
Critial edges/nodes for the minimum spanning treeproblem: omplexity and approximationCristina Bazgan1,2 Sonia Toubaline1 Daniel Vanderpooten11. Université Paris-Dauphine, LAMSADEPlae du Maréhal de Lattre de Tassigny, 75775 Paris Cedex 16, Frane2. Institut Universitaire de Frane{bazgan,toubaline,vdp}�lamsade.dauphine.frAbstratIn this paper, we study the omplexity and the approximation of the k most vital edges(nodes) and min edge (node) bloker versions for the minimum spanning tree problem(MST). We show that the k most vital edges MST problem is NP -hard even for ompletegraphs with weights 0 or 1 and 3-approximable for graphs with weights 0 or 1. We alsoprove that the k most vital nodes MST problem is not approximable within a fator n1−ǫ,for any ǫ > 0, unless NP=ZPP, even for omplete graphs of order n with weights 0 or1. Furthermore, we show that the min edge bloker MST problem is NP -hard even foromplete graphs with weights 0 or 1 and that the min node bloker MST problem isNP -hard to approximate within a fator 1.36 even for graphs with weights 0 or 1.Keywords: most vital edges/nodes, min edge/node bloker, minimum spanning tree, om-plexity, approximation.1 IntrodutionFor problems of seurity or reliability, it is important to assess the apaity of a systemto resist to a destrution or a failure of a number of its entities. This amounts to identifyingritial entities whih an be determined with respet to a measure of performane or a ostassoiated to the system. Modeling the network as a weighted onneted graph where entitiesare edges or nodes and osts are weights assoiated to edges, one way of identifying ritialentities is to determine a subset of edges or nodes whose removal from the graph auses thelargest ost inrease. Another way is to �nd a subset of edges or nodes of minimum ardinalitywhose removal involves that the optimal ost in the residual network is larger than a giventhreshold. In the literature these problems are referred to respetively as the k most vitaledges/nodes problem and min edge/node bloker problem. In this paper the k most vitaledges/nodes and min edge/node bloker versions for the minimum spanning tree problem areinvestigated.The problem of �nding the k most vital edges of a graph has been studied for variousproblems inluding shortest path [2, 10, 14℄, maximum �ow [18, 15, 19℄, 1-median and 1-enter [4℄. For the minimum spanning tree problem, Frederikson et al. [6℄ showed that kMost Vital Edges MST is NP-hard and proposed an O(log k)-approximation algorithm.For a �xed k, the problem is obviously polynomial. The ase k = 1 has been largely studied in1



the literature [8, 9, 17℄. Several exat algorithms based on an expliit enumeration of possiblesolutions have been proposed [12, 13, 16, 3℄.After introduing some preliminaries in Setion 2, we show in Setion 3 that k Most VitalEdges MST is NP-hard even for omplete graphs with weights 0 or 1 and 3-approximablefor graphs with weights 0 or 1. We also prove, in Setion 4, that k Most Vital Nodes MSTis not approximable within a fator n1−ǫ, for any ǫ > 0, unless NP= ZPP, even for ompletegraphs of order n with weights 0 or 1. In Setion 5, we establish that Min Edge BlokerMST is NP-hard even for omplete graphs with weights 0 or 1. In Setion 6, we show thatMin Node Bloker MST is NP -hard to approximate within a fator 1.36 even for graphswith weights 0 or 1. Final remarks are provided in Setion 7.2 Basi onepts and preliminary resultsLet G = (V,E) be a weighted undireted onneted graph where |V | = n, |E| = m and
w(e) ≥ 0 is the integer weight of eah edge e ∈ E. Denote by G−R the graph obtained from
G by removing the subset R of edges or nodes.We onsider in this paper the k most vital edges (nodes) and min edge (node) blokerversions of the minimum spanning tree problem. These problems are de�ned as follows:
k Most Vital Edges (resp. Node) MSTInput: A onneted weighted graph G = (V,E) where eah edge e ∈ E has an integer weight
we ≥ 0 and a positive integer k.Output: A subset S∗ ⊆ E (resp. S∗ ⊆ V ) , with |S∗| = k, suh that the weight of a minimumspanning tree in G − S∗ is maximum.For an instane of k Most Vital Edges MST de�ned on a graph G, we onsider that
k ≤ λ(G) − 1 where λ(G) is the edge-onnetivity of G. Otherwise, any seletion of k edgesinluding the edges of a minimum ardinality ut would lead to a solution with in�nite valuesine we disonnet G.For an instane of k Most Vital Nodes MST de�ned on a graph G, we onsider that
k ≤ κ(G) − 1, where κ(G) is the node-onnetivity of G. Otherwise, any seletion of k nodesinluding the nodes of a minimum node separator would lead to a solution with in�nite valuesine we disonnet G.Min Edge (resp. Node) Bloker MSTInput: A onneted weighted graph G = (V,E) where eah edge e ∈ E has an integer weight
we ≥ 0 and a positive integer U .Output: A subset S∗ ⊆ E (resp. S∗ ⊆ V ) of minimum ardinality suh that the weight of aminimum spanning tree in G − S∗ is greater than or equal to U .An optimal solution S∗ of an instane ofMin Edge (resp. Node) Bloker MST de�nedon a graph G is suh that |S∗| ≤ λ(G) (resp. |S∗| ≤ κ(G)) sine, at worst, it is neessary todisonnet G so as to exeed the threshold U .Given an optimization problem in NPO and an instane I of this problem, we use |I| todenote the size of I, opt(I) to denote the optimum value of I, and val(I, S) to denote the valueof a feasible solution S of instane I. The performane ratio of S (or approximation fator) is
r(I, S) = max

{

val(I,S)
opt(I) ,

opt(I)
val(I,S)

}

. The error of S, ε(I, S), is de�ned by ε(I, S) = r(I, S) − 1.2



For a funtion f , an algorithm is an f(|I|)-approximation, if for every instane I of theproblem, it returns a solution S suh that r(I, S) ≤ f(|I|).The notion of a gap-redution was introdued in [1℄ by Arora and Lund. A maximizationproblem Π is alled gap-reduible to a maximization problem Π′ with parameters (c, ρ) and
(c′, ρ′), ρ, ρ′ ≥ 1, if there exists a polynomial time omputable funtion f whih maps anyinstane I of Π to an instane I ′ of Π′, while satisfying the following properties.

• If opt(I) ≥ c then opt(I ′) ≥ c′

• If opt(I) < c
ρ
then opt(I ′) < c′

ρ′The interest of a gap-redution is that if Π is not approximable within a fator ρ then Π′is not approximable within a fator ρ′.The notion of an E-redution (error-preserving redution) was introdued by Khanna etal. [11℄. A problem Π is alled E-reduible to a problem Π′, if there exist polynomial timeomputable funtions f , g and a onstant β suh that
• f maps an instane I of Π to an instane I ′ of Π′ suh that opt(I) and opt(I ′) are relatedby a polynomial fator, i.e. there exists a polynomial p suh that opt(I ′) ≤ p(|I|)opt(I),
• g maps any solution S′ of I ′ to one solution S of I suh that ε(I, S) ≤ βε(I ′, S′).An important property of an E-redution is that it an be applied uniformly to all levelsof approximability; that is, if Π is E-reduible to Π′ and Π′ belongs to C then Π belongs to Cas well, where C is a lass of optimization problems with any kind of approximation guarantee(see also [11℄).A problem Π is alled E-equivalent to a problem Π′ if Π is E-reduible to Π′ and Π′ is

E-reduible to Π.3 k Most Vital Edges MSTFrederikson and Solis-Oba [6℄ show that k Most Vital Edges MST is NP-hard evenfor graphs with weights 0 or 1 and that the problem is O(log k)-approximable for graphs witharbitrary weights. In this setion, we strengthen the NP-hardness result of Frederikson andSolis-Oba by speifying a more restrited lass of instanes for whih the problem remainsNP -hard. Moreover, we establish a onstant approximation result for graphs with weights 0or 1.First we show that we an deide in polynomial time if the optimum value is a �xedonstant.Proposition 1 For any �xed value c ≥ 0, it an be heked in polynomial time if the optimumvalue of k Most Vital Edges MST on graphs with weights 0 or 1 on edges is c.Proof : Consider an instane I of k Most Vital Edges MST formed by a weighted graph
G = (V,E), with weights 0 or 1, and by a positive integer k. Denote by G0 = (V,E0) thesubgraph indued by the edges of weight 0. Let E1 = E \ E0 and m1 = |E1|.3



We have that opt(I) = 0 if and only if G0 is (k + 1) edge-onneted. Indeed, if opt(I) = 0then G0 must be (k + 1) edge-onneted otherwise opt(I) > 0. Conversely, if G0 is (k + 1)edge-onneted, then removing any subset of k edges from G0 indues a minimum spanningtree of weight 0. Consequently, it is polynomial to verify if opt(I) = 0 sine it is polynomial todetermine the edge-onnetivity of a given graph. One we heked iteratively that opt(I) 6= ℓ,for 0 ≤ ℓ ≤ c− 1, we onsider all the (

m1

c

) graphs G0 ∪R, for any subset R ⊆ E1 with |R| = c.We an deide in polynomial time if opt(I) = c by verifying if G0∪R is (k+1) edge-onneted.
2We show in the following that k Most Vital Edges MST is E-equivalent to MaxComponent de�ned as follows.Max ComponentInput: a onneted graph and a positive integer k.Output: a subset of k edges to be removed suh that the number of onneted omponentsin the obtained graph is maximum.Theorem 1 k Most Vital Edges MST for graphs with weights 0 or 1 is E-equivalent toMax Component.Proof : We �rst show that Max omponent is E -reduible to k Most Vital EdgesMST. Given an instane I ofMax omponent formed by a graph G = (V,E) with n nodes,we onstrut an instane I ′ of k Most Vital Edges MST onsisting of a omplete graph

G′ = (V,E′) where eah edge (i, j) ∈ E′ is assigned a weight 0 if (i, j) ∈ E and 1 otherwise.Let S∗ ⊆ E be a subset of k edges whose deletion from G generates a maximum numberof onneted omponents. By removing S∗ from G′, all the onneted omponents of G − S∗are linked in G′ − S∗ by edges of weight 1. Thus, the weight of a minimum spanning tree in
G′ − S∗ is equal to the number of onneted omponents in G − S∗ minus 1. Therefore, wehave opt(I ′) ≥ opt(I) − 1.Let S′ ⊆ E′ be a subset of k edges whose deletion from G′ generates a minimum spanningtree in G′ − S′ of weight v. If S′ ontains edges of weight 1 then by replaing these edges byedges of weight 0, either the weight of a minimum spanning tree in the modi�ed graph remainsunhanged or it inreases. Thus, onsidering S de�ned from S′ by replaing edges of weight1 with edges from E′ \ S′ of weight 0, se de�ne a subset S ⊆ E suh that G − S ontains atleast v + 1 onneted omponents. Hene, val(I, S) ≥ val(I ′, S′) + 1. In partiular, when S isan optimum solution, we have opt(I ′) + 1 ≤ val(I, S) ≤ opt(I). It follows from the previousresult that opt(I) = opt(I ′) + 1.Therefore, we have opt(I ′) ≤ opt(I) and ε(I, S) = opt(I)

val(I,S)−1 ≤ opt(I′)+1
val(I′,S′)+1−1 = opt(I′)−val(I′,S′)

val(I′,S′)+1

≤ opt(I′)−val(I′,S′)
val(I′,S′) = ε(I ′, S′).We show now that k Most Vital Edges MST is E -reduible to Max omponent.Consider an instane I of k Most Vital Edges MST formed by a graph G = (V,E) withedges of weight 0 or 1. From Proposition 1, we an onsider that opt(I) > 0. We onstrutan instane I ′ of Max omponent onsisting of the graph G′ = (V,E′) obtained from G byonsidering only edges of weight 0.Let S∗ be a subset of k edges whose removal from G generates a minimum spanning tree

T in G − S∗ of maximum weight. The weight of T being equal to the number of edges of T4



of weight 1, by deleting edges of S∗ ∩ E′ plus any k − |S∗ ∩E′| edges from E′, the number ofonneted omponents in G′ − S∗ is at least equal to the weight of T plus 1. Thus, we have
opt(I ′) ≥ opt(I) + 1.Consider a subset S′ of k edges whose deletion from G′ partitions G′ into val(I ′, S′)onneted omponents. If val(I ′, S′) = 1 then we an replae S′ by another solution withvalue at least 2 obtained by seleting k edges inluding a minimum ut sine from Proposition1, G′ is not (k + 1) edge-onneted. Thus, we an assume that val(I ′, S′) ≥ 2. By removing
S′ from G, all onneted omponents of G′ − S′ are linked in G − S′ by edges of weight 1.Thus, the weight of a minimum spanning tree in G − S′ is equal to val(I ′, S′) − 1. Then,
val(I, S′) ≥ val(I ′, S′) − 1. In partiular, when S′ is an optimum solution in G′, we have
val(I, S′) = opt(I ′)− 1 and thus opt(I) ≥ opt(I ′)− 1. It follows from the previous result that
opt(I ′) = opt(I) + 1.Therefore, sine opt(I) > 0, we have opt(I ′) ≤ 2opt(I) and ε(I, S′) = opt(I)

val(I,S′) − 1 ≤
opt(I′)−1

val(I′,S′)−1 − 1 = opt(I′)−val(I′,S′)
val(I′,S′)−1 = val(I′,S′)

val(I′,S′)−1
opt(I′)−val(I′,S′)

val(I′,S′) ≤ 2 opt(I′)−val(I′,S′)
val(I′,S′) = 2ε(I ′, S′).

2From Theorem 1, we obtain the two following results. First, we slightly strengthen theNP -hardness result of Frederikson and Solis-Oba [6℄ by speifying a more restrited lass ofinstanes for whih the problem remains NP-hard.Corollary 1 k Most Vital Edges MST is NP-hard even for omplete graphs with weights0 or 1.Proof : The E -redution fromMax Component to k Most Vital Edges MST onstrutsfrom any graph G a omplete graph G′ with weights 0 or 1. Sine Max Component is NP-hard [6℄, the results follows. 2Seond, we establish a onstant approximation result for graphs with weights 0 or 1.Corollary 2 k Most Vital Edges MST is 3-approximable for graphs with weights 0 or 1.Proof : In the E -redution from k Most Vital Edges MST to Max omponent, wehave shown that any solution S of I ′ is suh that ε(I, S) ≤ 2ε(I ′, S). Thus, r(I, S) − 1 ≤
2(r(I ′, S) − 1) and then r(I, S) ≤ 2r(I ′, S) − 1. Sine r(I ′, S) = 2 as established in [6℄, wehave r(I, S) ≤ 3. 24 k Most Vital Nodes MSTWe study in this setion the omplexity of k Most Vital Nodes MST. First we showthat k Most Vital Nodes MST is at least as hard as k Most Vital Edges MST byestablishing an E -redution from the edge version to the node version. As far as we know,this is the �rst result in the literature that establishes a diret relationship between the k mostvital edge version and the k most vital node version of a problem. Using the NP-hardness ofthe edge version even for graphs with weights 0 or 1 [6℄, this redution implies the NP-hardnessof k Most Vital Nodes MST on the same lass of graphs. We strengthen this result byproving that k Most Vital Nodes MST is not approximable within a fator n1−ǫ, for any
ǫ > 0, if NP 6= ZPP, even for omplete graphs with weights 0 or 1.5



Theorem 2 k Most Vital Edges MST is E-reduible to k Most Vital Nodes MST.Proof : Consider an instane I of k Most Vital Edges MST formed by a weightedgraph G = (V,E) with V = {v1, . . . , vn} and |E| = m. We onstrut an instane I ′ of kMost Vital Nodes MST formed by a graph G′ = (V ′, E′) as follows (see Figure 1). Weonsider in G′ the nodes of V and m nodes r1, . . . , rm. Let R = {r1, . . . , rm}. To eah edge
eℓ = (vi, vj) ∈ E of weight wij , ℓ = 1, . . . ,m and i < j, we assoiate two edges in E′ : (vi, rℓ)of weight wij and (rℓ, vj) of weight 0. Let K

vi

k , for i = 1, . . . , n, be n omplete graphs ofsize k with Xvi
= {v1

i , . . . , v
k
i } and weights 0 on their edges. We onnet eah node vi, for

i = 1, . . . , n, to the k nodes of Kvi

k and assign a weight 0 to these added edges. We also add,for eah edge (vi, rℓ) ∈ E′ the edges (vh
i , rℓ), for h = 1, . . . , k, with the same weight as theweight of the edge (vi, rℓ).
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Figure 1: Constrution of an instane of k Most Vital Nodes MST from an instane of k MostVital Edges MSTSuppose �rst that there exists a subset S∗ ⊆ E, with |S∗| = k, suh that a minimumspanning tree T in G − S∗ has a maximum weight. We set N∗ = {rℓ : eℓ ∈ S∗}. By deleting
N∗ from G′, we onstrut a spanning tree T ′ in G′ − N∗ as follows : we take for eah edge
eℓ = (vi, vj) ∈ T with i < j, the edges (vi, rℓ) and (rℓ, vj) in T ′, for eah edge eh = (vi, vj) 6∈ Twith i < j, the edge (rh, vj) in T ′, and we add the paths vi, v

1
i , . . . , v

k
i , i = 1, . . . , n. We prove,by ontradition, that T ′ is a minimum spanning tree in G′−N∗. Suppose that there exists aspanning tree T ′′ in G′ −N∗ of weight stritly inferior to that of T ′. Then, the spanning treeonstituted by the edges eℓ = (vi, vj) suh that (vi, rℓ) ∈ T ′′ has a smaller weight than T in

G − S∗, ontraditing the optimality of T . Thus, T ′ is a minimum spanning tree in G′ − N∗.Therefore, we have opt(I ′) ≥ opt(I).Consider now a subset N , with |N | = k, and a minimum spanning tree T ′ in G′ − N . If
N ontains vi or one node vh

i , for a given i and h, then the weight of a MST in G′ −N is thesame as in G′ − (N \ {vi}) or G′ − (N \ {vh
i }). When removing all nodes vi, v

h
i from N we6



obtain a subset N ′ ⊆ R, |N ′| ≤ k. Sine N ′ orresponds to edges in G, any subset N ′′ ⊆ Rontaining N ′ suh that |N ′′| = k is suh that the weight of a MST in G′ − N ′′ is at least aslarge as the weight of a MST in G′ − N ′. Let S = {eℓ : rℓ ∈ N ′′}. Consider T the spanningtree in G − S onstituted by the edges eℓ = (vi, vj) suh that the edge (vi, rℓ) ∈ T ′. T isoptimal, sine otherwise, the existene of a spanning tree T ′′ of weight stritly inferior to thatof T would imply that the orresponding spanning tree onstruted from T ′′ in G′ − N ′′, asexplained above, has a weight stritly inferior to that of T ′. Thus, T is a minimum spanningtree in G − S of the same weight as T ′. Hene, val(I, S) = val(I ′, N ′′). In partiular, when
N ′′ is an optimal solution in G′, we have opt(I ′) = val(I, S) ≤ opt(I). It follows from theprevious result that opt(I) = opt(I ′). Therefore, we have ε(I, S) = ε(I ′, N ′′). 2Theorem 3 k Most Vital Nodes MST is not approximable within a fator n1−ǫ, for any
ǫ > 0, unless NP= ZPP, even for omplete graphs of order n with weights 0 or 1.Proof : We propose a gap-redution fromMax independent set to k Most Vital NodesMST.Denote by α(G) the ardinality of maximum independent set of G. Let g be the nonapproximation gap of Max independent set. Thus, for a given integer ℓ, it is NP-hard todeide if α(G) = ℓ or α(G) < ℓ

g
.Given an instane I of Max independent set formed by a graph G = (V,E), weonstrut an instane I ′ of k Most Vital Nodes MST onstituted by a omplete graph

G′ = (V,E′) where eah edge (i, j) ∈ E′ is assigned a weight 0 if (i, j) ∈ E and 1 otherwise(see Figure 2). We set k = n − ℓ. We show that:1. α(G) = ℓ ⇒ opt(I ′) ≥ ℓ − 12. α(G) < ℓ
g
⇒ opt(I ′) < ℓ−1

g

45 3215 43
21 1 1 01 0

1 10 00
Figure 2: Constrution of an instane of k Most Vital Nodes MST from an instane of MaxIndependent Set1. Suppose �rst that there exists an independent set V ∗ in G of ardinality ℓ and let

N∗ = V \V ∗. By removing N∗ from G′, all nodes of G′ − N∗ are onneted by edgesof weight 1 only. Thus, we obtain a minimum spanning tree in G′ − N∗ of value ℓ − 1.Therefore, opt(I ′) ≥ ℓ − 1.2. Suppose now that α(G) < ℓ
g
. Hene, there exists a maximum independent set V ∗ suhthat |V ∗| < ℓ

g
. If the node set N∗ of ardinality n − ℓ to be removed from G′ is suhthat N∗ ∩ V ∗ = ∅ then let V1 = V \(N∗ ∪ V ∗). Eah node of V1 is at least onnetedto one node of V ∗ by an edge of weight 0, otherwise V ∗ ∪ {v} would be an independent7



set in G of larger ardinality. Thus, the weight of a minimum spanning tree in G′ − N∗annot exeed ℓ
g
− 1. Sine g > 1, we have ℓ

g
− 1 < ℓ−1

g
. Therefore if α(G) < ℓ

g
then

opt(I ′) < ℓ−1
g
. If N∗ ∩ V ∗ 6= ∅ then a minimum spanning tree in G′ − N∗ would have aweight stritly inferior to ℓ

g
− 1.Sine Max independent set is not approximable within a fator n1−ǫ, for any ǫ >

0, unless NP= ZPP [7℄, we dedue that k Most Vital Nodes MST is also not n1−ǫ-approximable, for any ǫ > 0, unless NP= ZPP. 2From Theorem 3 and Corollary 2, we an give the following result.Corollary 3 There is no E-redution from k Most Vital Nodes MST for graphs withweights 0 or 1 to k Most Vital Edges MST for graphs with weights 0 or 1.5 Min Edge Bloker MSTWe present in the following a relationship between k Most Vital Edges MST and MinEdge Bloker MST.Proposition 2 k Most Vital Edges MST andMin Edge Bloker MST are polynomial-time equivalent.Proof : If an algorithm Ak solves k Most Vital Edges MST de�ned on graph G for all
1 ≤ k ≤ λ(G) − 1, then we an run Ak for k = 1, . . . , λ(G) − 1 and hoose the smallest kyielding optimum at least U . If no k exists then the optimum forMin Edge Bloker MSTis λ(G). Conversely, if an algorithm BU solves Min Edge Bloker MST with any bound
U , we an apply binary searh to loate the largest U that requires the removal of at most knodes. 2Theorem 4 Min Edge Bloker MST is NP-hard even for omplete graphs with weights0 or 1.Proof : Follows from Proposition 2 and Corollary 1. 26 Min Node Bloker MSTThe equivalent of Proposition 2 applied to nodes also holds (with a similar proof).Proposition 3 k Most Vital Nodes MST andMin Node Bloker MST are polynomial-time equivalent.Theorem 5 Min Node Bloker MST is NP-hard even for omplete graphs with weights0 or 1.Proof : Follows from Proposition 3 and Theorem 3. 2This result ould also be established by the following gap-redution from Min EdgeBloker MST. 8



Theorem 6 Min Edge Bloker MST is gap-reduible to Min Node Bloker MST.Proof : Consider an instane I forMin Edge Bloker MST formed by a graph G = (V,E),with |V | = n and |E| = m, and a positive integer U . We onstrut an instane I ′ for MinNode Bloker MST, onstituted by a graph G′ = (V ′, E′) and a positive integer U , usingthe same onstrution as in Theorem 2, but we modify the size of the n omplete graphs whihwe set to be m + 1. We show that1. opt(I) ≤ c ⇒ opt(I ′) ≤ c2. opt(I) > cρ ⇒ opt(I ′) > cρ1. Let S∗ ⊆ E be a subset of minimum ardinality suh that a minimum spanning tree
T in G − S∗ has a weight at least U . We set N∗ = {rℓ : eℓ ∈ S∗}. By deleting N∗from G′, we onstrut a minimum spanning tree T ′ in G′ − N∗ of the same weight asthat of T as explained in Theorem 2. Thus, the weight of T ′ is at least U . Therefore,
opt(I ′) ≤ opt(I) ≤ c.2. Suppose now that opt(I) > cρ. When we remove all nodes of R from G′, the weight ofa minimum spanning tree is in�nite. Hene, opt(I ′) ≤ m. Let N ⊆ V ′ be an optimalsolution whose deletion generates a minimum spanning tree T ′ in G′ − N of weight atleast U . If N ontains vi or one node vh

i , for a given i and h, then N must ontain all the
m + 1 nodes vi and Xvi

, sine otherwise the weight of a minimum spanning in G′−N isthe same as in G′ − (N \ {vi}) or G′ − (N \ {vh
i }). Therefore, sine opt(I ′) ≤ m, we anonsider that N ⊆ R. Let S = {eℓ : rℓ ∈ N}. We onstrut a minimum spanning tree Tin G− S as explained in Theorem 2. The weight of T being equal to the weight of T ′ isat least U . Hene, opt(I) ≤ val(I, S) = val(I ′, N) = opt(I ′) and thus opt(I ′) > cρ.

2In the absene of known inapproximability results forMin Edge Bloker MST, we anonly exploit the above gap-redution to establish the NP-hardness of Min Node BlokerMST. Nevertheless, we an obtain the following stronger result.Theorem 7 Min Node Bloker MST is NP-hard to approximate within a fator 1.36 evenfor graphs with weights 0 or 1.Proof : We propose a gap-redution from Min Vertex Cover. Consider an instane I ofMin Vertex Cover formed by a graph G = (V,E) with V = {v1, . . . , vn}. We onstrutfrom I, an instane I ′ of Min Node Bloker MST onstituted by a graph G′ = (V ′, E′)and a positive integer U as follows (see Figure 3). G′ is a opy of G to whih we add a path
x1, x2, . . . , xn with X = {x1, . . . , xn} and we onnet eah node xi to the nodes x1

i , . . . , x
n
i ofa omplete graph Ki

n of size n. We also onnet eah node xr
i to node xi+1 and eah node

xi to node xr
i+1 for i = 1, . . . , n − 1 and r = 1, . . . , n. We onnet eah node vi to nodes xiand xr

i , for i = 1, . . . , n and r = 1, . . . , n. We assoiate a weight 1 to all edges of the path
(x1, x2), (x2, x3), . . . , (xn−1, xn) and to edges (xr

i , xi+1) and (xi, x
r
i+1) for i = 1, . . . , n − 1 and

r = 1, . . . , n, and a weight 0 to all other edges in E′. We set U = n − 1.We show that 9
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Figure 3: Constrution of an instane ofMin Node Bloker MST from an instane ofMin VertexCover1. opt(I) ≤ c ⇒ opt(I ′) ≤ c2. opt(I) > cρ ⇒ opt(I ′) > cρwhih establishes thatMin Node Bloker MST is NP-hard to approximate within a fator1.36, sine Min Vertex Cover is NP-hard to approximate within a fator 1.36 [5℄.1. Let V ∗ ⊆ V be a minimum vertex over in G. By deleting the nodes of V ∗ from G′, thenodes of V \V ∗ form an independent set in G′ − V ∗. Then, onneting any two nodes
xi, xj in G′ −V ∗ requires to use a path of weight at least 1. Thus, a minimum spanningtree in G′ − V ∗, of weight U = n − 1, is obtained by onneting the nodes xi throughthe path x1, x2, . . . , xn and eah node vi ∈ V \V ∗ and xr

i to node xi, for i = 1, . . . , n and
r = 1, . . . , n. Therefore, we get opt(I ′) ≤ opt(I) ≤ c.2. Suppose now that opt(I) > cρ. When we remove all nodes vi, i = 1, . . . , n from G′, theweight of a minimum spanning tree in the resulting graph is U . Hene, opt(I ′) ≤ n.Let N ⊆ V ′ be an optimal solution. If N ontains nodes xi or xℓ

i for a given i and ℓ,then N must ontain all the nodes xi and xr
i for r = 1, . . . , n, otherwise the weight of aminimum spanning tree in G′ − N is the same as in G′ − (N\{xi}) or G′ − (N\{xℓ

i}).Therefore, sine opt(I ′) ≤ n, we an onsider in the following that N is inluded in V .We show in the following that N is a vertex over in G. Suppose that there exists anedge (vi, vj) ∈ E suh that vi 6∈ N and vj 6∈ N . By deleting N from G′, the weight of aminimum spanning tree in G′−N is at most equal to n− 2. Indeed, in suh a minimumspanning tree the nodes xi, vi, vj , xj are not onneted by the edges (vi, xi), (xj , vj) andthe path on X from xi to xj but by the path (xi, vi), (vi, vj), (vj , xj) of weight 0, thusontraditing the fat that the weight of a minimum spanning tree in G′−N must be atleast n−1. Thus, N is a vertex over in G and opt(I) ≤ val(I,N) = val(I ′, N) = opt(I ′)and then opt(I ′) > cρ.
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