Critical edges/nodes for the minimum spanning tree problem: complexity and approximation

Cristina Bazgan ${ }^{1,2} \quad$ Sonia Toubaline ${ }^{1} \quad$ Daniel Vanderpooten ${ }^{1}$
1. Université Paris-Dauphine, LAMSADE
Place du Maréchal de Lattre de Tassigny, 75775 Paris Cedex 16, France
2. Institut Universitaire de France
\{bazgan,toubaline,vdp\}@lamsade.dauphine.fr

Abstract

In this paper, we study the complexity and the approximation of the k most vital edges (nodes) and min edge (node) blocker versions for the minimum spanning tree problem (MST). We show that the k most vital edges MST problem is $N P$-hard even for complete graphs with weights 0 or 1 and 3 -approximable for graphs with weights 0 or 1 . We also prove that the k most vital nodes MST problem is not approximable within a factor $n^{1-\epsilon}$, for any $\epsilon>0$, unless $N P=Z P P$, even for complete graphs of order n with weights 0 or 1. Furthermore, we show that the min edge blocker MST problem is $N P$-hard even for complete graphs with weights 0 or 1 and that the min node blocker MST problem is $N P$-hard to approximate within a factor 1.36 even for graphs with weights 0 or 1 .

Keywords: most vital edges/nodes, min edge/node blocker, minimum spanning tree, complexity, approximation.

1 Introduction

For problems of security or reliability, it is important to assess the capacity of a system to resist to a destruction or a failure of a number of its entities. This amounts to identifying critical entities which can be determined with respect to a measure of performance or a cost associated to the system. Modeling the network as a weighted connected graph where entities are edges or nodes and costs are weights associated to edges, one way of identifying critical entities is to determine a subset of edges or nodes whose removal from the graph causes the largest cost increase. Another way is to find a subset of edges or nodes of minimum cardinality whose removal involves that the optimal cost in the residual network is larger than a given threshold. In the literature these problems are referred to respectively as the k most vital edges/nodes problem and min edge/node blocker problem. In this paper the k most vital edges/nodes and min edge/node blocker versions for the minimum spanning tree problem are investigated.

The problem of finding the k most vital edges of a graph has been studied for various problems including shortest path [2, 10, 14], maximum flow [18, 15, 19], 1-median and 1center [4]. For the minimum spanning tree problem, Frederickson et al. [6] showed that k Most Vital Edges MST is $N P$-hard and proposed an $O(\log k)$-approximation algorithm. For a fixed k, the problem is obviously polynomial. The case $k=1$ has been largely studied in
the literature [8, 9, 17]. Several exact algorithms based on an explicit enumeration of possible solutions have been proposed $[12,13,16,3]$.

After introducing some preliminaries in Section 2, we show in Section 3 that k Most Vital Edges MST is $N P$-hard even for complete graphs with weights 0 or 1 and 3 -approximable for graphs with weights 0 or 1 . We also prove, in Section 4 , that k Most Vital Nodes MST is not approximable within a factor $n^{1-\epsilon}$, for any $\epsilon>0$, unless $N P=Z P P$, even for complete graphs of order n with weights 0 or 1. In Section 5, we establish that Min Edge Blocker MST is $N P$-hard even for complete graphs with weights 0 or 1. In Section 6, we show that Min Node Blocker MST is $N P$-hard to approximate within a factor 1.36 even for graphs with weights 0 or 1 . Final remarks are provided in Section 7.

2 Basic concepts and preliminary results

Let $G=(V, E)$ be a weighted undirected connected graph where $|V|=n,|E|=m$ and $w(e) \geq 0$ is the integer weight of each edge $e \in E$. Denote by $G-R$ the graph obtained from G by removing the subset R of edges or nodes.

We consider in this paper the k most vital edges (nodes) and min edge (node) blocker versions of the minimum spanning tree problem. These problems are defined as follows:

k Most Vital Edges (resp. Node) MST

Input: A connected weighted graph $G=(V, E)$ where each edge $e \in E$ has an integer weight $w_{e} \geq 0$ and a positive integer k.
Output: A subset $S^{*} \subseteq E$ (resp. $S^{*} \subseteq V$), with $\left|S^{*}\right|=k$, such that the weight of a minimum spanning tree in $G-S^{*}$ is maximum.

For an instance of k Most Vital Edges MST defined on a graph G, we consider that $k \leq \lambda(G)-1$ where $\lambda(G)$ is the edge-connectivity of G. Otherwise, any selection of k edges including the edges of a minimum cardinality cut would lead to a solution with infinite value since we disconnect G.

For an instance of k Most Vital Nodes MST defined on a graph G, we consider that $k \leq \kappa(G)-1$, where $\kappa(G)$ is the node-connectivity of G. Otherwise, any selection of k nodes including the nodes of a minimum node separator would lead to a solution with infinite value since we disconnect G.

Min Edge (resp. Node) Blocker MST
Input: A connected weighted graph $G=(V, E)$ where each edge $e \in E$ has an integer weight $w_{e} \geq 0$ and a positive integer U.
Output: A subset $S^{*} \subseteq E$ (resp. $S^{*} \subseteq V$) of minimum cardinality such that the weight of a minimum spanning tree in $G-S^{*}$ is greater than or equal to U.

An optimal solution S^{*} of an instance of Min Edge (resp. Node) Blocker MST defined on a graph G is such that $\left|S^{*}\right| \leq \lambda(G)$ (resp. $\left|S^{*}\right| \leq \kappa(G)$) since, at worst, it is necessary to disconnect G so as to exceed the threshold U.

Given an optimization problem in NPO and an instance I of this problem, we use $|I|$ to denote the size of I, opt (I) to denote the optimum value of I, and $\operatorname{val}(I, S)$ to denote the value of a feasible solution S of instance I. The performance ratio of S (or approximation factor) is $r(I, S)=\max \left\{\frac{\operatorname{val(I,S)}}{o p t(I)}, \frac{o p t(I)}{\operatorname{val(I,S)}\}}\right\}$. The error of $S, \varepsilon(I, S)$, is defined by $\varepsilon(I, S)=r(I, S)-1$.

For a function f, an algorithm is an $f(|I|)$-approximation, if for every instance I of the problem, it returns a solution S such that $r(I, S) \leq f(|I|)$.

The notion of a gap-reduction was introduced in [1] by Arora and Lund. A maximization problem Π is called gap-reducible to a maximization problem Π^{\prime} with parameters (c, ρ) and $\left(c^{\prime}, \rho^{\prime}\right), \rho, \rho^{\prime} \geq 1$, if there exists a polynomial time computable function f which maps any instance I of Π to an instance I^{\prime} of Π^{\prime}, while satisfying the following properties.

- If $o p t(I) \geq c$ then $o p t\left(I^{\prime}\right) \geq c^{\prime}$
- If $\operatorname{opt}(I)<\frac{c}{\rho}$ then $\operatorname{opt}\left(I^{\prime}\right)<\frac{c^{\prime}}{\rho^{\prime}}$

The interest of a gap-reduction is that if Π is not approximable within a factor ρ then Π^{\prime} is not approximable within a factor ρ^{\prime}.

The notion of an E-reduction (error-preserving reduction) was introduced by Khanna et al. [11]. A problem Π is called E-reducible to a problem Π^{\prime}, if there exist polynomial time computable functions f, g and a constant β such that

- f maps an instance I of Π to an instance I^{\prime} of Π^{\prime} such that opt (I) and $o p t\left(I^{\prime}\right)$ are related by a polynomial factor, i.e. there exists a polynomial p such that $\operatorname{opt}\left(I^{\prime}\right) \leq p(|I|) \operatorname{opt}(I)$,
- g maps any solution S^{\prime} of I^{\prime} to one solution S of I such that $\varepsilon(I, S) \leq \beta \varepsilon\left(I^{\prime}, S^{\prime}\right)$.

An important property of an E-reduction is that it can be applied uniformly to all levels of approximability; that is, if Π is E-reducible to Π^{\prime} and Π^{\prime} belongs to \mathcal{C} then Π belongs to \mathcal{C} as well, where \mathcal{C} is a class of optimization problems with any kind of approximation guarantee (see also [11]).

A problem Π is called E-equivalent to a problem Π^{\prime} if Π is E-reducible to Π^{\prime} and Π^{\prime} is E-reducible to Π.

$3 k$ Most Vital Edges MST

Frederikson and Solis-Oba [6] show that k Most Vital Edges MST is $N P$-hard even for graphs with weights 0 or 1 and that the problem is $O(\log k)$-approximable for graphs with arbitrary weights. In this section, we strengthen the $N P$-hardness result of Frederickson and Solis-Oba by specifying a more restricted class of instances for which the problem remains $N P$-hard. Moreover, we establish a constant approximation result for graphs with weights 0 or 1.

First we show that we can decide in polynomial time if the optimum value is a fixed constant.

Proposition 1 For any fixed value $c \geq 0$, it can be checked in polynomial time if the optimum value of k Most Vital Edges MST on graphs with weights 0 or 1 on edges is c.

Proof: Consider an instance I of k Most Vital Edges MST formed by a weighted graph $G=(V, E)$, with weights 0 or 1 , and by a positive integer k. Denote by $G_{0}=\left(V, E_{0}\right)$ the subgraph induced by the edges of weight 0 . Let $E_{1}=E \backslash E_{0}$ and $m_{1}=\left|E_{1}\right|$.

We have that $\operatorname{opt}(I)=0$ if and only if G_{0} is $(k+1)$ edge-connected. Indeed, if $\operatorname{opt}(I)=0$ then G_{0} must be $(k+1)$ edge-connected otherwise opt $(I)>0$. Conversely, if G_{0} is $(k+1)$ edge-connected, then removing any subset of k edges from G_{0} induces a minimum spanning tree of weight 0 . Consequently, it is polynomial to verify if $\operatorname{opt}(I)=0$ since it is polynomial to determine the edge-connectivity of a given graph. Once we checked iteratively that $\operatorname{opt}(I) \neq \ell$, for $0 \leq \ell \leq c-1$, we consider all the $\binom{m_{1}}{c}$ graphs $G_{0} \cup R$, for any subset $R \subseteq E_{1}$ with $|R|=c$. We can decide in polynomial time if $\operatorname{opt}(I)=c$ by verifying if $G_{0} \cup R$ is $(k+1)$ edge-connected.

We show in the following that k Most Vital Edges MST is E-equivalent to Max Component defined as follows.

Max Component

Input: a connected graph and a positive integer k.
Output: a subset of k edges to be removed such that the number of connected components in the obtained graph is maximum.

Theorem $1 k$ Most Vital Edges MST for graphs with weights 0 or 1 is E-equivalent to Max Component.

Proof: We first show that Max component is E-reducible to k Most Vital Edges MST. Given an instance I of Max component formed by a graph $G=(V, E)$ with n nodes, we construct an instance I^{\prime} of k Most Vital Edges MST consisting of a complete graph $G^{\prime}=\left(V, E^{\prime}\right)$ where each edge $(i, j) \in E^{\prime}$ is assigned a weight 0 if $(i, j) \in E$ and 1 otherwise.

Let $S^{*} \subseteq E$ be a subset of k edges whose deletion from G generates a maximum number of connected components. By removing S^{*} from G^{\prime}, all the connected components of $G-S^{*}$ are linked in $G^{\prime}-S^{*}$ by edges of weight 1 . Thus, the weight of a minimum spanning tree in $G^{\prime}-S^{*}$ is equal to the number of connected components in $G-S^{*}$ minus 1 . Therefore, we have $\operatorname{opt}\left(I^{\prime}\right) \geq o p t(I)-1$.

Let $S^{\prime} \subseteq E^{\prime}$ be a subset of k edges whose deletion from G^{\prime} generates a minimum spanning tree in $G^{\prime}-S^{\prime}$ of weight v. If S^{\prime} contains edges of weight 1 then by replacing these edges by edges of weight 0 , either the weight of a minimum spanning tree in the modified graph remains unchanged or it increases. Thus, considering S defined from S^{\prime} by replacing edges of weight 1 with edges from $E^{\prime} \backslash S^{\prime}$ of weight 0 , se define a subset $S \subseteq E$ such that $G-S$ contains at least $v+1$ connected components. Hence, $\operatorname{val}(I, S) \geq \operatorname{val}\left(I^{\prime}, S^{\prime}\right)+1$. In particular, when S is an optimum solution, we have $\operatorname{opt}\left(I^{\prime}\right)+1 \leq \operatorname{val}(I, S) \leq \operatorname{opt}(I)$. It follows from the previous result that opt $(I)=o p t\left(I^{\prime}\right)+1$.
Therefore, we have $o p t\left(I^{\prime}\right) \leq o p t(I)$ and $\varepsilon(I, S)=\frac{o p t(I)}{v a l(I, S)}-1 \leq \frac{o p t\left(I^{\prime}\right)+1}{v a l\left(I^{\prime}, S^{\prime}\right)+1}-1=\frac{o p t\left(I^{\prime}\right)-v a l\left(I^{\prime}, S^{\prime}\right)}{v a l\left(I^{\prime}, S^{\prime}\right)+1}$ $\leq \frac{o p t\left(I^{\prime}\right)-v a l\left(I^{\prime}, S^{\prime}\right)}{\operatorname{val}\left(I^{\prime}, S^{\prime}\right)}=\varepsilon\left(I^{\prime}, S^{\prime}\right)$.

We show now that k Most Vital Edges MST is E-reducible to Max component. Consider an instance I of k Most Vital Edges MST formed by a graph $G=(V, E)$ with edges of weight 0 or 1 . From Proposition 1, we can consider that $\operatorname{opt}(I)>0$. We construct an instance I^{\prime} of Max component consisting of the graph $G^{\prime}=\left(V, E^{\prime}\right)$ obtained from G by considering only edges of weight 0 .

Let S^{*} be a subset of k edges whose removal from G generates a minimum spanning tree T in $G-S^{*}$ of maximum weight. The weight of T being equal to the number of edges of T
of weight 1 , by deleting edges of $S^{*} \cap E^{\prime}$ plus any $k-\left|S^{*} \cap E^{\prime}\right|$ edges from E^{\prime}, the number of connected components in $G^{\prime}-S^{*}$ is at least equal to the weight of T plus 1. Thus, we have $o p t\left(I^{\prime}\right) \geq o p t(I)+1$.

Consider a subset S^{\prime} of k edges whose deletion from G^{\prime} partitions G^{\prime} into $\operatorname{val}\left(I^{\prime}, S^{\prime}\right)$ connected components. If $\operatorname{val}\left(I^{\prime}, S^{\prime}\right)=1$ then we can replace S^{\prime} by another solution with value at least 2 obtained by selecting k edges including a minimum cut since from Proposition $1, G^{\prime}$ is not $(k+1)$ edge-connected. Thus, we can assume that $\operatorname{val}\left(I^{\prime}, S^{\prime}\right) \geq 2$. By removing S^{\prime} from G, all connected components of $G^{\prime}-S^{\prime}$ are linked in $G-S^{\prime}$ by edges of weight 1 . Thus, the weight of a minimum spanning tree in $G-S^{\prime}$ is equal to $\operatorname{val}\left(I^{\prime}, S^{\prime}\right)-1$. Then, $\operatorname{val}\left(I, S^{\prime}\right) \geq \operatorname{val}\left(I^{\prime}, S^{\prime}\right)-1$. In particular, when S^{\prime} is an optimum solution in G^{\prime}, we have $\operatorname{val}\left(I, S^{\prime}\right)=\operatorname{opt}\left(I^{\prime}\right)-1$ and thus $\operatorname{opt}(I) \geq \operatorname{opt}\left(I^{\prime}\right)-1$. It follows from the previous result that $o p t\left(I^{\prime}\right)=o p t(I)+1$.
Therefore, since $\operatorname{opt}(I)>0$, we have $\operatorname{opt}\left(I^{\prime}\right) \leq 2 \operatorname{opt}(I)$ and $\varepsilon\left(I, S^{\prime}\right)=\frac{\operatorname{opt}(I)}{\operatorname{val}\left(I, S^{\prime}\right)}-1 \leq$ $\frac{\operatorname{opt}\left(I^{\prime}\right)-1}{\operatorname{val}\left(I^{\prime}, S^{\prime}\right)-1}-1=\frac{\operatorname{opt}\left(I^{\prime}\right)-v a l\left(I^{\prime}, S^{\prime}\right)}{\operatorname{val}\left(I^{\prime}, S^{\prime}\right)-1}=\frac{\operatorname{val}\left(I^{\prime}, S^{\prime}\right)}{\operatorname{val}\left(I^{\prime}, S^{\prime}\right)-1} \frac{\operatorname{opt}\left(I^{\prime}\right)-\operatorname{val}\left(I^{\prime}, S^{\prime}\right)}{\operatorname{val}\left(I^{\prime}, S^{\prime}\right)} \leq 2 \frac{\operatorname{opt}\left(I^{\prime}\right)-\operatorname{val}\left(I^{\prime}, S^{\prime}\right)}{\operatorname{val}\left(I^{\prime}, S^{\prime}\right)}=2 \varepsilon\left(I^{\prime}, S^{\prime}\right)$.

From Theorem 1, we obtain the two following results. First, we slightly strengthen the $N P$-hardness result of Frederickson and Solis-Oba [6] by specifying a more restricted class of instances for which the problem remains $N P$-hard.

Corollary $1 k$ Most Vital Edges MST is NP-hard even for complete graphs with weights 0 or 1.

Proof: The E-reduction from Max Component to k Most Vital Edges MST constructs from any graph G a complete graph G^{\prime} with weights 0 or 1 . Since Max Component is $N P$ hard [6], the results follows.

Second, we establish a constant approximation result for graphs with weights 0 or 1 .
Corollary $2 k$ Most Vital Edges MST is 3-approximable for graphs with weights 0 or 1.
Proof: In the E-reduction from k Most Vital Edges MST to Max component, we have shown that any solution S of I^{\prime} is such that $\varepsilon(I, S) \leq 2 \varepsilon\left(I^{\prime}, S\right)$. Thus, $r(I, S)-1 \leq$ $2\left(r\left(I^{\prime}, S\right)-1\right)$ and then $r(I, S) \leq 2 r\left(I^{\prime}, S\right)-1$. Since $r\left(I^{\prime}, S\right)=2$ as established in [6], we have $r(I, S) \leq 3$.

$4 \quad k$ Most Vital Nodes MST

We study in this section the complexity of k Most Vital Nodes MST. First we show that k Most Vital Nodes MST is at least as hard as k Most Vital Edges MST by establishing an E-reduction from the edge version to the node version. As far as we know, this is the first result in the literature that establishes a direct relationship between the k most vital edge version and the k most vital node version of a problem. Using the $N P$-hardness of the edge version even for graphs with weights 0 or $1[6]$, this reduction implies the $N P$-hardness of k Most Vital Nodes MST on the same class of graphs. We strengthen this result by proving that k Most Vital Nodes MST is not approximable within a factor $n^{1-\epsilon}$, for any $\epsilon>0$, if $N P \neq Z P P$, even for complete graphs with weights 0 or 1 .

Theorem $2 k$ Most Vital Edges MST is E-reducible to k Most Vital Nodes MST.
Proof: Consider an instance I of k Most Vital Edges MST formed by a weighted graph $G=(V, E)$ with $V=\left\{v_{1}, \ldots, v_{n}\right\}$ and $|E|=m$. We construct an instance I^{\prime} of k Most Vital Nodes MST formed by a graph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ as follows (see Figure 1). We consider in G^{\prime} the nodes of V and m nodes r_{1}, \ldots, r_{m}. Let $R=\left\{r_{1}, \ldots, r_{m}\right\}$. To each edge $e_{\ell}=\left(v_{i}, v_{j}\right) \in E$ of weight $w_{i j}, \ell=1, \ldots, m$ and $i<j$, we associate two edges in $E^{\prime}:\left(v_{i}, r_{\ell}\right)$ of weight $w_{i j}$ and (r_{ℓ}, v_{j}) of weight 0 . Let $K_{k}^{v_{i}}$, for $i=1, \ldots, n$, be n complete graphs of size k with $X_{v_{i}}=\left\{v_{i}^{1}, \ldots, v_{i}^{k}\right\}$ and weights 0 on their edges. We connect each node v_{i}, for $i=1, \ldots, n$, to the k nodes of $K_{k}^{v_{i}}$ and assign a weight 0 to these added edges. We also add, for each edge $\left(v_{i}, r_{\ell}\right) \in E^{\prime}$ the edges $\left(v_{i}^{h}, r_{\ell}\right)$, for $h=1, \ldots, k$, with the same weight as the weight of the edge $\left(v_{i}, r_{\ell}\right)$.

Figure 1: Construction of an instance of k Most Vital Nodes MST from an instance of k Most Vital Edges MST

Suppose first that there exists a subset $S^{*} \subseteq E$, with $\left|S^{*}\right|=k$, such that a minimum spanning tree T in $G-S^{*}$ has a maximum weight. We set $N^{*}=\left\{r_{\ell}: e_{\ell} \in S^{*}\right\}$. By deleting N^{*} from G^{\prime}, we construct a spanning tree T^{\prime} in $G^{\prime}-N^{*}$ as follows : we take for each edge $e_{\ell}=\left(v_{i}, v_{j}\right) \in T$ with $i<j$, the edges $\left(v_{i}, r_{\ell}\right)$ and $\left(r_{\ell}, v_{j}\right)$ in T^{\prime}, for each edge $e_{h}=\left(v_{i}, v_{j}\right) \notin T$ with $i<j$, the edge $\left(r_{h}, v_{j}\right)$ in T^{\prime}, and we add the paths $v_{i}, v_{i}^{1}, \ldots, v_{i}^{k}, i=1, \ldots, n$. We prove, by contradiction, that T^{\prime} is a minimum spanning tree in $G^{\prime}-N^{*}$. Suppose that there exists a spanning tree $T^{\prime \prime}$ in $G^{\prime}-N^{*}$ of weight strictly inferior to that of T^{\prime}. Then, the spanning tree constituted by the edges $e_{\ell}=\left(v_{i}, v_{j}\right)$ such that $\left(v_{i}, r_{\ell}\right) \in T^{\prime \prime}$ has a smaller weight than T in $G-S^{*}$, contradicting the optimality of T. Thus, T^{\prime} is a minimum spanning tree in $G^{\prime}-N^{*}$. Therefore, we have $\operatorname{opt}\left(I^{\prime}\right) \geq \operatorname{opt}(I)$.

Consider now a subset N, with $|N|=k$, and a minimum spanning tree T^{\prime} in $G^{\prime}-N$. If N contains v_{i} or one node v_{i}^{h}, for a given i and h, then the weight of a MST in $G^{\prime}-N$ is the same as in $G^{\prime}-\left(N \backslash\left\{v_{i}\right\}\right)$ or $G^{\prime}-\left(N \backslash\left\{v_{i}^{h}\right\}\right)$. When removing all nodes v_{i}, v_{i}^{h} from N we
obtain a subset $N^{\prime} \subseteq R,\left|N^{\prime}\right| \leq k$. Since N^{\prime} corresponds to edges in G, any subset $N^{\prime \prime} \subseteq R$ containing N^{\prime} such that $\left|N^{\prime \prime}\right|=k$ is such that the weight of a MST in $G^{\prime}-N^{\prime \prime}$ is at least as large as the weight of a MST in $G^{\prime}-N^{\prime}$. Let $S=\left\{e_{\ell}: r_{\ell} \in N^{\prime \prime}\right\}$. Consider T the spanning tree in $G-S$ constituted by the edges $e_{\ell}=\left(v_{i}, v_{j}\right)$ such that the edge $\left(v_{i}, r_{\ell}\right) \in T^{\prime} . T$ is optimal, since otherwise, the existence of a spanning tree $T^{\prime \prime}$ of weight strictly inferior to that of T would imply that the corresponding spanning tree constructed from $T^{\prime \prime}$ in $G^{\prime}-N^{\prime \prime}$, as explained above, has a weight strictly inferior to that of T^{\prime}. Thus, T is a minimum spanning tree in $G-S$ of the same weight as T^{\prime}. Hence, $\operatorname{val}(I, S)=\operatorname{val}\left(I^{\prime}, N^{\prime \prime}\right)$. In particular, when $N^{\prime \prime}$ is an optimal solution in G^{\prime}, we have $\operatorname{opt}\left(I^{\prime}\right)=\operatorname{val}(I, S) \leq \operatorname{opt}(I)$. It follows from the previous result that $\operatorname{opt}(I)=\operatorname{opt}\left(I^{\prime}\right)$. Therefore, we have $\varepsilon(I, S)=\varepsilon\left(I^{\prime}, N^{\prime \prime}\right)$.

Theorem $3 k$ Most Vital Nodes MST is not approximable within a factor $n^{1-\epsilon}$, for any $\epsilon>0$, unless $N P=Z P P$, even for complete graphs of order n with weights 0 or 1 .

Proof: We propose a gap-reduction from Max independent set to k Most Vital Nodes MST.

Denote by $\alpha(G)$ the cardinality of maximum independent set of G. Let g be the non approximation gap of Max independent set. Thus, for a given integer ℓ, it is $N P$-hard to decide if $\alpha(G)=\ell$ or $\alpha(G)<\frac{\ell}{g}$.

Given an instance I of Max independent set formed by a graph $G=(V, E)$, we construct an instance I^{\prime} of k Most Vital Nodes MST constituted by a complete graph $G^{\prime}=\left(V, E^{\prime}\right)$ where each edge $(i, j) \in E^{\prime}$ is assigned a weight 0 if $(i, j) \in E$ and 1 otherwise (see Figure 2). We set $k=n-\ell$. We show that:

1. $\alpha(G)=\ell \Rightarrow \operatorname{opt}\left(I^{\prime}\right) \geq \ell-1$
2. $\alpha(G)<\frac{\ell}{g} \Rightarrow \operatorname{opt}\left(I^{\prime}\right)<\frac{\ell-1}{g}$

Figure 2: Construction of an instance of k Most Vital Nodes MST from an instance of Max Independent Set

1. Suppose first that there exists an independent set V^{*} in G of cardinality ℓ and let $N^{*}=V \backslash V^{*}$. By removing N^{*} from G^{\prime}, all nodes of $G^{\prime}-N^{*}$ are connected by edges of weight 1 only. Thus, we obtain a minimum spanning tree in $G^{\prime}-N^{*}$ of value $\ell-1$. Therefore, opt $\left(I^{\prime}\right) \geq \ell-1$.
2. Suppose now that $\alpha(G)<\frac{\ell}{g}$. Hence, there exists a maximum independent set V^{*} such that $\left|V^{*}\right|<\frac{\ell}{g}$. If the node set N^{*} of cardinality $n-\ell$ to be removed from G^{\prime} is such that $N^{*} \cap V^{*}=\emptyset$ then let $V_{1}=V \backslash\left(N^{*} \cup V^{*}\right)$. Each node of V_{1} is at least connected to one node of V^{*} by an edge of weight 0 , otherwise $V^{*} \cup\{v\}$ would be an independent
set in G of larger cardinality. Thus, the weight of a minimum spanning tree in $G^{\prime}-N^{*}$ cannot exceed $\frac{\ell}{g}-1$. Since $g>1$, we have $\frac{\ell}{g}-1<\frac{\ell-1}{g}$. Therefore if $\alpha(G)<\frac{\ell}{g}$ then $\operatorname{opt}\left(I^{\prime}\right)<\frac{\ell-1}{g}$. If $N^{*} \cap V^{*} \neq \emptyset$ then a minimum spanning tree in $G^{\prime}-N^{*}$ would have a weight strictly inferior to $\frac{\ell}{g}-1$.

Since Max independent set is not approximable within a factor $n^{1-\epsilon}$, for any $\epsilon>$ 0 , unless $N P=Z P P$ [7], we deduce that k Most Vital Nodes MST is also not $n^{1-\epsilon_{-}}$ approximable, for any $\epsilon>0$, unless $N P=Z P P$.

From Theorem 3 and Corollary 2, we can give the following result.
Corollary 3 There is no E-reduction from k Most Vital Nodes MST for graphs with weights 0 or 1 to k Most Vital Edges MST for graphs with weights 0 or 1.

5 Min Edge Blocker MST

We present in the following a relationship between k Most Vital Edges MST and Min Edge Blocker MST.

Proposition $2 k$ Most Vital Edges MST and Min Edge Blocker MST are polynomialtime equivalent.

Proof: If an algorithm \mathcal{A}_{k} solves k Most Vital Edges MST defined on graph G for all $1 \leq k \leq \lambda(G)-1$, then we can run \mathcal{A}_{k} for $k=1, \ldots, \lambda(G)-1$ and choose the smallest k yielding optimum at least U. If no k exists then the optimum for Min Edge Blocker MST is $\lambda(G)$. Conversely, if an algorithm \mathcal{B}_{U} solves Min Edge Blocker MST with any bound U, we can apply binary search to locate the largest U that requires the removal of at most k nodes.

Theorem 4 Min Edge Blocker MST is NP-hard even for complete graphs with weights 0 or 1 .

Proof: Follows from Proposition 2 and Corollary 1.

6 Min Node Blocker MST

The equivalent of Proposition 2 applied to nodes also holds (with a similar proof).
Proposition $3 k$ Most Vital Nodes MST and Min Node Blocker MST are polynomialtime equivalent.

Theorem 5 Min Node Blocker MST is NP-hard even for complete graphs with weights 0 or 1.

Proof: Follows from Proposition 3 and Theorem 3.
This result could also be established by the following gap-reduction from Min Edge Blocker MST.

Theorem 6 Min Edge Blocker MST is gap-reducible to Min Node Blocker MST.
Proof: Consider an instance I for Min Edge Blocker MST formed by a graph $G=(V, E)$, with $|V|=n$ and $|E|=m$, and a positive integer U. We construct an instance I^{\prime} for Min Node Blocker MST, constituted by a graph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ and a positive integer U, using the same construction as in Theorem 2, but we modify the size of the n complete graphs which we set to be $m+1$. We show that

1. $\operatorname{opt}(I) \leq c \Rightarrow o p t\left(I^{\prime}\right) \leq c$
2. $\operatorname{opt}(I)>c \rho \Rightarrow \operatorname{opt}\left(I^{\prime}\right)>c \rho$
3. Let $S^{*} \subseteq E$ be a subset of minimum cardinality such that a minimum spanning tree T in $G-S^{*}$ has a weight at least U. We set $N^{*}=\left\{r_{\ell}: e_{\ell} \in S^{*}\right\}$. By deleting N^{*} from G^{\prime}, we construct a minimum spanning tree T^{\prime} in $G^{\prime}-N^{*}$ of the same weight as that of T as explained in Theorem 2. Thus, the weight of T^{\prime} is at least U. Therefore, $o p t\left(I^{\prime}\right) \leq o p t(I) \leq c$.
4. Suppose now that $\operatorname{opt}(I)>c \rho$. When we remove all nodes of R from G^{\prime}, the weight of a minimum spanning tree is infinite. Hence, $\operatorname{opt}\left(I^{\prime}\right) \leq m$. Let $N \subseteq V^{\prime}$ be an optimal solution whose deletion generates a minimum spanning tree T^{\prime} in $G^{\prime}-N$ of weight at least U. If N contains v_{i} or one node v_{i}^{h}, for a given i and h, then N must contain all the $m+1$ nodes v_{i} and $X_{v_{i}}$, since otherwise the weight of a minimum spanning in $G^{\prime}-N$ is the same as in $G^{\prime}-\left(N \backslash\left\{v_{i}\right\}\right)$ or $G^{\prime}-\left(N \backslash\left\{v_{i}^{h}\right\}\right)$. Therefore, since $\operatorname{opt}\left(I^{\prime}\right) \leq m$, we can consider that $N \subseteq R$. Let $S=\left\{e_{\ell}: r_{\ell} \in N\right\}$. We construct a minimum spanning tree T in $G-S$ as explained in Theorem 2. The weight of T being equal to the weight of T^{\prime} is at least U. Hence, $\operatorname{opt}(I) \leq \operatorname{val}(I, S)=\operatorname{val}\left(I^{\prime}, N\right)=\operatorname{opt}\left(I^{\prime}\right)$ and thus $o p t\left(I^{\prime}\right)>c \rho$.

In the absence of known inapproximability results for Min Edge Blocker MST, we can only exploit the above $g a p$-reduction to establish the $N P$-hardness of Min Node Blocker MST. Nevertheless, we can obtain the following stronger result.

Theorem 7 Min Node Blocker MST is NP-hard to approximate within a factor 1.36 even for graphs with weights 0 or 1 .

Proof: We propose a gap-reduction from Min Vertex Cover. Consider an instance I of Min Vertex Cover formed by a graph $G=(V, E)$ with $V=\left\{v_{1}, \ldots, v_{n}\right\}$. We construct from I, an instance I^{\prime} of Min Node Blocker MST constituted by a graph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ and a positive integer U as follows (see Figure 3). G^{\prime} is a copy of G to which we add a path $x_{1}, x_{2}, \ldots, x_{n}$ with $X=\left\{x_{1}, \ldots, x_{n}\right\}$ and we connect each node x_{i} to the nodes $x_{i}^{1}, \ldots, x_{i}^{n}$ of a complete graph K_{n}^{i} of size n. We also connect each node x_{i}^{r} to node x_{i+1} and each node x_{i} to node x_{i+1}^{r} for $i=1, \ldots, n-1$ and $r=1, \ldots, n$. We connect each node v_{i} to nodes x_{i} and x_{i}^{r}, for $i=1, \ldots, n$ and $r=1, \ldots, n$. We associate a weight 1 to all edges of the path $\left(x_{1}, x_{2}\right),\left(x_{2}, x_{3}\right), \ldots,\left(x_{n-1}, x_{n}\right)$ and to edges $\left(x_{i}^{r}, x_{i+1}\right)$ and $\left(x_{i}, x_{i+1}^{r}\right)$ for $i=1, \ldots, n-1$ and $r=1, \ldots, n$, and a weight 0 to all other edges in E^{\prime}. We set $U=n-1$.

We show that

Figure 3: Construction of an instance of Min Node Blocker MST from an instance of Min Vertex Cover

1. $\operatorname{opt}(I) \leq c \Rightarrow \operatorname{opt}\left(I^{\prime}\right) \leq c$
2. $\operatorname{opt}(I)>c \rho \Rightarrow \operatorname{opt}\left(I^{\prime}\right)>c \rho$
which establishes that Min Node Blocker MST is $N P$-hard to approximate within a factor 1.36, since Min Vertex Cover is $N P$-hard to approximate within a factor 1.36 [5].
3. Let $V^{*} \subseteq V$ be a minimum vertex cover in G. By deleting the nodes of V^{*} from G^{\prime}, the nodes of $V \backslash V^{*}$ form an independent set in $G^{\prime}-V^{*}$. Then, connecting any two nodes x_{i}, x_{j} in $G^{\prime}-V^{*}$ requires to use a path of weight at least 1 . Thus, a minimum spanning tree in $G^{\prime}-V^{*}$, of weight $U=n-1$, is obtained by connecting the nodes x_{i} through the path $x_{1}, x_{2}, \ldots, x_{n}$ and each node $v_{i} \in V \backslash V^{*}$ and x_{i}^{r} to node x_{i}, for $i=1, \ldots, n$ and $r=1, \ldots, n$. Therefore, we get $o p t\left(I^{\prime}\right) \leq o p t(I) \leq c$.
4. Suppose now that $o p t(I)>c \rho$. When we remove all nodes $v_{i}, i=1, \ldots, n$ from G^{\prime}, the weight of a minimum spanning tree in the resulting graph is U. Hence, opt $\left(I^{\prime}\right) \leq n$. Let $N \subseteq V^{\prime}$ be an optimal solution. If N contains nodes x_{i} or x_{i}^{ℓ} for a given i and ℓ, then N must contain all the nodes x_{i} and x_{i}^{r} for $r=1, \ldots, n$, otherwise the weight of a minimum spanning tree in $G^{\prime}-N$ is the same as in $G^{\prime}-\left(N \backslash\left\{x_{i}\right\}\right)$ or $G^{\prime}-\left(N \backslash\left\{x_{i}^{\ell}\right\}\right)$. Therefore, since $\operatorname{opt}\left(I^{\prime}\right) \leq n$, we can consider in the following that N is included in V. We show in the following that N is a vertex cover in G. Suppose that there exists an edge $\left(v_{i}, v_{j}\right) \in E$ such that $v_{i} \notin N$ and $v_{j} \notin N$. By deleting N from G^{\prime}, the weight of a minimum spanning tree in $G^{\prime}-N$ is at most equal to $n-2$. Indeed, in such a minimum spanning tree the nodes $x_{i}, v_{i}, v_{j}, x_{j}$ are not connected by the edges $\left(v_{i}, x_{i}\right),\left(x_{j}, v_{j}\right)$ and the path on X from x_{i} to x_{j} but by the path $\left(x_{i}, v_{i}\right),\left(v_{i}, v_{j}\right),\left(v_{j}, x_{j}\right)$ of weight 0 , thus contradicting the fact that the weight of a minimum spanning tree in $G^{\prime}-N$ must be at least $n-1$. Thus, N is a vertex cover in G and $\operatorname{opt}(I) \leq \operatorname{val}(I, N)=\operatorname{val}\left(I^{\prime}, N\right)=\operatorname{opt}\left(I^{\prime}\right)$ and then $\operatorname{opt}\left(I^{\prime}\right)>c \rho$.

7 Conclusions

As a first result, we established or strengthened the $N P$-hardness of the four studied problems. Regarding approximation, negative results were obtained only for the node related versions and positive results were obtained only for k Most Vital Edges MST. This situation, combined with our reductions from edge related versions to node related versions (see Theorems 2 and 6, and Corollary 3) clearly shows that node related versions are more difficult than edge related versions. An interesting perspective is to look for approximability results for k Most Vital Nodes MST and Min Edge (Node) blocker MST and for inapproximability results for edge related versions.

References

[1] S. Arora and C. Lund. Hardness of approximations. In Approximation algorithms for NP-hard problems, pages 399-446. PWS Publishing Company, 1996.
[2] A. Bar-Noy, S. Khuller, and B. Schieber. The complexity of finding most vital arcs and nodes. Technical Report CS-TR-3539, University of Maryland, 1995.
[3] C. Bazgan, S. Toubaline, and D. Vanderpooten. Efficient algorithms for finding the k most vital edges for the minimum spanning tree problem. In Proceeding of the $5^{\text {th }}$ Annual International Conference on Combinatorial Optimization and Applications (COCOA 2011), LNCS 6831, pages 126-140, 2011.
[4] C. Bazgan, S. Toubaline, and D. Vanderpooten. Complexity of determining the most vital elements for the 1-median and 1-center location problems. In Proceeding of the $4^{\text {th }}$ Annual International Conference on Combinatorial Optimization and Applications (COCOA 2010), LNCS 6508, Part I, pages 237-251, 2010.
[5] I. Dinur and S. Safra. On the hardness of approximating minimum vertex cover. Annals of Mathematics, 162(1):439-485, 2005.
[6] G. N. Frederickson and R. Solis-Oba. Increasing the weight of minimum spanning trees. Proceedings of the $7^{\text {th }}$ ACM-SIAM Symposium on Discrete Algorithms (SODA 1996), pages 539-546, 1996. Also appeared in Journal of Algorithms, 33(2): 244-266, 1999.
[7] J. Håstad. Clique is hard to approximate within $n^{1-\varepsilon}$. Acta Mathematica, 182(1):105-142, 1999.
[8] L. Hsu, R. Jan, Y. Lee, C. Hung, and M. Chern. Finding the most vital edge with respect to minimum spanning tree in a weighted graph. Information Processing Letters, 39(5):277-281, 1991.
[9] K. Iwano and N. Katoh. Efficient algorithms for finding the most vital edge of a minimum spanning tree. Information Processing Letters, 48(5):211-213, 1993.
[10] L. Khachiyan, E. Boros, K. Borys, K. Elbassioni, V. Gurvich, G. Rudolf, and J. Zhao. On short paths interdiction problems : total and node-wise limited interdiction. Theory of Computing Systems, 43(2):204-233, 2008.
[11] S. Khanna, R. Motwani, M. Sudan, and U. Vazirani. On syntactic versus computational views of approximability. In Proceedings of the 35th Annual IEEE Annual Symposium on Foundations of Computer Science (FOCS 1994), pages 819-830, 1994. Also published in SIAM Journal on Computing, 28(1), 1999, 164-191.
[12] W. Liang. Finding the k most vital edges with respect to minimum spanning trees for fixed k. Discrete Applied Mathematics, 113(2-3):319-327, 2001.
[13] W. Liang and X. Shen. Finding the k most vital edges in the minimum spanning tree problem. Parallel Computer, 23(3):1889-1907, 1997.
[14] E. Nardelli, G. Proietti, and P. Widmayer. A faster computation of the most vital edge of a shortest path. Information Processing Letters, 79(2):81-85, 2001.
[15] H. D. Ratliff, G. T. Sicilia, and S. H. Lubore. Finding the n most vital links in flow networks. Management Science, 21(5):531-539, 1975.
[16] H. Shen. Finding the k most vital edges with respect to minimum spanning tree. Acta Informatica, 36(5):405-424, 1999.
[17] F. Suraweera, P. Maheshwari, and P. Bhattacharya. Optimal algorithms to find the most vital edge of a minimum spanning tree. Technical Report CIT-95-21, School of Computing and Information Technology, Griffith University, 1995.
[18] R. Wollmer. Removing arcs from a network. Operations Research, 12(6):934-940, 1964.
[19] R. K. Wood. Deterministic network interdiction. Mathematical and Computer Modeling, 17(2):1-18, 1993.

