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tIn this paper, we study the 
omplexity and the approximation of the k most vital edges(nodes) and min edge (node) blo
ker versions for the minimum spanning tree problem(MST). We show that the k most vital edges MST problem is NP -hard even for 
ompletegraphs with weights 0 or 1 and 3-approximable for graphs with weights 0 or 1. We alsoprove that the k most vital nodes MST problem is not approximable within a fa
tor n1−ǫ,for any ǫ > 0, unless NP=ZPP, even for 
omplete graphs of order n with weights 0 or1. Furthermore, we show that the min edge blo
ker MST problem is NP -hard even for
omplete graphs with weights 0 or 1 and that the min node blo
ker MST problem isNP -hard to approximate within a fa
tor 1.36 even for graphs with weights 0 or 1.Keywords: most vital edges/nodes, min edge/node blo
ker, minimum spanning tree, 
om-plexity, approximation.1 Introdu
tionFor problems of se
urity or reliability, it is important to assess the 
apa
ity of a systemto resist to a destru
tion or a failure of a number of its entities. This amounts to identifying
riti
al entities whi
h 
an be determined with respe
t to a measure of performan
e or a 
ostasso
iated to the system. Modeling the network as a weighted 
onne
ted graph where entitiesare edges or nodes and 
osts are weights asso
iated to edges, one way of identifying 
riti
alentities is to determine a subset of edges or nodes whose removal from the graph 
auses thelargest 
ost in
rease. Another way is to �nd a subset of edges or nodes of minimum 
ardinalitywhose removal involves that the optimal 
ost in the residual network is larger than a giventhreshold. In the literature these problems are referred to respe
tively as the k most vitaledges/nodes problem and min edge/node blo
ker problem. In this paper the k most vitaledges/nodes and min edge/node blo
ker versions for the minimum spanning tree problem areinvestigated.The problem of �nding the k most vital edges of a graph has been studied for variousproblems in
luding shortest path [2, 10, 14℄, maximum �ow [18, 15, 19℄, 1-median and 1-
enter [4℄. For the minimum spanning tree problem, Frederi
kson et al. [6℄ showed that kMost Vital Edges MST is NP-hard and proposed an O(log k)-approximation algorithm.For a �xed k, the problem is obviously polynomial. The 
ase k = 1 has been largely studied in1



the literature [8, 9, 17℄. Several exa
t algorithms based on an expli
it enumeration of possiblesolutions have been proposed [12, 13, 16, 3℄.After introdu
ing some preliminaries in Se
tion 2, we show in Se
tion 3 that k Most VitalEdges MST is NP-hard even for 
omplete graphs with weights 0 or 1 and 3-approximablefor graphs with weights 0 or 1. We also prove, in Se
tion 4, that k Most Vital Nodes MSTis not approximable within a fa
tor n1−ǫ, for any ǫ > 0, unless NP= ZPP, even for 
ompletegraphs of order n with weights 0 or 1. In Se
tion 5, we establish that Min Edge Blo
kerMST is NP-hard even for 
omplete graphs with weights 0 or 1. In Se
tion 6, we show thatMin Node Blo
ker MST is NP -hard to approximate within a fa
tor 1.36 even for graphswith weights 0 or 1. Final remarks are provided in Se
tion 7.2 Basi
 
on
epts and preliminary resultsLet G = (V,E) be a weighted undire
ted 
onne
ted graph where |V | = n, |E| = m and
w(e) ≥ 0 is the integer weight of ea
h edge e ∈ E. Denote by G−R the graph obtained from
G by removing the subset R of edges or nodes.We 
onsider in this paper the k most vital edges (nodes) and min edge (node) blo
kerversions of the minimum spanning tree problem. These problems are de�ned as follows:
k Most Vital Edges (resp. Node) MSTInput: A 
onne
ted weighted graph G = (V,E) where ea
h edge e ∈ E has an integer weight
we ≥ 0 and a positive integer k.Output: A subset S∗ ⊆ E (resp. S∗ ⊆ V ) , with |S∗| = k, su
h that the weight of a minimumspanning tree in G − S∗ is maximum.For an instan
e of k Most Vital Edges MST de�ned on a graph G, we 
onsider that
k ≤ λ(G) − 1 where λ(G) is the edge-
onne
tivity of G. Otherwise, any sele
tion of k edgesin
luding the edges of a minimum 
ardinality 
ut would lead to a solution with in�nite valuesin
e we dis
onne
t G.For an instan
e of k Most Vital Nodes MST de�ned on a graph G, we 
onsider that
k ≤ κ(G) − 1, where κ(G) is the node-
onne
tivity of G. Otherwise, any sele
tion of k nodesin
luding the nodes of a minimum node separator would lead to a solution with in�nite valuesin
e we dis
onne
t G.Min Edge (resp. Node) Blo
ker MSTInput: A 
onne
ted weighted graph G = (V,E) where ea
h edge e ∈ E has an integer weight
we ≥ 0 and a positive integer U .Output: A subset S∗ ⊆ E (resp. S∗ ⊆ V ) of minimum 
ardinality su
h that the weight of aminimum spanning tree in G − S∗ is greater than or equal to U .An optimal solution S∗ of an instan
e ofMin Edge (resp. Node) Blo
ker MST de�nedon a graph G is su
h that |S∗| ≤ λ(G) (resp. |S∗| ≤ κ(G)) sin
e, at worst, it is ne
essary todis
onne
t G so as to ex
eed the threshold U .Given an optimization problem in NPO and an instan
e I of this problem, we use |I| todenote the size of I, opt(I) to denote the optimum value of I, and val(I, S) to denote the valueof a feasible solution S of instan
e I. The performan
e ratio of S (or approximation fa
tor) is
r(I, S) = max

{

val(I,S)
opt(I) ,

opt(I)
val(I,S)

}

. The error of S, ε(I, S), is de�ned by ε(I, S) = r(I, S) − 1.2



For a fun
tion f , an algorithm is an f(|I|)-approximation, if for every instan
e I of theproblem, it returns a solution S su
h that r(I, S) ≤ f(|I|).The notion of a gap-redu
tion was introdu
ed in [1℄ by Arora and Lund. A maximizationproblem Π is 
alled gap-redu
ible to a maximization problem Π′ with parameters (c, ρ) and
(c′, ρ′), ρ, ρ′ ≥ 1, if there exists a polynomial time 
omputable fun
tion f whi
h maps anyinstan
e I of Π to an instan
e I ′ of Π′, while satisfying the following properties.

• If opt(I) ≥ c then opt(I ′) ≥ c′

• If opt(I) < c
ρ
then opt(I ′) < c′

ρ′The interest of a gap-redu
tion is that if Π is not approximable within a fa
tor ρ then Π′is not approximable within a fa
tor ρ′.The notion of an E-redu
tion (error-preserving redu
tion) was introdu
ed by Khanna etal. [11℄. A problem Π is 
alled E-redu
ible to a problem Π′, if there exist polynomial time
omputable fun
tions f , g and a 
onstant β su
h that
• f maps an instan
e I of Π to an instan
e I ′ of Π′ su
h that opt(I) and opt(I ′) are relatedby a polynomial fa
tor, i.e. there exists a polynomial p su
h that opt(I ′) ≤ p(|I|)opt(I),
• g maps any solution S′ of I ′ to one solution S of I su
h that ε(I, S) ≤ βε(I ′, S′).An important property of an E-redu
tion is that it 
an be applied uniformly to all levelsof approximability; that is, if Π is E-redu
ible to Π′ and Π′ belongs to C then Π belongs to Cas well, where C is a 
lass of optimization problems with any kind of approximation guarantee(see also [11℄).A problem Π is 
alled E-equivalent to a problem Π′ if Π is E-redu
ible to Π′ and Π′ is

E-redu
ible to Π.3 k Most Vital Edges MSTFrederikson and Solis-Oba [6℄ show that k Most Vital Edges MST is NP-hard evenfor graphs with weights 0 or 1 and that the problem is O(log k)-approximable for graphs witharbitrary weights. In this se
tion, we strengthen the NP-hardness result of Frederi
kson andSolis-Oba by spe
ifying a more restri
ted 
lass of instan
es for whi
h the problem remainsNP -hard. Moreover, we establish a 
onstant approximation result for graphs with weights 0or 1.First we show that we 
an de
ide in polynomial time if the optimum value is a �xed
onstant.Proposition 1 For any �xed value c ≥ 0, it 
an be 
he
ked in polynomial time if the optimumvalue of k Most Vital Edges MST on graphs with weights 0 or 1 on edges is c.Proof : Consider an instan
e I of k Most Vital Edges MST formed by a weighted graph
G = (V,E), with weights 0 or 1, and by a positive integer k. Denote by G0 = (V,E0) thesubgraph indu
ed by the edges of weight 0. Let E1 = E \ E0 and m1 = |E1|.3



We have that opt(I) = 0 if and only if G0 is (k + 1) edge-
onne
ted. Indeed, if opt(I) = 0then G0 must be (k + 1) edge-
onne
ted otherwise opt(I) > 0. Conversely, if G0 is (k + 1)edge-
onne
ted, then removing any subset of k edges from G0 indu
es a minimum spanningtree of weight 0. Consequently, it is polynomial to verify if opt(I) = 0 sin
e it is polynomial todetermine the edge-
onne
tivity of a given graph. On
e we 
he
ked iteratively that opt(I) 6= ℓ,for 0 ≤ ℓ ≤ c− 1, we 
onsider all the (

m1

c

) graphs G0 ∪R, for any subset R ⊆ E1 with |R| = c.We 
an de
ide in polynomial time if opt(I) = c by verifying if G0∪R is (k+1) edge-
onne
ted.
2We show in the following that k Most Vital Edges MST is E-equivalent to MaxComponent de�ned as follows.Max ComponentInput: a 
onne
ted graph and a positive integer k.Output: a subset of k edges to be removed su
h that the number of 
onne
ted 
omponentsin the obtained graph is maximum.Theorem 1 k Most Vital Edges MST for graphs with weights 0 or 1 is E-equivalent toMax Component.Proof : We �rst show that Max 
omponent is E -redu
ible to k Most Vital EdgesMST. Given an instan
e I ofMax 
omponent formed by a graph G = (V,E) with n nodes,we 
onstru
t an instan
e I ′ of k Most Vital Edges MST 
onsisting of a 
omplete graph

G′ = (V,E′) where ea
h edge (i, j) ∈ E′ is assigned a weight 0 if (i, j) ∈ E and 1 otherwise.Let S∗ ⊆ E be a subset of k edges whose deletion from G generates a maximum numberof 
onne
ted 
omponents. By removing S∗ from G′, all the 
onne
ted 
omponents of G − S∗are linked in G′ − S∗ by edges of weight 1. Thus, the weight of a minimum spanning tree in
G′ − S∗ is equal to the number of 
onne
ted 
omponents in G − S∗ minus 1. Therefore, wehave opt(I ′) ≥ opt(I) − 1.Let S′ ⊆ E′ be a subset of k edges whose deletion from G′ generates a minimum spanningtree in G′ − S′ of weight v. If S′ 
ontains edges of weight 1 then by repla
ing these edges byedges of weight 0, either the weight of a minimum spanning tree in the modi�ed graph remainsun
hanged or it in
reases. Thus, 
onsidering S de�ned from S′ by repla
ing edges of weight1 with edges from E′ \ S′ of weight 0, se de�ne a subset S ⊆ E su
h that G − S 
ontains atleast v + 1 
onne
ted 
omponents. Hen
e, val(I, S) ≥ val(I ′, S′) + 1. In parti
ular, when S isan optimum solution, we have opt(I ′) + 1 ≤ val(I, S) ≤ opt(I). It follows from the previousresult that opt(I) = opt(I ′) + 1.Therefore, we have opt(I ′) ≤ opt(I) and ε(I, S) = opt(I)

val(I,S)−1 ≤ opt(I′)+1
val(I′,S′)+1−1 = opt(I′)−val(I′,S′)

val(I′,S′)+1

≤ opt(I′)−val(I′,S′)
val(I′,S′) = ε(I ′, S′).We show now that k Most Vital Edges MST is E -redu
ible to Max 
omponent.Consider an instan
e I of k Most Vital Edges MST formed by a graph G = (V,E) withedges of weight 0 or 1. From Proposition 1, we 
an 
onsider that opt(I) > 0. We 
onstru
tan instan
e I ′ of Max 
omponent 
onsisting of the graph G′ = (V,E′) obtained from G by
onsidering only edges of weight 0.Let S∗ be a subset of k edges whose removal from G generates a minimum spanning tree

T in G − S∗ of maximum weight. The weight of T being equal to the number of edges of T4



of weight 1, by deleting edges of S∗ ∩ E′ plus any k − |S∗ ∩E′| edges from E′, the number of
onne
ted 
omponents in G′ − S∗ is at least equal to the weight of T plus 1. Thus, we have
opt(I ′) ≥ opt(I) + 1.Consider a subset S′ of k edges whose deletion from G′ partitions G′ into val(I ′, S′)
onne
ted 
omponents. If val(I ′, S′) = 1 then we 
an repla
e S′ by another solution withvalue at least 2 obtained by sele
ting k edges in
luding a minimum 
ut sin
e from Proposition1, G′ is not (k + 1) edge-
onne
ted. Thus, we 
an assume that val(I ′, S′) ≥ 2. By removing
S′ from G, all 
onne
ted 
omponents of G′ − S′ are linked in G − S′ by edges of weight 1.Thus, the weight of a minimum spanning tree in G − S′ is equal to val(I ′, S′) − 1. Then,
val(I, S′) ≥ val(I ′, S′) − 1. In parti
ular, when S′ is an optimum solution in G′, we have
val(I, S′) = opt(I ′)− 1 and thus opt(I) ≥ opt(I ′)− 1. It follows from the previous result that
opt(I ′) = opt(I) + 1.Therefore, sin
e opt(I) > 0, we have opt(I ′) ≤ 2opt(I) and ε(I, S′) = opt(I)

val(I,S′) − 1 ≤
opt(I′)−1

val(I′,S′)−1 − 1 = opt(I′)−val(I′,S′)
val(I′,S′)−1 = val(I′,S′)

val(I′,S′)−1
opt(I′)−val(I′,S′)

val(I′,S′) ≤ 2 opt(I′)−val(I′,S′)
val(I′,S′) = 2ε(I ′, S′).

2From Theorem 1, we obtain the two following results. First, we slightly strengthen theNP -hardness result of Frederi
kson and Solis-Oba [6℄ by spe
ifying a more restri
ted 
lass ofinstan
es for whi
h the problem remains NP-hard.Corollary 1 k Most Vital Edges MST is NP-hard even for 
omplete graphs with weights0 or 1.Proof : The E -redu
tion fromMax Component to k Most Vital Edges MST 
onstru
tsfrom any graph G a 
omplete graph G′ with weights 0 or 1. Sin
e Max Component is NP-hard [6℄, the results follows. 2Se
ond, we establish a 
onstant approximation result for graphs with weights 0 or 1.Corollary 2 k Most Vital Edges MST is 3-approximable for graphs with weights 0 or 1.Proof : In the E -redu
tion from k Most Vital Edges MST to Max 
omponent, wehave shown that any solution S of I ′ is su
h that ε(I, S) ≤ 2ε(I ′, S). Thus, r(I, S) − 1 ≤
2(r(I ′, S) − 1) and then r(I, S) ≤ 2r(I ′, S) − 1. Sin
e r(I ′, S) = 2 as established in [6℄, wehave r(I, S) ≤ 3. 24 k Most Vital Nodes MSTWe study in this se
tion the 
omplexity of k Most Vital Nodes MST. First we showthat k Most Vital Nodes MST is at least as hard as k Most Vital Edges MST byestablishing an E -redu
tion from the edge version to the node version. As far as we know,this is the �rst result in the literature that establishes a dire
t relationship between the k mostvital edge version and the k most vital node version of a problem. Using the NP-hardness ofthe edge version even for graphs with weights 0 or 1 [6℄, this redu
tion implies the NP-hardnessof k Most Vital Nodes MST on the same 
lass of graphs. We strengthen this result byproving that k Most Vital Nodes MST is not approximable within a fa
tor n1−ǫ, for any
ǫ > 0, if NP 6= ZPP, even for 
omplete graphs with weights 0 or 1.5



Theorem 2 k Most Vital Edges MST is E-redu
ible to k Most Vital Nodes MST.Proof : Consider an instan
e I of k Most Vital Edges MST formed by a weightedgraph G = (V,E) with V = {v1, . . . , vn} and |E| = m. We 
onstru
t an instan
e I ′ of kMost Vital Nodes MST formed by a graph G′ = (V ′, E′) as follows (see Figure 1). We
onsider in G′ the nodes of V and m nodes r1, . . . , rm. Let R = {r1, . . . , rm}. To ea
h edge
eℓ = (vi, vj) ∈ E of weight wij , ℓ = 1, . . . ,m and i < j, we asso
iate two edges in E′ : (vi, rℓ)of weight wij and (rℓ, vj) of weight 0. Let K

vi

k , for i = 1, . . . , n, be n 
omplete graphs ofsize k with Xvi
= {v1

i , . . . , v
k
i } and weights 0 on their edges. We 
onne
t ea
h node vi, for

i = 1, . . . , n, to the k nodes of Kvi

k and assign a weight 0 to these added edges. We also add,for ea
h edge (vi, rℓ) ∈ E′ the edges (vh
i , rℓ), for h = 1, . . . , k, with the same weight as theweight of the edge (vi, rℓ).
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Figure 1: Constru
tion of an instan
e of k Most Vital Nodes MST from an instan
e of k MostVital Edges MSTSuppose �rst that there exists a subset S∗ ⊆ E, with |S∗| = k, su
h that a minimumspanning tree T in G − S∗ has a maximum weight. We set N∗ = {rℓ : eℓ ∈ S∗}. By deleting
N∗ from G′, we 
onstru
t a spanning tree T ′ in G′ − N∗ as follows : we take for ea
h edge
eℓ = (vi, vj) ∈ T with i < j, the edges (vi, rℓ) and (rℓ, vj) in T ′, for ea
h edge eh = (vi, vj) 6∈ Twith i < j, the edge (rh, vj) in T ′, and we add the paths vi, v

1
i , . . . , v

k
i , i = 1, . . . , n. We prove,by 
ontradi
tion, that T ′ is a minimum spanning tree in G′−N∗. Suppose that there exists aspanning tree T ′′ in G′ −N∗ of weight stri
tly inferior to that of T ′. Then, the spanning tree
onstituted by the edges eℓ = (vi, vj) su
h that (vi, rℓ) ∈ T ′′ has a smaller weight than T in

G − S∗, 
ontradi
ting the optimality of T . Thus, T ′ is a minimum spanning tree in G′ − N∗.Therefore, we have opt(I ′) ≥ opt(I).Consider now a subset N , with |N | = k, and a minimum spanning tree T ′ in G′ − N . If
N 
ontains vi or one node vh

i , for a given i and h, then the weight of a MST in G′ −N is thesame as in G′ − (N \ {vi}) or G′ − (N \ {vh
i }). When removing all nodes vi, v

h
i from N we6



obtain a subset N ′ ⊆ R, |N ′| ≤ k. Sin
e N ′ 
orresponds to edges in G, any subset N ′′ ⊆ R
ontaining N ′ su
h that |N ′′| = k is su
h that the weight of a MST in G′ − N ′′ is at least aslarge as the weight of a MST in G′ − N ′. Let S = {eℓ : rℓ ∈ N ′′}. Consider T the spanningtree in G − S 
onstituted by the edges eℓ = (vi, vj) su
h that the edge (vi, rℓ) ∈ T ′. T isoptimal, sin
e otherwise, the existen
e of a spanning tree T ′′ of weight stri
tly inferior to thatof T would imply that the 
orresponding spanning tree 
onstru
ted from T ′′ in G′ − N ′′, asexplained above, has a weight stri
tly inferior to that of T ′. Thus, T is a minimum spanningtree in G − S of the same weight as T ′. Hen
e, val(I, S) = val(I ′, N ′′). In parti
ular, when
N ′′ is an optimal solution in G′, we have opt(I ′) = val(I, S) ≤ opt(I). It follows from theprevious result that opt(I) = opt(I ′). Therefore, we have ε(I, S) = ε(I ′, N ′′). 2Theorem 3 k Most Vital Nodes MST is not approximable within a fa
tor n1−ǫ, for any
ǫ > 0, unless NP= ZPP, even for 
omplete graphs of order n with weights 0 or 1.Proof : We propose a gap-redu
tion fromMax independent set to k Most Vital NodesMST.Denote by α(G) the 
ardinality of maximum independent set of G. Let g be the nonapproximation gap of Max independent set. Thus, for a given integer ℓ, it is NP-hard tode
ide if α(G) = ℓ or α(G) < ℓ

g
.Given an instan
e I of Max independent set formed by a graph G = (V,E), we
onstru
t an instan
e I ′ of k Most Vital Nodes MST 
onstituted by a 
omplete graph

G′ = (V,E′) where ea
h edge (i, j) ∈ E′ is assigned a weight 0 if (i, j) ∈ E and 1 otherwise(see Figure 2). We set k = n − ℓ. We show that:1. α(G) = ℓ ⇒ opt(I ′) ≥ ℓ − 12. α(G) < ℓ
g
⇒ opt(I ′) < ℓ−1

g

45 3215 43
21 1 1 01 0

1 10 00
Figure 2: Constru
tion of an instan
e of k Most Vital Nodes MST from an instan
e of MaxIndependent Set1. Suppose �rst that there exists an independent set V ∗ in G of 
ardinality ℓ and let

N∗ = V \V ∗. By removing N∗ from G′, all nodes of G′ − N∗ are 
onne
ted by edgesof weight 1 only. Thus, we obtain a minimum spanning tree in G′ − N∗ of value ℓ − 1.Therefore, opt(I ′) ≥ ℓ − 1.2. Suppose now that α(G) < ℓ
g
. Hen
e, there exists a maximum independent set V ∗ su
hthat |V ∗| < ℓ

g
. If the node set N∗ of 
ardinality n − ℓ to be removed from G′ is su
hthat N∗ ∩ V ∗ = ∅ then let V1 = V \(N∗ ∪ V ∗). Ea
h node of V1 is at least 
onne
tedto one node of V ∗ by an edge of weight 0, otherwise V ∗ ∪ {v} would be an independent7



set in G of larger 
ardinality. Thus, the weight of a minimum spanning tree in G′ − N∗
annot ex
eed ℓ
g
− 1. Sin
e g > 1, we have ℓ

g
− 1 < ℓ−1

g
. Therefore if α(G) < ℓ

g
then

opt(I ′) < ℓ−1
g
. If N∗ ∩ V ∗ 6= ∅ then a minimum spanning tree in G′ − N∗ would have aweight stri
tly inferior to ℓ

g
− 1.Sin
e Max independent set is not approximable within a fa
tor n1−ǫ, for any ǫ >

0, unless NP= ZPP [7℄, we dedu
e that k Most Vital Nodes MST is also not n1−ǫ-approximable, for any ǫ > 0, unless NP= ZPP. 2From Theorem 3 and Corollary 2, we 
an give the following result.Corollary 3 There is no E-redu
tion from k Most Vital Nodes MST for graphs withweights 0 or 1 to k Most Vital Edges MST for graphs with weights 0 or 1.5 Min Edge Blo
ker MSTWe present in the following a relationship between k Most Vital Edges MST and MinEdge Blo
ker MST.Proposition 2 k Most Vital Edges MST andMin Edge Blo
ker MST are polynomial-time equivalent.Proof : If an algorithm Ak solves k Most Vital Edges MST de�ned on graph G for all
1 ≤ k ≤ λ(G) − 1, then we 
an run Ak for k = 1, . . . , λ(G) − 1 and 
hoose the smallest kyielding optimum at least U . If no k exists then the optimum forMin Edge Blo
ker MSTis λ(G). Conversely, if an algorithm BU solves Min Edge Blo
ker MST with any bound
U , we 
an apply binary sear
h to lo
ate the largest U that requires the removal of at most knodes. 2Theorem 4 Min Edge Blo
ker MST is NP-hard even for 
omplete graphs with weights0 or 1.Proof : Follows from Proposition 2 and Corollary 1. 26 Min Node Blo
ker MSTThe equivalent of Proposition 2 applied to nodes also holds (with a similar proof).Proposition 3 k Most Vital Nodes MST andMin Node Blo
ker MST are polynomial-time equivalent.Theorem 5 Min Node Blo
ker MST is NP-hard even for 
omplete graphs with weights0 or 1.Proof : Follows from Proposition 3 and Theorem 3. 2This result 
ould also be established by the following gap-redu
tion from Min EdgeBlo
ker MST. 8



Theorem 6 Min Edge Blo
ker MST is gap-redu
ible to Min Node Blo
ker MST.Proof : Consider an instan
e I forMin Edge Blo
ker MST formed by a graph G = (V,E),with |V | = n and |E| = m, and a positive integer U . We 
onstru
t an instan
e I ′ for MinNode Blo
ker MST, 
onstituted by a graph G′ = (V ′, E′) and a positive integer U , usingthe same 
onstru
tion as in Theorem 2, but we modify the size of the n 
omplete graphs whi
hwe set to be m + 1. We show that1. opt(I) ≤ c ⇒ opt(I ′) ≤ c2. opt(I) > cρ ⇒ opt(I ′) > cρ1. Let S∗ ⊆ E be a subset of minimum 
ardinality su
h that a minimum spanning tree
T in G − S∗ has a weight at least U . We set N∗ = {rℓ : eℓ ∈ S∗}. By deleting N∗from G′, we 
onstru
t a minimum spanning tree T ′ in G′ − N∗ of the same weight asthat of T as explained in Theorem 2. Thus, the weight of T ′ is at least U . Therefore,
opt(I ′) ≤ opt(I) ≤ c.2. Suppose now that opt(I) > cρ. When we remove all nodes of R from G′, the weight ofa minimum spanning tree is in�nite. Hen
e, opt(I ′) ≤ m. Let N ⊆ V ′ be an optimalsolution whose deletion generates a minimum spanning tree T ′ in G′ − N of weight atleast U . If N 
ontains vi or one node vh

i , for a given i and h, then N must 
ontain all the
m + 1 nodes vi and Xvi

, sin
e otherwise the weight of a minimum spanning in G′−N isthe same as in G′ − (N \ {vi}) or G′ − (N \ {vh
i }). Therefore, sin
e opt(I ′) ≤ m, we 
an
onsider that N ⊆ R. Let S = {eℓ : rℓ ∈ N}. We 
onstru
t a minimum spanning tree Tin G− S as explained in Theorem 2. The weight of T being equal to the weight of T ′ isat least U . Hen
e, opt(I) ≤ val(I, S) = val(I ′, N) = opt(I ′) and thus opt(I ′) > cρ.

2In the absen
e of known inapproximability results forMin Edge Blo
ker MST, we 
anonly exploit the above gap-redu
tion to establish the NP-hardness of Min Node Blo
kerMST. Nevertheless, we 
an obtain the following stronger result.Theorem 7 Min Node Blo
ker MST is NP-hard to approximate within a fa
tor 1.36 evenfor graphs with weights 0 or 1.Proof : We propose a gap-redu
tion from Min Vertex Cover. Consider an instan
e I ofMin Vertex Cover formed by a graph G = (V,E) with V = {v1, . . . , vn}. We 
onstru
tfrom I, an instan
e I ′ of Min Node Blo
ker MST 
onstituted by a graph G′ = (V ′, E′)and a positive integer U as follows (see Figure 3). G′ is a 
opy of G to whi
h we add a path
x1, x2, . . . , xn with X = {x1, . . . , xn} and we 
onne
t ea
h node xi to the nodes x1

i , . . . , x
n
i ofa 
omplete graph Ki

n of size n. We also 
onne
t ea
h node xr
i to node xi+1 and ea
h node

xi to node xr
i+1 for i = 1, . . . , n − 1 and r = 1, . . . , n. We 
onne
t ea
h node vi to nodes xiand xr

i , for i = 1, . . . , n and r = 1, . . . , n. We asso
iate a weight 1 to all edges of the path
(x1, x2), (x2, x3), . . . , (xn−1, xn) and to edges (xr

i , xi+1) and (xi, x
r
i+1) for i = 1, . . . , n − 1 and

r = 1, . . . , n, and a weight 0 to all other edges in E′. We set U = n − 1.We show that 9
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Figure 3: Constru
tion of an instan
e ofMin Node Blo
ker MST from an instan
e ofMin VertexCover1. opt(I) ≤ c ⇒ opt(I ′) ≤ c2. opt(I) > cρ ⇒ opt(I ′) > cρwhi
h establishes thatMin Node Blo
ker MST is NP-hard to approximate within a fa
tor1.36, sin
e Min Vertex Cover is NP-hard to approximate within a fa
tor 1.36 [5℄.1. Let V ∗ ⊆ V be a minimum vertex 
over in G. By deleting the nodes of V ∗ from G′, thenodes of V \V ∗ form an independent set in G′ − V ∗. Then, 
onne
ting any two nodes
xi, xj in G′ −V ∗ requires to use a path of weight at least 1. Thus, a minimum spanningtree in G′ − V ∗, of weight U = n − 1, is obtained by 
onne
ting the nodes xi throughthe path x1, x2, . . . , xn and ea
h node vi ∈ V \V ∗ and xr

i to node xi, for i = 1, . . . , n and
r = 1, . . . , n. Therefore, we get opt(I ′) ≤ opt(I) ≤ c.2. Suppose now that opt(I) > cρ. When we remove all nodes vi, i = 1, . . . , n from G′, theweight of a minimum spanning tree in the resulting graph is U . Hen
e, opt(I ′) ≤ n.Let N ⊆ V ′ be an optimal solution. If N 
ontains nodes xi or xℓ

i for a given i and ℓ,then N must 
ontain all the nodes xi and xr
i for r = 1, . . . , n, otherwise the weight of aminimum spanning tree in G′ − N is the same as in G′ − (N\{xi}) or G′ − (N\{xℓ

i}).Therefore, sin
e opt(I ′) ≤ n, we 
an 
onsider in the following that N is in
luded in V .We show in the following that N is a vertex 
over in G. Suppose that there exists anedge (vi, vj) ∈ E su
h that vi 6∈ N and vj 6∈ N . By deleting N from G′, the weight of aminimum spanning tree in G′−N is at most equal to n− 2. Indeed, in su
h a minimumspanning tree the nodes xi, vi, vj , xj are not 
onne
ted by the edges (vi, xi), (xj , vj) andthe path on X from xi to xj but by the path (xi, vi), (vi, vj), (vj , xj) of weight 0, thus
ontradi
ting the fa
t that the weight of a minimum spanning tree in G′−N must be atleast n−1. Thus, N is a vertex 
over in G and opt(I) ≤ val(I,N) = val(I ′, N) = opt(I ′)and then opt(I ′) > cρ.
210



7 Con
lusionsAs a �rst result, we established or strengthened the NP-hardness of the four studied prob-lems. Regarding approximation, negative results were obtained only for the node relatedversions and positive results were obtained only for k Most Vital Edges MST. This situ-ation, 
ombined with our redu
tions from edge related versions to node related versions (seeTheorems 2 and 6, and Corollary 3) 
learly shows that node related versions are more dif-�
ult than edge related versions. An interesting perspe
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