. If there exists a vertex over V ′ ⊆ V of ardinality less than k in G thenonsider any set of verties V ′′ ⊃ V ′ of ardinality k, and remove V ′′from G′. Taking x1
1 as the optimal 1-median node in G′ − V ′′, we get atotal weighted distane ∑n

j=1(d(x1
1, x

j
2) + d(x1

1, x
j
3)) =

∑n

j=1(2 + 4) = 6n.Hene, opt(I ′) ≥ 6n. 9
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ℓ
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1, x
ℓ
3)). Sine |N∗| = kand opt(I) > k, N∗ is not a vertex over in G. Thus, there exists at leastone edge (vi, vj) ∈ E whih is not overed. This implies in G′ the existeneof a path from eah xr

i to eah xr
j for r = 1, . . . , n, passing through theedge (vi, vj). Hene,

• if i = 1 and j = 2 then opt(I ′) ≤
∑n

ℓ=1(1 + 3) = 4n

• if i = 1 and j = 3 then opt(I ′) ≤
∑n

ℓ=1(2 + 1) = 3n

• if i = 2 and j = 3 then opt(I ′) ≤
∑n

ℓ=1(2 + 2) = 4nConsequently, opt(I ′) ≤ 4n.We now prove the statement for p ≥ 2. We use the same onstrutionas above for p = 1, and we add p − 1 omplete graphs K1,h
n with n nodes

x1
1,h, . . . , xn

1,h for h = 1, . . . , p − 1. We onnet eah node v1
ℓ ∈ V1 with eahnode xr

1,h, for ℓ = 1, . . . , |V1|, h = 1, . . . , p−1 and r = 1, . . . , n. We onnet alsoeah node xr
1,h to eah node xr

2 for h = 1, . . . , p− 1 and r = 1, . . . , n. We assigna distane 2 to edges (xr
1,h, xr

2) for h = 1, . . . , p − 1 and r = 1, . . . , n, a distane1 to edges (xr
1,h, v1

ℓ ) for ℓ = 1, . . . , |V1|, h = 1, . . . , p − 1 and r = 1, . . . , n and a10



distane 0 to all edges in K1,h
n for h = 1, . . . , p− 1. Finally, we set wxr

1,h
= 7 for

h = 1, . . . , p − 1 and r = 1, . . . , n.As previously, there exists at least one optimal solution of k Most VitalNodes p-median ontaining only nodes of V . Furthermore, observe that G′ isdesigned so as to ensure that any node xr
1 for r = 1, . . . , n and any node xr

1,hfor r = 1, . . . , n and h = 1, . . . , p− 1 will always be an optimal p-median nodes.Indeed, sine the weight of these verties is 7 and all edges inident to them,exept the edges (xr
1, x

j
1) for j = 1, . . . , n and j 6= r, have a distane at least 1,any other subset of p nodes would have a total weighted distane of at least 7.Therefore, we an prove similarly as for p = 1, that:1. opt(I) ≤ k ⇒ opt(I ′) ≥ 6n2. opt(I) > k ⇒ opt(I ′) ≤ 4nwhih proves that k Most Vital Nodes p-median is NP -hard to approx-imate within a fator 3

2 − ǫ, for any ǫ > 0. 2Theorem 4 k Most Vital Nodes p-enter is NP-hard to approximatewithin a fator 3
2 − ǫ, for any ǫ > 0 and p ≥ 1.Proof : We �rst prove the statement for p = 1. We use the same onstrutionas in Theorem 3 for p = 1, but we modify the distane assoiated to the edges

(xr
2, x

r
3) for r = 1, . . . , n for whih we assign a distane 1. We show that:1. opt(I) ≤ k ⇒ opt(I ′) ≥ 32. opt(I) > k ⇒ opt(I ′) ≤ 2whih proves that k Most Vital Nodes 1-enter is NP -hard to approx-imate within a fator 4

3 − ǫ, for any ǫ > 0.As previously, we an show that only the nodes of V an be removed. Weobserve as above that any node xr
1 for r = 1, . . . , n will always be an optimal1-enter node. We onsider arbitrarily in the following that x1

1 is the seletedoptimal 1-enter node.1. If there exists a vertex over V ′ ⊆ V of ardinality less than k in G thenonsider any set of verties V ′′ ⊃ V ′ of ardinality k, and remove V ′′ from
G′. Taking x1

1 as the optimal 1-enter node in G′−V ′′, we get a maximumweighted distane of value max { max
j=1,...,n

d(x1
1, x

j
2), max

j=1,...,n
d(x1

1, x
j
3)} = 3.Hene, opt(I ′) ≥ 3.2. Let N∗ ⊆ V be any solution of k Most Vital Nodes 1-enter whihontains only nodes of V . Taking x1

1 as the optimal 1-enter node in
G′ −N∗, we get opt(I ′) = max { max

ℓ=1,...,n
d(x1

1, x
ℓ
2), max

ℓ=1,...,n
d(x1

1, x
ℓ
3)}. Sine11



|N∗| = k and opt(I)> k, N∗ is not a vertex over in G. Thus, there existsat least one edge (vi, vj) ∈ E whih is not overed. This implies in G′the existene of a path from eah xr
i to eah xr

j for r = 1, . . . , n, passingthrough the edge (vi, vj). Hene,
• if i = 1 and j = 2 then opt(I ′) = max{d(x1

1, x
1
2), d(x1

1, x
1
3)} ≤ 2

• if i = 1 and j = 3 then opt(I ′) = d(x1
1, x

1
2) ≤ 2

• if i = 2 and j = 3 then opt(I′) = max{d(x1
1, x

1
2), d(x1

1, x
1
3)} ≤ 2.Therefore, opt(I ′) ≤ 2.We now prove the statement for p ≥ 2. We use the same onstrution asin Theorem 3 for p ≥ 2, but we modify the distane assoiated to the edges

(xr
2, x

r
3) for r = 1, . . . , n for whih we assign a distane 1.Similarly as for k Most Vital Edges p-median, we an show that onlythe nodes of V an be removed. Moreover, as in Theorem 3, any node xr

1 for
r = 1, . . . , n and any node xr

1,h for r = 1, . . . , n and h = 1, . . . , p− 1, will alwaysbe the optimal p-enter nodes. Therefore, we an prove similarly as for p = 1,that:1. opt(I) ≤ k ⇒ opt(I ′) ≥ 32. opt(I) > k ⇒ opt(I ′) ≤ 2whih proves that k Most Vital Nodes 1-enter is NP -hard to approx-imate within a fator 4
3 − ǫ, for any ǫ > 0. 24 Inapproximability results for Min Edge (Node)Bloker p-median and p-enter problemsWe prove that the four problems Min Edge (Node) Bloker p-median andMin Edge (Node) Bloker p-enter are not 1.36 approximable, unlessP=NP. These results, stated in Theorems 5 to 8, are obtained by onstruting

E-redutions fromMin Vertex Cover shown NP -hard to approximate withina fator 1.36 [5℄.Theorem 5 Min Edge Bloker p-median is NP-hard to approximate withina fator 1.36, for any p ≥ 1.Proof : We �rst prove the statement for p = 1. Let I be an instane ofMin Vertex Cover onsisting of a graph G = (V, E) with V = {v1, . . . , vn}.We onstrut an instane I ′ of Min Edge Bloker 1-median formed by agraph G′ = (V ′, E′) and a positive integer U as follows (see Figure 4). Weassoiate for eah node vi ∈ V two nodes vi and v′i in V ′ and onnet them in12



E′ for i = 1, . . . , n. We add for eah edge (vi, vj) ∈ E, with i < j, an edge
(v′i, vj) to E′. We also add 2n nodes x1, x

′

1, x2, x
′

2, . . . , xn, x′

n onneted by thepath (x1, x
′

1), (x′

1, x2), (x2, x
′

2), (x′

2, x3), . . . , (x′

n−1, xn), (xn, x′

n). Finally, weonnet xi to vi and x′

i to v′i for i = 1, . . . , n. We assign the following distanesto the edges of E′: dviv
′

i
= 0, dxivi

= dx′

i
v′

i
= 1 and dxix

′

i
= 2 for i = 1, . . . , n,

dx′

i
xi+1

= 0 for i = 1, . . . , n−1 and dv′

i
vj

= 2(j− i)−1 for (vi, vj) ∈ E and i < j.We set wx1
= 2n2 + 1, wxi

= 1 for i = 2, . . . , n, wx′

i
= 1 and wvi

= wv′

i
= 0for i = 1, . . . , n and we onsider that U = 2n2. We replae eah edge of E′,exept the edges (vi, v

′

i) for i = 1, . . . , n, by the gadget given in Figure 2 whereeah edge is replaed by n + 1 instead of n disjoint paths of length 2 (for edges
(x1, v1) and (x1, x

′

1), x1 plays the role of i in Figure 2).

x′
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x4x′

3
x3x′

2
x2x′

1
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v′
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v′
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v′
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v′
1

v1v4

v3

v2

v1

1 1

1 1

1 1

1 1

2020202

1

5

31

0

0

0

0

2n2 + 1 1 1 1 1 1 1 1with wvℓ
= wv′

ℓ
= 0 for ℓ = 1, . . . , 4Figure 4: Constrution of G′ from G with n = 4 nodesObserve that G′ is designed so as to ensure that x1 will always be the optimal1-median node. Indeed, sine the weight of vertex x1 is 2n2 + 1 and all edgesinident to x1 have distane at least 1, any other node would have a totalweighted distane of at least 2n2 + 1. In the following, x1 has always a totaldistane of at most 2n2.We prove �rst that opt(I ′) ≤ opt(I). Let V ∗ ⊆ V be a minimum vertexover of G. Let us onsider S∗ = {(vi, v

′

i) : vi ∈ V ∗}. By removing the edgesin S∗ from G′, the optimal 1-median node is x1 with a total weighted distane
∑n

i=1 wxi
d(x1, xi)+

∑n

i=1 wx′

i
d(x1, x

′

i) = 2(
∑n−1

i=1 i+
∑n

i=1 i) = 2n2 = U . Hene,
opt(I ′) ≤ |S∗| = opt(I).When we remove all edges (vi, v

′

i), for i = 1, . . . , n from G′, the optimal 1-mediannode in the resulting graph is x1 with value U . Hene, opt(I ′) ≤ n. Let S ⊆ E′13



be an edge bloker for G′. If S ontains an edge (i, eℓ
ij) or (eℓ

ij , j) from a gadgetorresponding to an initial edge (i, j), it must ontain at least n + 1 edges fromthis gadget in order to suppress the ommuniation between i and j, otherwisethe value of an optimal solution for the 1-median problem in G′−S is the sameas in G′ − (S\{(i, eℓ
ij)}) or G′ − (S\{(eℓ

ij , j)}). Therefore, sine opt(I ′) ≤ n,we an onsider in the following that S ontains only edges among the edges
(vi, v

′

i), i ∈ {1, . . . , n}.Let us onsider N = {vi : (vi, v
′

i) ∈ S} where S is an edge bloker. We prove,by ontradition, that N is a vertex over in G. Suppose that there exists anedge (vi, vj) ∈ E suh that vi 6∈ N , vj 6∈ N and i < j. We show in the followingthat by removing S from G′, the value of an optimal solution for the 1-medianproblem in the remaining graph is stritly less than 2n2. Indeed, x1 is theoptimal 1-median node in G′ − S. Let D(x1) be the total weighted distaneassoiated to x1 in G′−S. We have D(x1) =
∑n

ℓ=1 d(x1, x
′

ℓ)+
∑n

ℓ=1 d(x1, xℓ) =
∑j−1

ℓ=1 d(x1, x
′

ℓ) + d(x1, x
′

j) +
∑n

ℓ=j+1 d(x1, x
′

ℓ)+∑n

ℓ=1 d(x1, xℓ). Then, D(x1) ≤

2
∑j−1

ℓ=1 ℓ + d(x1, x
′

j) + 2
∑n

ℓ=j+1 ℓ + 2
∑n−1

ℓ=1 ℓ = 2
∑n

ℓ=1 ℓ − 2j + d(x1, x
′

j) +

2
∑n−1

ℓ=1 ℓ = 2n2 − 2j + d(x1, x
′

j). The edge (vi, vj) being not overed, thisimplies the existene of a path from x1 to x′

j using a subpath from x1 to xi andjoining xi to x′

j by a subpath passing through the gadget assoiated to the edge
(vi, vj). We have d(x1, x

′

j) ≤ 2(i − 1) + 1 + 2(j − i) − 1 + 1 = 2j − 1. Thus, wehave D(x1) ≤ 2n2 − 1 < 2n2, ontraditing the assumption that S is an edgebloker. Therefore, N is a vertex over in G suh that val(I, N) = val(I ′, S).Consequently, ε(I, N) = val(I,N)
opt(I) − 1 ≤ val(I′,S)

opt(I′) − 1 = ε(I ′, S), whih ahievesthe proof for p = 1.We now prove the statement for p ≥ 2. We use the same onstrution asabove for p = 1, and we add p− 1 nodes x1
1, . . . , x

p−1
1 . We onnet xr

1 to x′

1 and
v1, for r = 1, . . . , p − 1. We assign a distane 1 to edges (xr

1, v1) and a distane2 to edges (xr
1, x

′

1), for r = 1, . . . , p − 1. We assign a weight 2n2 + 1 to eahnode xr
1, for r = 1, . . . , p − 1. Finally, we replae all edges (xr

1, x
′

1) and (xr
1, v1)for r = 1, . . . , p − 1, by the gadget given in Figure 2 where we take xr

1 as i, for
r = 1, . . . , p − 1. We set U = 2n2.Observe that G′ is designed so as to ensure that x1 and xr

1, for r = 1, . . . , p−1,will always be the optimal p-median nodes. Indeed, sine the weight of theseverties is 2n2 + 1 and all edges inident to them have distane at least 1,any other subset of p nodes would have a total weighted distane of at least
2n2 + 1. As previously, we an assume that only edges among edges (vi, v

′

i)an be removed. Therefore, similarly to p = 1, we prove that opt(I ′) ≤ opt(I)and that for an edge bloker S in G′ we onstrut in a polynomial time a vertexover N in G suh that val(I, N) = val(I ′, S). Consequently, ε(I, N) ≤ ε(I ′, S),whih ahieves the proof for p ≥ 2. 2Theorem 6 Min Edge Bloker p-enter is NP-hard to approximate withina fator 1.36, for any p ≥ 1. 14



Proof : We �rst prove the statement for p = 1. We use the same onstrutionas in Theorem 5 for p = 1 with U = 2n. As above in Theorem 5, G′ is designedso as to ensure that x1 will always be the optimal 1-enter node.We show �rst that opt(I ′) ≤ opt(I). Let V ∗ ⊆ V be a minimum vertex overin G. Let us onsider S∗ = {(vi, v
′

i) : vi ∈ V ∗}. By removing the edges of S∗from the graph G′, the optimal 1-enter node is x1 with a maximum weighteddistane d(x1, x
′

n) = 2n = U . Hene, opt(I ′) ≤ |S∗| = opt(I).Let S ⊆ E′ be an edge bloker. We an assume, similarly to the 1-medianproblem, that S ontains only edges among the edges (vi, v
′

i), i ∈ 1, . . . , n. Letus onsider N = {vi : (vi, v
′

i) ∈ S}. In the following, we show by ontraditionthat N is a vertex over in G. Suppose that there exists an edge (vi, vj) ∈ Esuh that vi 6∈ N , vj 6∈ N and i < j. Then x1 is the optimal 1-enter node in
G′ − S with a maximum weighted distane Dmax(x1) = d(x1, xn). The edge
(vi, vj) being not overed, this implies the existene of a path from x1 to x′

j usinga subpath from x1 to xi and joining xi to x′

j by a subpath passing through thegadget assoiated to the edge (vi, vj). Then Dmax(x1) ≤ 2(i−1)+1+2(j− i)−
1 + 1 + 2(n− j) = 2n− 1 < 2n, ontraditing the assumption that S is an edgebloker. Therefore N is a vertex over in G suh that val(I, N) = val(I ′, S).Consequently, ε(I, N) = val(I,N)

opt(I) − 1 ≤ val(I′,S)
opt(I′) − 1 = ε(I ′, S), whih ahievesthe proof for p = 1.We now prove the statement for p ≥ 2. We use the same onstrution as inTheorem 5 for p ≥ 2 with U = 2n.Similarly to Min Edge Bloker p-median, G′ is designed so as to ensurethat x1 and xr

1, for r = 1, . . . , p − 1, will always be the optimal p-enter nodes.Also, we an assume that only edges among edges (vi, v
′

i) an be removed.Therefore, as for Min Edge Bloker 1-enter, we prove that opt(I ′) ≤
opt(I) and that for an edge bloker S in G′ we onstrut in a polynomial time avertex over N in G suh that val(I, N) = val(I ′, S). Consequently, ε(I, N) ≤
ε(I ′, S), whih ahieves the proof for p ≥ 2. 2Theorem 7 Min Node Bloker p-median is NP-hard to approximate withina fator 1.36, for any p ≥ 1.Proof : We �rst prove the statement for p = 1. Let I be an instane of MinVertex Cover onsisting of a graph G = (V, E) with V = {v1, . . . , vn}. Weonstrut an instane I ′ of Min Node Bloker 1-median formed by a graph
G′ = (V ′, E′) and a positive integer U as follows (see Figure 5). G′ is a opy of
G to whih we add one node x1 and omplete graphs Ki

n+1 with n + 1 nodes
x1

i , . . . , x
n+1
i for i = 2, . . . , n. We onnet x1 to v1 and xr

2 for r = 1, . . . , n + 1,and eah node xr
i to vi for i = 2, . . . , n and r = 1, . . . , n + 1. We also onneteah node xr

i to eah node xr
i+1 for r = 1, . . . , n + 1 and i = 2, . . . , n − 1. Weassign a distane 1 to the edge (x1, v1), a distane 2 to the edges (x1, x

r
2) and

(xr
i , x

r
i+1) for i = 2, . . . , n− 1 and r = 1, . . . , n + 1, and a distane 0 to all other15



edges in E′. Let us set wx1
= n3, wxr

i
= 1 for i = 2, . . . , n and r = 1, . . . , n + 1and wvi

= 0 for i = 1, . . . , n. Finally, we set U = n(n2 − 1).
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Figure 5: Constrution of G′ from G with n = 4 nodesObserve that G′ is designed so as to ensure that x1 will always be the optimal1-median node. Indeed, sine the weight of vertex x1 is n3 and all edges inidentto x1 have distane at least 1, any other node would have a total weighteddistane of at least n3. In the following, x1 has always a total distane of atmost n(n2 − 1).We show �rst that opt(I ′) ≤ opt(I). Let V ∗ ⊆ V be a minimum vertex overin G. By removing V ∗ from G′, the optimal 1-median node is x1 with a totalweighted distane∑n

ℓ=2

∑n+1
r=1 d(x1, x

r
ℓ) = 2(n+1)

∑n−1
i=1 i = n(n−1)(n+1) = U .Hene, opt(I ′) ≤ |V ∗| = opt(I).Let N ⊆ V ′ be a node bloker. Aording to the onstrution of G′, in orderto obtain an optimal solution for the 1-median problem in the graph G′ −N ofa value at least U , N must be inluded in V . We show, by ontradition, that

N is a vertex over in G. Suppose that there exists an edge (vi, vj) ∈ E suhthat vi 6∈ N , vj 6∈ N and i < j. The optimal 1-median node in G′−N is x1 withvalue stritly less than n(n− 1)(n +1). Indeed, let D(x1) be the total weighteddistane assoiated to x1 in G′ − N . Hene, D(x1) =
∑n

ℓ=2

∑n+1
r=1 d(x1, x

r
ℓ) =

∑j−1
ℓ=2

∑n+1
r=1 d(x1, x

r
ℓ) +

∑n+1
r=1 d(x1, x

r
j) +

∑n+1
r=1

∑n
ℓ=j+1 d(x1, x

r
ℓ)). We distin-guish two ases:

• If vi = v1 then d(x1, x
r
j) = dx1v1

+ dv1vj
+ dvjxr

j
= 1 for r = 1, . . . , n + 1.Hene, we obtain D(x1) ≤ 2(n + 1)

∑j−2
ℓ=1 ℓ + (n + 1) + 2(n + 1)

∑n−1
ℓ=j ℓ <

2(n + 1)
∑j−2

ℓ=1 ℓ + 2(j − 1)(n + 1) + 2(n + 1)
∑n−1

ℓ=j ℓ = n(n − 1)(n + 1),ontradition. 16



• If vi 6= v1 then d(x1, x
r
j) = d(x1, x

1
i ) + dx1

i
vi

+ dvivj
+ dvjxr

j
= d(x1, x

1
i ) for

r = 1, . . . , n+1. Hene, we obtain D(x1) ≤ 2(n+1)
∑j−2

ℓ=1 ℓ+2(i−1)(n+

1)+2(n+1)
∑n−1

ℓ=j ℓ < 2(n+1)
∑j−2

ℓ=1 ℓ+2(j−1)(n+1)+2(n+1)
∑n−1

ℓ=j ℓ =
n(n − 1)(n + 1), ontradition.Therefore N is a vertex over in G suh that val(I, N) = val(I ′, N). Conse-quently, ε(I, N) = val(I,N)

opt(I) − 1 ≤ val(I′,N)
opt(I′) − 1 = ε(I ′, N), whih ahieves theproof for p = 1.We now prove the statement for p ≥ 2. We use the same onstrution asabove for p = 1, and we add p− 1 nodes x1

1, . . . , x
p−1
1 . We onnet xh

1 to v1 and
xr

2, for r = 1, . . . , n + 1 and h = 1, . . . , p − 1. We assign a distane 1 to edges
(xh

1 , v1) for h = 1, . . . , p−1, and a distane 2 to edges (xh
1 , xr

2) for r = 1, . . . , n+1and h = 1, . . . , p−1. We assign a weight n3 to eah node xh
1 , for h = 1, . . . , p−1.We set U = n(n2 − 1).Observe that G′ is designed so as to ensure that x1 and xh

1 , for h = 1, . . . , p−
1, will always be the optimal p-median nodes. Indeed, sine the weight of theseverties is n3 and all edges inident to them have distane at least 1, any othersubset of p nodes would have a total weighted distane of at least n3. Aspreviously, aording to the onstrution of G′, in order to obtain an optimalsolution for the p-median problem in resulting graph of a value at least U , wean only remove nodes from V . Therefore, similarly to p = 1, we prove that
opt(I ′) ≤ opt(I) and that for a node bloker N in G′, N is a vertex over in
G suh that val(I, N) = val(I ′, N). Consequently, ε(I, N) ≤ ε(I ′, N), whihahieves the proof for p ≥ 2. 2Theorem 8 Min Node Bloker p-enter is NP-hard to approximate withina fator 1.36, for any p ≥ 1.Proof : We �rst prove the statement for p = 1. We use the same onstrutionas in Theorem 7 for p = 1 with U = 2(n − 1). Here again, we observe that G′is designed so as to ensure that x1 will always be the optimal 1-enter node.We show �rst that opt(I ′) ≤ opt(I). Let V ∗ ⊆ V be a minimum vertexover in G. By deleting the nodes of V ∗ from G′, the optimal 1-enter nodein the remaining graph is x1 with a maximum weighted distane d(x1, x

r
n) =

2(n − 1) = U for any r = 1, . . . , n + 1. Hene, opt(I ′) ≤ |V ∗| = opt(I).When we remove all nodes vi, i = 1, . . . , n from G′, the optimal 1-enternode in the resulting graph is x1 with value U . Hene, opt(I ′) ≤ n. Let N ⊆ V ′be a node bloker. Aording to the onstrution of G′, in order to obtain anoptimal 1-enter node in G′ − N of value at least U , N annot ontain x1. If
N ontains nodes xℓ

i for a given i and ℓ, then N must ontains all the n + 1nodes xr
i for r = 1, . . . , n + 1, otherwise the value of an optimal solution for the1-enter problem in G′ − N is the same as in G′ − (N\{xℓ

i}). Therefore, sine
opt(I ′) ≤ n, we an onsider in the following that N is inluded in V . In the17



following, we prove by ontradition that N forms a vertex over in G. Supposethat there exists an edge (vi, vj) ∈ E suh that vi 6∈ N , vj 6∈ N and i < j. Byremoving N from G′, the optimal 1-enter node is x1 with a maximum weighteddistane Dmax(x1) = d(x1, x
r
n) for any r = 1, . . . , n. We distinguish two ases:

• if vi = v1 then Dmax(x1) = dx1v1
+ dv1vj

+ dvjx1
j
+ d(x1

j , x
r
n) ≤ 1 + 0 + 0 +

2(n − j) ≤ 1 + 2n − 4 < 2(n − 1), ontradition.
• if vi 6= v1 then Dmax(x1) ≤ d(x1, x

1
i ) + dx1

i
vi

+ dvivj
+ dvjx1

j
+ d(x1

j , x
r
n) ≤

2(i−1)+0+0+0+2(n−j) = 2(n−1)−2(j− i) < 2(n−1), ontradition.Therefore N is a vertex over in G suh that val(I, N) = val(I ′, N). Conse-quently, ε(I, N) = val(I,N)
opt(I) − 1 ≤ val(I′,N)

opt(I′) − 1 = ε(I ′, N), whih ahieves theproof for p = 1.We now prove the statement for p ≥ 2. We use the same onstrution asabove in Theorem 7 for p ≥ 2 with U = 2(n − 1).Similarly to Min Node Bloker p-median, G′ is designed so as to ensurethat x1 and xh
1 , for h = 1, . . . , p− 1, will always be the optimal p-enter nodes.Also, when we remove all nodes vi, i = 1, . . . , n from G′, the optimal p-enternodes in the resulting graph is x1 and xh

1 , for h = 1, . . . , p − 1, with value
U . Hene, opt(I ′) ≤ n. Let N ⊆ V ′ be a node bloker. Aording to theonstrution of G′, in order to obtain an optimal p-enter nodes in G′ − Nof value at least U , N annot ontain x1 and xh

1 , for h = 1, . . . , p − 1. If Nontains nodes xℓ
i for a given i and ℓ, then N must ontains all the n + 1 nodes

xr
i for r = 1, . . . , n + 1, otherwise the value of an optimal solution for the p-enter problem in G′ − N is the same as in G′ − (N\{xℓ

i}). Therefore, sine
opt(I ′) ≤ n, we an onsider in the following that N is inluded in V . Therefore,as forMin Node Bloker 1-enter, we prove that opt(I ′) ≤ opt(I) and that
val(I, N) = val(I ′, N). Consequently, ε(I, N) ≤ ε(I ′, N), whih ahieves theproof for p ≥ 2. 25 ConlusionsWe established in this paper negative results onerning the approximation of kmost vital edges (nodes) and min edge (node) bloker versions of the p-medianand p-enter loation problems. An interesting open question would be to estab-lish positive results onerning the approximability of these problems. Anotherinteresting perspetive is to �nd e�ient exat algorithms to solve them.Referenes[1℄ S. Arora and C. Lund. Hardness of approximations. In Approximation al-gorithms for NP-hard problems, pages 399�446. PWS Publishing Company,1996. 18
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