
New insight into 2-community structures in

graphs with applications in social networks

Cristina Bazgan1,2, Janka Chlebikova3, Thomas Pontoizeau1

1 PSL, Université Paris-Dauphine, LAMSADE UMR CNRS 7243, France
bazgan,thomas.pontoizeau@lamsade.dauphine.fr,

2 Institut Universitaire de France
3 School of Computing, University of Portsmouth, UK

janka.chlebikova@port.ac.uk

Abstract. We investigate the structural and algorithmic properties of 2-
community structure in graphs introduced by Olsen [13]. A 2-community
structure is a partition of vertex set into two parts such that for each
vertex of the graph number of neighbours in/outside own part is in cor-
relation with sizes of parts. We show that every 3-regular graph has a 2-
community structure which can be found in polynomial time, even if the
subgraphs induced by each partition must be connected. We introduce
a concept of a 2-weak community and prove that it is NP-complete to
find a balanced 2-weak community structure in general graphs even with
additional request of connectivity for both parts. On the other hand, the
problem can be solved in polynomial time in graphs of degree at most 3.

Keywords: graph theory, complexity, graph partitioning, community struc-
ture, clustering, social networks

1 Introduction

The problematic around community structures is closely related to the well es-
tablished research areas of clustering and graph partitioning where similar prob-
lems have been studied from different aspects. A good introduction and overview
of clustering and partitioning results can be found in [6, 11, 12, 14]. The problems
associated with communities are well motivated by current research in social net-
works such as Facebook, Linkedin, see also Section 2 in [5] for more details about
various applications. A standard abstract model for such networks are graphs,
in which a community in a graph intuitively corresponds to a dense subgraph.
More formally, a community structure is a partition of vertices with some addi-
tional constrains such as number of edges between parts or general constrains as
connectivity for each part. Therefore the new results for communities may find
applications in the areas similar to a graph partition such as parallel-computing,
VLSI-circuit design, route planning [8] and divide-and-conquer algorithms [15].

There are several definitions proposed for a community structure in the lit-
erature together with some structural and complexity results [3, 4, 9, 13]. The

2 Bazgan, Chlebikova & Pontoizeau

results in this paper are based on the definition of community structure intro-
duced recently by Olsen [13] which seems to be a natural model for a community
in undirected connected graphs. We introduce the concept of a weak community
structure in which every member of a community considers itself as a part of the
community. We investigate the structural properties of the members of commu-
nities for fixed number of two communities in the graphs of maximum degree 3
and present some algorithmic results. The results are further extended for a weak
community together with additional constrains such as connectivity or the same
size for both parts (balanced partition).

The partition of graphs are intensively studied in the literature with various
measures to evaluate their optimality, see for example [1, 6]. In the balanced
partition problem, which can be seen as a generalisation of the bisection problem
to any given number of parts, the goal is to minimise the number of edges between
partitions. It is known that the problem can not be approximated within any
finite factor in polynomial time in general graphs and it remains APX-hard even
if the maximum degree of the tree is constant [10]. It demonstrates that some
graph partitions problems which are related to e.g. balanced communities are
hard to solve even for restricted graph classes. This indicates hardness of different
problems related to a community structure too, hence any positive results in
community structure problems are important to get better understanding of
differences between community and partition problems.

The paper is structured as follows. In Section 2 we introduce formally some
notation and definitions of problems we study. In Section 3 we show that every
3-regular graph has a 2-community structure which can be found in polynomial
time, even if the subgraphs induced by each partition must be connected. In
Section 4 we prove that every graph of maximum degree 3 has a balanced weak
2-community structure that can be found in polynomial time, while the problem
is NP-complete in general graphs even when both parts should remain connected.
Conclusions and open questions are provided in Section 5. Due to the space
constraints, some proofs are defered to a full version.

2 Preliminaries

In the paper, all considered graphs are undirected and connected. For any sub-
graph C of the graph G = (V,E) and a vertex v ∈ V let NC(v) (resp. NC [v])
be the set of the neighbours (resp. closed neighbours) of v in C, d(v) be the
degree of the vertex v in G. For a partition of V into two parts and v ∈ V let
din(v) (resp. dout(v)) be the number of neighbours in its own part (resp. out of
its part). A partition {C1, C2} of V is connected if the subgraphs induced by C1

and C2 are connected. A partition {C1, C2} of V is balanced if the sizes C1, C2

differ by at most 1. A graph is k-regular if every vertex is of degree k, k ≥ 2.
A pendant vertex of G is any vertex of degree 1. A star is a complete bipartite
graph K1,ℓ for any ℓ ≥ 1.

Now we introduce Olsen’s definition of a k-community structure from [13].

New insight into 2-community structures in graphs 3

Definition 1. A k-community structure for a connected graph G = (V,E) is a
partition Π = {C1, . . . , Ck} of V , k ≥ 2, such that ∀i ∈ {1, . . . , k}, |Ci| ≥ 2, and
∀v ∈ Ci, ∀Cj ∈ Π, j 6= i, the following holds

|NCi
(v)|

|Ci| − 1
≥

|NCj
(v)|

|Cj |
(1)

For a weak k-community structure, (1) is replaced by a “weaker” condition

|NCi
[v]|

|Ci|
≥

|NCj
(v)|

|Cj |
. (2)

Notice that a k-community structure is obviously a weak k-community struc-

ture since
|NCi

[v]|

|Ci|
=

|NCi
(v)|+1

|Ci|−1+1 ≥
|NCi

(v)|

|Ci|−1 , but the opposite is not true (see

Fig. 1).

Fig. 1. A 2-weak-community structure of a graph in which the blank vertex does not
satisfy condition (1) but satisfies condition (2).

If we remove the restriction k on the number of communities from Defini-
tion 1, but (1) is still true for each vertex, we obtain a concept of a community
structure introduced by Olsen [13]. Olsen proved that a community structure
without any restriction on the number of communities can be found in polyno-
mial time for any graphs (with at least 4 vertices) except the star graphs. He
also proved that it was NP-complete to find a community structure in a graph
in which a given set of vertices is included in a part [13].

In this paper we investigate the problems of a community structure for fixed
number of two communities:

2-Community

Input: A graph G.
Question: Does G have a 2-community structure?

Obviously, if G has a 2-community structure, it must have at least 4 vertices
and not be isomorphic to a star which we assume in the paper.

In theWeak 2-Community problem we are looking for a week 2-community
structure in a graph. Adding the balanced condition to the 2-Community

problem (for graphs with even number of vertices), we obtain the Balanced

2-Community problem introduced by Estivill-Castro et al [9]. Similarly we can
define the Balanced Weak 2-community problem.

The additional constrain which asks for subgraphs induced by each part of
the partition to be connected is a natural constrain useful for the problems

4 Bazgan, Chlebikova & Pontoizeau

related to the connectedness. The Connected 2-Community problem is to
decide if a graph has a connected 2-community structure, i.e. a 2-community
structure {C1, C2} such that the subgraphs induced by C1, C2 are connected.
We can define analogous problems for weak and balanced versions.

The following overview summarises the classes of graphs in which a 2-commu-
nity structure (hence also weak 2-community) always exists. Depending on the
case the results can be extended to connected or balanced communities. All
these results are either easy observations or contained as the main results in this
paper.

In this way, there always exists a 2-community structure which can be found
in polynomial time in (considering graphs with at least 4 vertices):

• 3-regular graphs, even a connected 2-community structure (Section 3).

• graphs of bounded tree-width (except stars), even a balanced 2-community
structure. (The results follow from [2], see Section 4 for more details.)

• graphs with minimum degree ⌈ (c−1).|V |
c ⌉ where c is the size of an inclusion-

wise maximal clique in G. Denote by C such a clique in G and consider the
partition {C, V \C}. Then the condition (1) is satisfied for all vertices in C
(the left part of the inequality is 1). The condition (1) is also satisfied for

all neighbours x ∈ V \ C of vertices in C since din(x)
|V |−c−1 ≥

(c−1).|V |
c

−(c−1)

|V |−c−1 ≥
c−1
c ≥ dout(x)

c . Finally, the other vertices in V \C trivially satisfy condition
(1) since the right part of the inequality is 0.

• graphs of maximum degree 2 (hence either a cycle or a path). Indeed, any
balanced connected partition is a connected 2-community structure (an
easy exercise).

• complete graphs, since any partition in which each part has at least 2 ver-
tices is an example of a connected 2-community structure (an easy exercise).

Moreover, there always exists a balanced weak 2-community structure in
graphs of maximum degree 3, but this is not true for 2-community structure, see
Section 4.

Estivill-Castro et al [9] proved that the problem of finding a balanced 2-
community structure is NP-complete. In Section 4 we show that the same result
also holds for a weak community, even with additional constrain of connectivity
for both parts. We also present a shorter proof of the known NP-complete result
for a balanced 2-community in general graphs based on an alternative definition
of community structure [3], which also implies NP-completeness for a connected
balanced 2-community. On the other hand, we prove that every graph of degree
at most 3 has a weak balanced 2-community structure which can be found in a
polynomial time.

3 2-community structure in 3-regular graphs

In this section we show that any 3-regular graph has a 2-community structure
(even connected) computable in polynomial time.

New insight into 2-community structures in graphs 5

First, the restrictions on the size of partitions are discussed to ensure the
vertices fulfil the condition (1) in case of a 2-community structure.

Lemma 1. Let G be a 3-regular graph of size n. Let {C1, C2} be a partition of
G such that ⌈n−1

3 ⌉ ≤ |C1| ≤ n − ⌈n−1
3 ⌉. Then each vertex of G which has at

most one neighbour out of its own part fulfils the condition (1) of a 2-community
structure.

Proof. Let {C1, C2} be a fixed partition of G such that ⌈n−1
3 ⌉ ≤ |C1| ≤ n −

⌈n−1
3 ⌉. It is clear that the condition (1) is true for each vertex which has no

neighbour outside its own part. Now let suppose v1 ∈ C1 be a vertex which
has one neighbour in C2 and v2 ∈ C2 be one which has one neighbour in C1.
Since |C1| ≤ n− ⌈n−1

3 ⌉ we have |C1| ≤ n− n−1
3 which implies 2

|C1|−1 ≥ 1
n−|C1|

.

Therefore the condition (1) is fulfilled for v1. Similarly since ⌈n−1
3 ⌉ ≤ |C1| we

have 2
n−|C1|−1 ≥ 1

|C1|
, hence the condition (1) is fulfilled for v2. ⊓⊔

Lemma 2. Let G be a 3-regular graph of size n. Let {C1, C2} be a 2-partition
of G such that |C1| = ⌈n

3 ⌉ or |C1| = ⌊n
3 ⌋. Then each vertex of degree 3 from C1

which has two neighbours in C2 fulfils the condition (1).

Theorem 1. Every 3-regular graph has a 2-community structure. Moreover it
can be found in polynomial time.

Proof. Let G = (V,E) be a 3-regular graph of size n. The algorithm runs in two
stages.

Stage 1: The algorithm finds a partition {C1, C2} of V such that |C1| = ⌈n−1
3 ⌉

and at most two vertices from C1 have more than one neighbour in C2.

Stage 2: The algorithmmoves some vertices between C1 and C2 until ⌈
n−1
3 ⌉ ≤

|C1| ≤ n−⌈n−1
3 ⌉ and each vertex of G has a restricted number of neighbours

out of its own part in a such way that Lemma 1 or 2 can be applied.

Stage 1:
Let u, v ∈ V be such that (u, v) ∈ E and put C1 = {u, v}. Now repeat the
following steps (S1) and (S2) until |C1| = ⌈n−1

3 ⌉:

(S1) Let w be a neighbour of u (or v) which is not in C1, put C1 := C1 ∪ {w},
u := w (or v := w).

(S2) If there is no such vertex w, the degree of each vertex in the subgraph
induced by C1 is 2 or 3. In such a case let u be any vertex of degree 2 in
the subgraph induced by C1.

It is clear that at the end of the first stage the algorithm finishes with a
set C1 such that |C1| = ⌈n−1

3 ⌉. If it is not possible to apply (S1) and (S2) and
|C1| < ⌈n−1

3 ⌉ then all vertices in C1 must have all neighbours in C1 which means
that G is not connected.

Furthermore at most two vertices (u and v) from C1 may have more than
one neighbour outside C1 and the subgraph induced by C1 is connected. Define
C2 = V \ C1.

6 Bazgan, Chlebikova & Pontoizeau

Stage 2: We distinguish two major cases:

Case 1: If ∀w ∈ C2, dout(w) ≤ 1 then all vertices in G except u and v have
at most one neighbour out of its part. Using Lemma 1, these vertices fulfil the
condition (1). Moreover, ⌈n−1

3 ⌉ equals ⌊n
3 ⌋ or ⌈

n
3 ⌉ and according to Lemma 2, (1)

is also true if u, v have two vertices out of C1. Hence, {C1, C2} is a 2-community
structure.

Case 2: There exists a vertex w ∈ C2, such that dout(w) ≥ 2.

Now we distinguish several subcases:

(A) ∀x ∈ C1, dout(x) ≤ 1

(B) All vertices from C1 which have more than one neighbor outside C1 are
adjacent to w (only u, v ∈ C1 are possible candidates).

(C) No vertex from C1 which has more than one neighbor outside C1 is adjacent
to w (only u, v ∈ C1 are possible candidates).

(D) Both vertices u, v ∈ C1 have more than one neighbor outside C1, but only
one of them is adjacent to w.

Case 2(A): Repeat the update step until it is possible:
if ∃z ∈ C2, dout(z) ≥ 2, update C1 and C2 as follows: C1 := C1 ∪ {z}, C2 :=
C2 \ {z}.
If no update step is possible, then return {C1, C2}.

After each update step, two neighbours of z in C1 have degree three. After
repeating the update step k times, C1 has ⌈n−1

3 ⌉ + k vertices and at least 2k
vertices in C1 have degree three in the subgraph induced by C1. Hence, we can
repeat the update step at most ⌈n−1

3 ⌉ − 1 times. Otherwise the degree of each
vertex in C1 is three which implies G is not connected. Thus |C1| ≤ 2⌈n−1

3 ⌉−1 ≤
n − ⌈n−1

3 ⌉. Note that now every vertex in G has at most one neighbour out of
its part and thus applying Lemma 1, {C1, C2} is a 2-community structure.

Case 2(B): Wlog we suppose that dout(u) = 2 and u is adjacent to w. Further-
more, if dout(v) = 2 then also v is adjacent to w.

Now using C1, C2 we define a 2-community partition. After the initial update:
C1 := C1 ∪ {w}, C2 := C2 \ {w}, all vertices in C1 have at most one neighbor in
C2 and |C1| = ⌈n−1

3 ⌉+ 1. Then repeat the update step:

– if ∃z ∈ C2, dout(z) ≥ 2, define C1 := C1 ∪ {z}, C2 := C2 \ {z},

until |C1| = 2⌈n−1
3 ⌉ − 1 or if there is no such a vertex z to update C1.

There are two possible scenarios:
(i) if |C1| ≤ 2⌈n−1

3 ⌉ − 1 and there is no such vertex z ∈ C2 such that
dout(z) ≥ 2, then each vertex in G has at most one neighbour out of its own part.
Obviously, |C1| ≤ n − ⌈n−1

3 ⌉ and due to Lemma 1, {C1, C2} is a 2-community
structure.

(ii) |C1| = 2⌈n−1
3 ⌉−1 and ∃z ∈ C2 such that dout(z) ≥ 2: the update step has

been repeated ⌈n−1
3 ⌉ − 2 times and in each step the number of vertices x ∈ C1

with dout(x) = 1 is decreased by at least 2 (the neighbours of z in C1). It means
every vertices in V has all neighbours in its own part, except at most three
vertices, each having one neighbour out of its part.

New insight into 2-community structures in graphs 7

– If n ≡ 2 mod 3, then the size of |C2| = n − (2⌈n−1
3 ⌉ − 1) = ⌈n

3 ⌉. Because
|C1| ≤ n−⌈n−1

3 ⌉, due to Lemma 1, all vertices with at most one neighbor out
of its own part fulfil the condition (1). If a vertex of C2 is adjacent to exactly
two vertices from C1 then the condition (1) is true according to Lemma 2. A
vertex of C2 cannot be adjacent to all three vertices in C1, otherwise C1∪{w}
is a disconnected part of G. Hence, {C1, C2} is a 2-community partition.

– If n ≡ 0 mod 3 or n ≡ 1 mod 3, then define the last update: C1 := C1 ∪
{z}, C2 := C2 \ {z}. Now only one vertex of C1 has one neighbour in C2. Be-
cause |C1| = 2⌈n−1

3 ⌉ ≤ n−⌈n−1
3 ⌉, the condition (1) is true for all vertices of G

because of Lemma 1. Hence the updated partition {C1, C2} is a 2-community
structure.

Case 2(C): Wlog we suppose that dout(u) = 2. Update C1 := C1 ∪ {w} \
{u}, C2 := V \ C1.

Notice that after the update, |C1| = ⌈n−1
3 ⌉ and there may be at most two vertices

in C1 which have two neighbours in C2. Hence we are again in one of the cases
(A)-(D) of second stage, but each time we apply this update the size of the cut
between C1 and C2 is decreases by two. Therefore the process is finite.

Case 2(D): Wlog suppose that u is adjacent to w and dout(u) = 2. Update
C1 := C1 ∪ {w} \ {v}, C2 := V \ C1.

Notice that after the update, |C1| = ⌈n−1
3 ⌉. Moreover, u has two neighbours

inside C1 since u is obviously not adjacent to v. Hence we are in one of the
previous cases of stage 2, since there is at most one vertex in C1 (the neighbour
of v) which could have two neighbours in C2. ⊓⊔

Now we investigate the problem of finding a 2-community structure with
additional condition of connectivity for each part. Using the algorithm from
Theorem 1 as a tool we extend the result for a connected 2-community structure
in 3-regular graphs, but with many fine details in the proof.

Lemma 3. Let G be a 3-regular graph and {C1, C2} a connected 2-partition of
G with ⌈n−1

3 ⌉ ≤ |C1| ≤ n − ⌈n−1
3 ⌉ such that each part has at most one vertex

with two neighbours out of its own part. Then G has a connected 2-community
structure which can be found in polynomial time.

Proof. The main idea is to move selected vertices between two parts in such a
way that it preserves connectivity and offers the options to use Lemmas 1 or 2.

We discuss four cases depending on which vertices have two neighbours out
of its own part. Notice that transferring a vertex which has two neighbours out
of its part does not compromise the connectivity of the partition.

(a) If there is no vertex in C1 and C2 with two neighbours out of its own
part, then using Lemma 1 the partition {C1, C2} is already a connected
2-community structure.

(b) If the only vertex with two neighbours out of its own part is in C2, then
update C1, C2 using the following loop:

8 Bazgan, Chlebikova & Pontoizeau

while |C1| < n− ⌈n−1
3 ⌉ and there exists a vertex z in C2 which has two

neighbours in C1, update C2 := C2 \ {z}, C1 := C1 ∪ {z}.

Obviously after each run of the while loop both parts of the partition remains
connected. At the end of the while loop
– if |C1| < n − ⌈n−1

3 ⌉, then all vertices in G have at most one neighbour
out of their parts and satisfy the properties of 2-community structure due
to Lemma 1,
– if |C1| = n − ⌈n−1

3 ⌉ then |C2| = ⌈n−1
3 ⌉ and hence all vertices in C2 with

two neighbours out of the own part satisfy the properties of 2-community
structure due to Lemma 2, the rest of vertices satisfy Lemma 1.

(c) The only vertex with two neighbours out of its own part is in C1. Then the
case is similar to (b) by symmetry swapping the roles between C1 and C2.

(d) There are two vertices:
– v1 ∈ C1 with two neighbours in C2 and let v01 be the neighbour of v1 ∈ C1;
– v2 ∈ C2 with two neighbours in C1 and let v02 be the neighbour of v2 ∈ C2.

Now we need to distinguish two cases:

(i) If (v1, v2) ∈ E, then we update the partition as follows. If |C1| < n −
⌈n−1

3 ⌉ then define a new partition C1 := C1 ∪ {v2}; C2 := C2 \ {v2},
otherwise C1 := C1 \ {v1}; C2 := C2 ∪ {v1}. Obviously, {C1, C2} is a
connected partition which fulfil initial conditions of lemma, so we can
apply case (a), (b), (c) or (d) again. Notice that the case (d) can be
repeated only finite number of times since the cut size between C1 and
C2 decreases each time the case is applied.

(ii) If (v1, v2) /∈ E we define the following update C1 := C1 ∪ {v2} \ {v1},
C2 := C2 ∪ {v1} \ {v2}. The new partition is a connected partition with
no change in sizes and the following options are possible:

– If dout(v
0
1) = 0 or dout(v

0
2) = 0 before the update, then update

removes at least one of the vertices with two outgoing edges. Now
we can again apply one of cases (a), (b) or (c) which leads to a
connected 2-community structure.

– If dout(v
0
1) > 0 and dout(v

0
2) > 0 then we can apply case (d) again.

This process is finite because each time the size of the cut size be-
tween C1 and C2 is decreased by 2.

Obviously, the whole procedure can be run in polynomial time. ⊓⊔

Theorem 2. Every 3-regular graph has a connected 2-community structure.
Moreover it can be found in polynomial time.

Proof. The algorithm runs in two stages similarly to the algorithm in Theorem 1.

Stage 1: The algorithm finds either a connected partition {C1, C2} such that
|C1| = ⌈n−1

3 ⌉ and at most two vertices from C1 have two neighbours in C2

or ends up with a connected 2-community structure.

Stage 2: Apply directly Stage 2 from Theorem 1.

New insight into 2-community structures in graphs 9

The difference to the approach from Theorem 1 is that C2 remains connected
until the end of the first stage, where C1 is connected in both approaches.

Then we apply the second stage of the algorithm from Theorem 1. Since
moving a vertex which has 2 neighbours in the other part never disconnect
any part and all transfers only affect such vertices, the final partition {C1, C2}
remains connected at the end of the second stage.

Stage 1: (for a connected partition)
Choose any vertices u, v ∈ V such that {u, v} ∈ E and the subgraph induced
by V \{u, v} is connected. Label the vertices u, v and define C1 := {u, v}, C2 :=
V \{u, v}.

The initial construction:
While |C1| < ⌈n−1

3 ⌉ and one of the updates (S1), (S2) (in this order) can be
applied do:

(S1) If there exists a vertex x ∈ C2 such that dout(x) = 2, then update C1 :=
C1∪{x}, C2 := C2\{x}. If all labelled vertices have three neighbours in C1,
then removes all labels and label one vertex in C1 which has one neighbour
in C2.

(S2) If there exists a vertex x ∈ C2 such that x is a neighbour of a labelled
vertex w in C1 and C2\{x} remains connected then update C1 := C1∪{x},
C2 := C2\{x}, label the vertex x and remove label from w. If all labelled
vertices have three neighbours in C1, then removes all labels and label one
vertex in C1 which has one neighbour in C2.

Obviously after each update we can have at most two labelled vertices in C1.

Now there are two possibilities how the initial construction can finish:

(1) The algorithm finishes with |C1| = ⌈n−1
3 ⌉. Due to the properties of the

construction, the partition {C1, C2} is connected and at most two vertices
from C1 may have two neighbours in C2. In such a case we can move directly
to Stage 2.

(2) If none of the updates (S1), (S2) can be applied and |C1| < ⌈n−1
3 ⌉ then

we redefine the partition {C1, C2} using the major update construction to
obtain a new partition which leads to a connected 2-community structure.

The major update construction:
Step A: Let N ⊆ C2 be the set of neighbours of all labelled vertices from

C1, hence 1 ≤ |N | ≤ 4. In the first part we define the subsets Q,Q′, Z of
C2 and the vertices q, q′ ∈ N (q, q′ are not necessarily distinct) such that
{Q,Q′, Z, {q}, {q′}} is a connected partition of the graph induced by C2 and
each vertex from Q ∪ Q′ has at most one neighbour in C1. Furthermore, the
entire set Q (resp. Q′) has exactly one neighbour outside Q (resp. Q′) in C2 and
this is the vertex q ∈ N (resp. q′ ∈ N).

We show that suchQ,Q′, Z exist and are always connected. Consider a vertex
v1 ∈ N . The vertex v1 has necessarily two neighbours in C2 and the subgraph
induced by C2 \ {v1} is disconnected (otherwise (S1) or (S2) from Stage 1 could
be applied). Let C1

2 and C2
2 be the two connected components of C2 \ {v1}.

10 Bazgan, Chlebikova & Pontoizeau

ZQ Q′

C1

q q′

Fig. 2. Splitting C2 when |N | = 4 (vertices in N are blank)

Define Q := C1
2 , Q

′ := C2
2 and q = q′ = v1. Moreover, Z = ∅ is trivially

connected. Hence in case |N | = 1 we can now move directly to Step B.

If |N | > 1, select another vertex v2 ∈ N . Such vertex must be in Q or
Q′ defined above. Consider wlog that v2 ∈ Q. If {v1, v2} ∈ E, then update
Q := Q\{v2}, q := v2, q

′ := v1 and Z := ∅. Notice that Q is still connected since
v2 has only one neighbour in Q. If {v1, v2} 6∈ E, Q \ {v2} must be disconnected
into two part Q1 and Q2. Name Q2 the set which contains a neighbour of v1 (Q1

obviously cannot have a neighbour of v1, since the other two neighbours are in
Q′ and C1, respectively). Update Q := Q1, q := v2 and Z := Q2. Hence in case
|N | = 2, the construction in Step A is over and we can continue directly with
Step B. Indeed, Q has only v2 ∈ N as a neighbour in C2 \ Q and similarly for
Q′ and v1 ∈ N .

Suppose now that |N | ≥ 3. Then select another vertex v3 ∈ N , the vertex v3
must be in Q, Q′ or Z defined above. If v3 ∈ Z, then Q, Q′, Z, q and q′ already
satisfy the properties. Otherwise, v3 ∈ Q ∪ Q′ and wlog we suppose v3 ∈ Q. If
{v3, v2} ∈ E, then update Q := Q \ {v3}, q := v3 and Z := Z ∪ {v2} which is
trivially connected. Otherwise, Q \ {v3} must be disconnected, let Q1 and Q2

be its connected parts. Denote Q2 the set which has a neighbour of v2 (then Q1

cannot have a neighbour of v2). Update Q := Q1, q := v3, Z := Z ∪ Q2 ∪ {v2}.
Again, if |N | = 3, the construction is over. Indeed, Q has only v3 ∈ N as a
neighbour in C2 \Q and there are no changes for Q′. Moreover, Z is connected.
Hence in case |N | = 3 we can move to Step B. If |N | = 4, the construction is
similar to the discussion for |N | = 3 (see Fig. 2 as an example for |N | = 4).

It is also important to notice that if |N | > 2 then following the construction
N \ {q, q′} ⊆ Z.

Step B: Using the sets Q, Q′, Z and vertices q and q′ we define a new
partition of V . Then the step B only consists in looking at the size of the sets
Z,Q,Q′, Z ∪Q ∪ {q}, Z ∪Q′ ∪ {q′} and update {C1, C2} depending on the size
of those sets which are known to be connected.

The detail of Step B is based on awkward discussion of several cases. ⊓⊔

New insight into 2-community structures in graphs 11

4 Balanced 2-community structure

In this section we first prove that every graph of maximum degree 3 has a bal-
anced weak 2-community structure that can be found in polynomial time. On the
other hand, we show that the Balanced Weak 2-community problem is NP-
complete in general graphs similarly to the Balanced 2-community problem.
The latter result was presented as the main result in [9] and here an alternative
shorter proof is given. Both NP-complete results are valid if connectivity of both
parts is required.

Remark. As follows from Section 3, every 3-regular graph has a 2-community
structure. But if we look for a balanced partition there exists a 3-regular graph
which doesn’t have a balanced 2-community structure, see Fig. 3. The graph is
obtained by linking three “cross gadgets”. First notice that if a 2-community
exists for the graph, then all vertices of each cross gadget must be in the same
part. Indeed, each vertex of such community structure must have two neighbours
in its own part. On the other hand, it is impossible to divide the graph into two
balanced parts without splitting a cross gadget.

Fig. 3. A cross gadget and a 3-regular graph with no balanced 2-community structure.

Nevertheless, if we focus on a weak community, we can prove that Balanced

Weak 2-community has always a solution in graphs of maximum degree 3.
Moreover, a balanced weak 2-community can be found in polynomial time in
such graphs.

Theorem 3. Any graph of maximum degree 3 with at least 4 vertices has a
balanced weak 2-community structure. Moreover, such a community structure
can be found in polynomial time.

Proof. Let G = (V,E) be a connected graph of maximum degree 3. First notice
that in any balanced partition, any vertex of degree 1 fulfils condition (2), even
if its neighbour is not in its own part. Then, the only vertices which may not
satisfy this condition are vertices of degree 2 or 3 which have no neighbour in
their own part.

Moreover, for any balanced partition of G, every vertex of degree 2 or 3,
which has at least one neighbour in its own part, satisfies condition (2).

Choose any balanced partition {C1, C2} of G. Then repeat the following steps
until the partition is a weak 2-community structure:

12 Bazgan, Chlebikova & Pontoizeau

1. If every vertex of degree 2 or 3 has at least one neighbour in its own part,
then return {C1, C2} as a weak 2-community structure.

2. If there exists one vertex of degree 2 or 3 in both parts which has no neighbour
in its own part, then swap these two vertices.

3. If there is only one partition that contains a vertex v of degree 2 or 3 which
has no neighbour in its own part (wlog suppose v ∈ C1), then choose a vertex
w ∈ C2 such that w has at least one neighbor in C1 and update: C1 :=
C1 ∪ {w}\{v}, C2 := C2 ∪ {v}\{w}.

First notice that if case 3 occurs, such vertexw always exists since the graph is
connected. Moreover, in cases 2 and 3, notice that the partition is still balanced.
Besides, the size of the cut between partitions C1, C2 always decreases (by at
least 4 in case 2, by at least 2 in case 3) so after finite numbers of iteration
(bounded trivially by O(|V |2), only case 1 remains. Hence at the end of the
loop, the algorithm returns a balanced weak 2-community structure. ⊓⊔

It can be observed that the Balanced 2-community problem (hence also
Balanced Weak 2-community) is polynomially solvable for graphs with
bounded tree-width. Such result follows directly from [2] where problems closely
related to communities where studied. Indeed, Balanced 2-community corre-
sponds to a t-Decomposition defined in [2] where the function t = n/2, the func-

tions a, b are equal and for each vertex v in G let a(v) = b(v) = n/2−1
n−1 d(v), where

n is the order of the graph. Since this problem was proved to be polynomial-time
solvable for bounded tree-width in [2], we can conclude the same result for the
Balanced 2-community problem.

Now we focus on the problem of 2-communities in general graphs. In [7] it has
been proved that to find a connected balanced partition without any additional
constrains is an NP-complete problem in general graphs. We prove similar re-
sults for Balanced Weak 2-community and Balanced 2-community and
their connected variants. To show that Balanced Weak 2-community is NP-
complete, we use the Balanced Co-Satisfactory Partition problem which
was proved NP-complete by Bazgan et al. [4]. The problems is defined as follow:

Balanced Co-Satisfactory Partition

Input : A graph G = (V,E) on an even number of vertices.
Question : Is there a balanced partition {C1, C2} of V such that for every
v ∈ V , din(v) ≤ dout(v)?

Theorem 4. Balanced Weak 2-community is NP-complete.

Proof. Clearly this problem is in NP. We reduce Balanced Co-Satisfactory

Partition toBalanced Weak 2-community. LetG be a graph on 2n vertices
as an instance of Balanced Co-Satisfactory Partition, and let G′, the
complement of G, be an instance of Balanced Weak 2-community. If G
admits a balanced co-satisfactory partition {C1, C2} then {C1, C2} is also a
weak 2-community. Indeed, for every vertex v ∈ V , then din(v) ≤ dout(v) in G.
Thus, in G′ we have dG

′

in (v) = 2n − 1 − din(v) ≥ 2n − 1 − dout(v) = dG
′

out(v).

New insight into 2-community structures in graphs 13

Conversely, any balanced weak 2-community in G′ is a balanced co-satisfactory
partition in G. ⊓⊔

Due to the construction of G′ in Theorem 4 and the reduction from [4] we
can conclude the following:

Theorem 5. Connected Balanced Weak 2-community is NP-complete.

Estivill-Castro et al. [9] have shown that Balanced 2-community is NP-
complete by constructing a reduction from a variant of the Clique problem. We
propose a shorter alternative proof which is also valid for the Connected Bal-

anced 2-community problem. The proof is based on the NP-complete problem
Balanced Satisfactory Partition which was introduced by Bazgan et al.
[3] as follows:

Balanced Satisfactory Partition

Input : A graph G = (V,E) on an even number of vertices.
Question : Is there a balanced partition {C1, C2} of V such that for every

v ∈ V , din(v) ≥
d(v)
2 ?

It can be proved that these two problems are in fact equivalent when the
number of vertices is even.

Lemma 4. Let G = (V,E) be a graph with n vertices. Consider a partition
{C1, C2} of V and v ∈ C1. Then the following assertions are equivalent:

1. din(v)
|C1|−1 ≥ d(v)

n−1

2. dout(v)
|C2|

≤ d(v)
n−1

3. din(v)
|C1|−1 ≥ dout(v)

|C2|

Remark. Notice that the third assertion in Lemma 4 is the condition (1) of a
2-community structure.

Lemma 5. Let G = (V,E) be a graph with an even number n of vertices. Con-
sider a balanced partition {C1, C2} of V. Then for any vertex v ∈ V , din(v) =
|C1|−1
n−1 d(v) if and only if d(v) = n− 1.

Proof. If d(v) = n−1, then clearly din(v) = n/2−1. Suppose now that din(v) =
n/2−1
n−1 d(v). Notice that (−2)(n/2− 1)+ 1(n− 1) = 1 from which it can be easily

shown that n/2− 1 and n − 1 do not have common divisors. This implies that
d(v) is a multiple of n− 1. Thus, d(v) = n− 1. ⊓⊔

Remark. Let {C1, C2} be a balanced partition of G and v ∈ C1 be a vertex
of degree n − 1. Since v has n

2 − 1 neighbors in its own part and n
2 in other

part, v does not satisfy the condition of Balanced Satisfactory Partition.

However, v satisfies the Balanced 2-Community condition since din(v)
|C1|−1 = 1.

Proposition 1. Let G = (V,E) be a graph with n vertices without vertices of
degree n − 1. Then Balanced Satisfactory Partition and Balanced 2-

Community are equivalent on G.

14 Bazgan, Chlebikova & Pontoizeau

Proof. Suppose that G is a yes-instance of Balanced Satisfactory Par-

tition, that is there exists a balanced partition {C1, C2} of V such that any
vertex v ∈ V satisfies the condition din(v) ≥

1
2d(v), which implies that din(v) ≥

|C1|−1
2|C1|−1d(v) =

|C1|−1
n−1 d(v). Thus,G is a yes-instance of Balanced 2-Community.

Suppose now that G is a yes-instance of Balanced 2-Community, that
is there exists a balanced partition {C1, C2} of V such that any vertex v ∈ V

satisfies the condition din(v) ≥ |C1|−1
|C2|

dout(v) that is equivalent to din(v) ≥
|C1|−1
n−1 d(v) using Lemma 4. According to Lemma 5, there is no vertex v such

that din(v) =
|C1|−1
n−1 d(v).

We have to show that for every vertex v ∈ V, din(v) ≥ 1
2d(v). Suppose by

contradiction that there exists a vertex v ∈ V that does not satisfy the inequality
that is

|C1| − 1

n− 1
d(v) < din(v) <

1

2
d(v)

First, notice that 1
2d(v) −

|C1|−1
n−1 d(v) = 1

2(n−1)d(v) < 1, which means that

there is at most one whole number between |C1|−1
n−1 d(v) and 1

2d(v).

Moreover, d(v) cannot be even, since otherwise d(v)/2 would be a whole
number and thus din(v) could not be a whole number. Then d(v) is odd and
let d(v) = 2p + 1, p ∈ N. We will arrive to a contradiction by showing that

p < din(v) < p + 1/2. Notice that d(v) < n − 1 ⇒ d(v)−1
2 < |C1|−1

n−1 d(v) that

implies p < |C1|−1
n−1 d(v) < din(v). Then, we have necessarily din(v) ≥

1
2d(v) for

every vertex v ∈ V , that is G is a yes-instance of Balanced Satisfactory

Partition. ⊓⊔

Balanced Satisfactory Partition has already been proved NP-complete
in [3], even if both parts are required to be connected. Moreover, the reduction
which is used to prove it does not construct a graph with vertices of degree n−1.
Thus we obtain a similar result as in [9] (the authors mentioned along the lines
that the proof works also in connected case).

Theorem 6. Connected Balanced 2-Community is NP-complete.

On the other hand, it is interesting to notice that there exist graphs in which
all 2-community structures are balanced (see Fig. 4).

Fig. 4. A graph in which all 2-community structures are balanced

New insight into 2-community structures in graphs 15

5 Conclusion and open problems

We studied the problems of existence and determination of a 2-community struc-
ture and its variants in graphs. We showed that every 3-regular graph has a 2-
community structure and such a structure can be found in polynomial time. This
remains true even if connectivity of the partitions is required. The interesting
open question is to determine if a graph of order at least 4 (except stars) has al-
ways a 2-community structure, even connected one. Balanced 2-Community

is NP-complete in general graphs, but the complexity of determining a balanced
2-community structure in 3-regular graphs remains open. This last problem is
equivalent to finding a cut whose edges forms a matching in 3-regular graphs.

For the weak version the situation is slightly different since any graph of
maximum degree 3 has even a balanced weak 2-community structure that can
be found in polynomial time. Furthermore, we proved that Balanced weak

2-Community is NP-complete on general graphs, even for connected commu-
nities. It remains open if any graph of order at least 4 has a weak 2-community
structure, even connected one (except stars).

References

1. K. Andreev and H. Racke. Balanced graph partitioning. Theory of Computing
Systems, 39(6):929–939, 2006.

2. C. Bazgan, Z. Tuza, and D. Vanderpooten. Degree-constrained decompositions
of graphs: Bounded treewidth and planarity. Theoretical Computer Science,
355(3):389–395, 2006.

3. C. Bazgan, Z. Tuza, and D. Vanderpooten. The satisfactory partition problem.
Discrete Applied Mathematics, 154(8):1236–1245, 2006.

4. C. Bazgan, Z. Tuza, and D. Vanderpooten. Approximation of satisfactory bisection
problems. Journal of Computer and System Sciences, 74(5):875–883, 2008.

5. C. Bazgan, Z. Tuza, and D. Vanderpooten. Satisfactory graph partition, variants,
and generalizations. Europ. Journal of Operat. Research, 206(2):271–280, 2010.

6. A. Buluç, H. Meyerhenke, I. Safro, P. Sanders, and C. Schulz. Recent advances in
graph partitioning. arXiv:1311.3144.

7. J. Chlebikova. Approximating the maximally balanced connected partition prob-
lem in graphs. Information Processing Letters, 60(5):223–230, 1996.

8. D. Delling, A. Goldberg, T. Pajor, and R. Werneck. Customizable route planning.
In Proc. of 10th Intern. Symp. on Exper. Algor., LNCS 6630, pages 376–387, 2011.

9. V. Estivill-Castro and M. Parsa. On connected two communities. In Proc. of the
36th Australasian Computer Science Conference (ACSC), pages 23–30, 2013.

10. A. E. Feldmann and L. Foschini. Balanced partitions of trees and applications.
Algorithmica, 71(2):354–376, 2015.

11. S. Fortunato. Community detection in graphs. Physics Reports, 486:75–174, 2010.
12. M. E. J. Newman. Detecting community structure in networks. The Europ. Phys-

ical Journal B–Condensed Matter and Complex Systems, 38(2):321–330, 2004.
13. M. Olsen. A general view on computing communities. Mathematical Social Sci-

ences, 66(3):331–336, 2013.
14. S. E. Schaeffer. Graph clustering. Computer Science Review, 1:27–64, 2007.
15. D. B. Shmoys. Cut problems and their application to divide-and-conquer. In

Approximat. Algorithms for NP-Hard Problems, PWS Publishing, 192–235, 1996.

