
Complexity of the min-max (regret) versions of
cut problems

Hassene Aissi, Cristina Bazgan, and Daniel Vanderpooten

LAMSADE, Université Paris-Dauphine, France
{aissi,bazgan,vdp}@lamsade.dauphine.fr

Abstract. This paper investigates the complexity of the min-max and
min-max regret versions of the s− t min cut and min cut problems. Even
if the underlying problems are closely related and both polynomial, we
show that the complexity of their min-max and min-max regret ver-
sions, for a constant number of scenarios, are quite contrasted since they
are respectively strongly NP-hard and polynomial. Thus, we exhibit the
first polynomial problem, s− t min cut, whose min-max (regret) versions
are strongly NP-hard. Also, min cut is one of the few polynomial prob-
lems whose min-max (regret) versions remain polynomial. However, these
versions become strongly NP-hard for a non constant number of scenar-
ios. In the interval data case, min-max versions are trivially polynomial.
Moreover, for min-max regret versions, we obtain the same contrasted
result as for a constant number of scenarios: min-max regret s− t cut is
strongly NP-hard whereas min-max regret cut is polynomial.

Keywords: min-max, min-max regret, complexity, min cut, s − t min cut.

1 Introduction

The definition of an instance of a combinatorial optimization problem requires
to specify parameters, in particular objective function coefficients, which may
be uncertain or imprecise. Uncertainty/imprecision can be structured through
the concept of scenario which corresponds to an assignment of plausible values
to model parameters. Each scenario s can be represented as a vector in IRm

where m is the number of relevant numerical parameters. Kouvelis and Yu [7]
proposed the min-max and min-max regret criteria, stemming from decision
theory, to construct solutions hedging against parameters variations. In min-
max optimization, the aim is to find a solution having the best worst case value
across all scenarios. In min-max regret problem, it is required to find a feasible
solution minimizing the maximum deviation, over all possible scenarios, of the
value of the solution from the optimal value of the corresponding scenario. Two
natural ways of describing the set of all possible scenarios S have been considered

⋆ This work has been partially funded by grant CNRS/CGRI-FNRS number 18227.
The second author was partially supported by the ACI Sécurité Informatique grant-
TADORNE project 2004.



2 Hassene Aissi, Cristina Bazgan, and Daniel Vanderpooten

in the literature. In the discrete scenario case, S is described explicitly by the list
of all vectors s ∈ S. In this case, we distinguish situations where the number of
scenarios is constant from those where the number of scenarios is non constant.
In the interval data case, each numerical parameter can take any value between
a lower and upper bound, independently of the values of the other parameters.
Thus, in this case, S is the cartesian product of the intervals of uncertainty for
the parameters.

Complexity of the min-max (regret) versions has been studied extensively
during the last decade. In the discrete scenario case, this complexity was inves-
tigated for several combinatorial optimization problems in [7]. In general, these
versions are shown to be harder than the classical versions. For a constant num-
ber of scenarios, pseudo-polynomial algorithms, based on dynamic programming,
are given in [7] for the min-max (regret) versions of shortest path, knapsack and
minimum spanning tree for grid graphs. The latter result is extended to general
graphs in [1]. However, up to now, no polynomial problem was known to have
min-max (regret) versions which are strongly NP -hard. When the number of
scenarios is not constant, these versions usually become strongly NP -hard, even
if the underlying problem is polynomial. In the interval data case, extensive re-
search has been devoted for studying the complexity of min-max regret versions
of various optimization problems including shortest path [5], minimum spanning
tree [4, 5] and assignment [2].

We investigate in this paper the complexity of min-max (regret) versions
of two closely related polynomial problems, min cut and s − t min cut. Quite
interestingly, for a constant number of scenarios, the complexity status of these
problems is widely contrasted. More precisely, min-max (regret) versions of min
cut are polynomial whereas min-max (regret) versions of s−t min cut are strongly
NP -hard even for two scenarios. We also prove that for a non constant number
of scenarios, min-max (regret) min cut become strongly NP -hard.

In the interval data case, min-max versions are trivially polynomial. More-
over, for min-max regret versions, we obtain the same contrasted result as for
a constant number of scenarios: min-max regret s − t cut is strongly NP -hard
whereas min-max regret cut is polynomial.

After presenting preliminary concepts (Section 2), we investigate the com-
plexity of min-max (regret) versions of min cut and s− t min cut in the discrete
scenario case (Section 3), and in the interval data case (Section 4).

2 Preliminaries

Let us consider an instance of a 0-1 minimization problem Q with a linear ob-
jective function defined as:

{
min

∑m

i=1 cixi ci ∈ N

x ∈ X ⊂ {0, 1}m

This class encompasses a large variety of classical combinatorial problems, some
of which are polynomial-time solvable (shortest path problem, minimum span-
ning tree, . . . ) and others are NP -difficult (knapsack, set covering, . . . ).



Complexity of the min-max (regret) versions of cut problems 3

In the discrete scenario case, the min-max (regret) version associated to Q

has as input a finite set of scenarios S where each scenario s ∈ S is represented
by a vector (cs

1, . . . , c
s
m). In the interval data case, each coefficient ci can take

any value in the interval [ci, ci]. In this case, the scenario set S is the cartesian
product of the intervals [ci, ci], i = 1, . . . ,m.

We denote by val(x, s) =
∑m

i=1 cs
i xi the value of solution x ∈ X under

scenario s ∈ S, by x∗

s an optimal solution under scenario s, and by val∗s =
val(x∗

s, s) the optimal value under the scenario s.
The min-max optimization problem corresponding to Q, denoted by Min-

Max Q, consists of finding a solution x having the best worst case value across
all scenarios, which can be stated as:

min
x∈X

max
s∈S

val(x, s)

This version is denoted by Discrete Min-Max Q in the discrete scenario case,
and by Interval Min-Max Q in the interval data case.

Given a solution x ∈ X, its regret, R(x, s), under scenario s ∈ S is defined
as R(x, s) = val(x, s)− val∗s . The maximum regret Rmax(x) of solution x is then
defined as Rmax(x) = maxs∈S R(x, s).

The min-max regret optimization problem corresponding to Q, denoted by
Min-Max Regret Q, consists of finding a solution x minimizing the maximum
regret Rmax(x) which can be stated as:

min
x∈X

Rmax(x) = min
x∈X

max
s∈S

{val(x, s) − val∗s}

This version is denoted by Discrete Min-Max Regret Q in the discrete
scenario case, and by Interval Min-Max Regret Q in the interval data case.

In the interval data case, for a solution x ∈ X, we denote by c−(x) the worst
scenario associated to x, where c−i (x) = ci if xi = 1 and c−i (x) = ci if xi = 0,
i = 1, . . . ,m. Then we can establish easily that Rmax(x) = R(x, c−(x)), as shown
e.g. in [9] in the specific context of the minimum spanning tree problem.

In this paper, we focus on the min-max (regret) versions of the two following
cut problems:

Min Cut
Input: A connected graph G = (V,E) with weight wij associated with each
edge (i, j) ∈ E.
Output: A cut in G, that is a partition of V into two sets, of minimum value.

s − t Min Cut
Input: A connected graph G = (V,E) with weight wij associated with each
edge (i, j) ∈ E, and two specified vertices s, t ∈ V .
Output: An s − t cut in G, that is a partition of V into two sets V1 and V2,
with s ∈ V1 and t ∈ V2, of minimum value.

In order to prove our complexity results we use the two following problems
proved strongly NP -hard in [6].



4 Hassene Aissi, Cristina Bazgan, and Daniel Vanderpooten

Min Bisection
Input: A graph G = (V,E) with an even number of vertices.
Output: A bisection in G, that is a partition of V into two equal cardinality
sets, of minimum value.

s − t Min Bisection
Input: A graph G = (V,E) with an even number of vertices, and two specified
vertices s, t ∈ V .
Output: An s − t bisection in G, that is a partition of V = V1 ∪ V2 such that
s ∈ V1, t ∈ V2, and |V1| = |V2|, of minimum value.

3 Discrete scenarios case

We show in this section the first polynomial-time solvable problem, s − t Min
Cut, which becomes strongly NP -hard when considering its min-max or min-
max regret version.

Min-max cut was proved polynomially solvable for a constant number of
scenarios [3]. We show that min-max regret cut also remains polynomial for a
constant number of scenarios. When the number of scenarios is not constant,
min-max (regret) versions become strongly NP -hard.

3.1 s − t min cut

In order to prove these results, we construct polynomial reductions from the
decision version of Min Bisection.

Theorem 1. Discrete Min-Max (Regret) s− t Cut are strongly NP-hard

even for two scenarios.

Proof. Consider an instance G = (V,E) of Min Bisection with |V | = 2n, and a

positive integer v. We construct an instance G̃ = (Ṽ , Ẽ) of Discrete Min-Max

s − t Cut with the scenario set S = {s1, s2}. The node set is Ṽ = V ∪ {s, t}
where s and t correspond to a source and a sink respectively. The edge set
Ẽ = E ∪ {(s, i) : i ∈ V } ∪ {(i, t) : i ∈ V }. Edge weights in scenarios s1 and s2

are assigned for each edge (i, j) ∈ Ẽ as follows:

w1
ij =





1 if (i, j) ∈ E

n2 + 1 if i = s or j = s

0 if i = t or j = t

and w2
ij =





1 if (i, j) ∈ E

0 if i = s or j = s

n2 + 1 if i = t or j = t

We claim that there exists a bisection C in G of value at most v if and only if
there exists an s− t cut C̃ in G̃ with max{val(C̃, s1), val(C̃, s2)} ≤ v+(n2 +1)n.
⇒ Consider a bisection C = (V1, V2) of value x ≤ v. We construct an s − t cut

C̃ = (Ṽ1, Ṽ2) where Ṽ1 = V1 ∪ {s}, and Ṽ2 = V2 ∪ {t}. Consequently, we have

val(C̃, s1) = val(C̃, s2) = x + (n2 + 1)n ≤ v + (n2 + 1)n.



Complexity of the min-max (regret) versions of cut problems 5

⇐ Consider now an s−t cut C̃ = (Ṽ1, Ṽ2) verifying max{val(C̃, s1), val(C̃, s2)} ≤

v + (n2 + 1)n. Let V1 = Ṽ1 \ {s} and V2 = Ṽ2 \ {t}. We have by construction

val(C̃, s1) = y+|V2|(n
2+1) and val(C̃, s2) = y+|V1|(n

2+1), where y is the num-
ber of edges from E that have one endpoint in V1 and one endpoint in V2. Suppose
that |V1| = n + z and |V2| = n − z, z ≥ 0. Then val(C̃, s1) = y + (n2 + 1)n −

z(n2+1), val(C̃, s2) = y+(n2+1)n+z(n2+1) and max{val(C̃, s1), val(C̃, s2)} =
y + (n2 + 1)n + z(n2 + 1) ≤ v + (n2 + 1)n. Since v ≤ n2 we have z = 0 and thus
|V1| = |V2| = n and y ≤ v.

In order to prove the result for the min-max regret version, we use exactly
the same graph G̃ = (Ṽ , Ẽ). Let C∗

i denote the optimal solution in scenario si,

i = 1, 2. We have C∗

1 = (Ṽ \ {t}, {t}) and C∗

2 = ({s}, Ṽ \ {s}) with val(C∗

1 , s1) =
val(C∗

2 , s2) = 0. Therefore, there exists a bisection in G of value at most v if and

only if there exists an s − t cut C̃ in G̃ with Rmax(C̃) ≤ v + (n2 + 1)n. 2

3.2 Min cut

Armon and Zwick [3] constructed a polynomial-time algorithm for Discrete
Min-Max Cut, in the case of a constant number of scenarios, based essentially
on the result of Nagamochi, Nishimura and Ibaraki [8] for computing all α-
approximate cuts in time O(m2n + mn2α). A cut C in a graph G is called an
α-approximate cut if val(C) ≤ α opt, where opt is the value of a minimum cut
in G.

Theorem 2 ([3]). Discrete Min-Max Cut is solvable in polynomial time for

a constant number of scenarios.

In a graph on n vertices and m edges and with k scenarios, Armon and
Zwick’s algorithm [3] constructs an optimal solution in O(mn2k).

We show in the following that this algorithm can be modified in order to
obtain a polynomial-time algorithm for Discrete Min-Max Regret Cut.

Theorem 3. Discrete Min-Max Regret Cut is solvable in polynomial time

for a constant number of scenarios.

Proof. Consider an instance I of the problem given by graph G = (V,E) on n

vertices and m edges and a set of k scenarios S such that each edge (i, j) ∈ E

has a weight ws
ij in scenario s. We construct, as before, an instance I ′ of Min

Cut on the same graph, where w′

ij =
∑

s∈S ws
ij . The algorithm consists firstly

of computing all k-approximate cuts and secondly of choosing among these cuts
one with a minimum maximum regret.

The running time of the algorithm is O(mn2k).
We prove now the correctness of the algorithm. Let C∗ be an optimal min-

max regret cut in G. We show that for any cut C of G, we have val′(C∗) ≤
kval′(C), where val′(C) is the value of cut C in I ′. In fact,

val′(C∗) =
∑

s∈S

val(C∗, s) =
∑

s∈S

(val(C∗, s) − val∗s) +
∑

s∈S

val∗s ≤



6 Hassene Aissi, Cristina Bazgan, and Daniel Vanderpooten

k max
s∈S

{val(C∗, s) − val∗s} +
∑

s∈S

val∗s ≤ k max
s∈S

{val(C, s) − val∗s)} +
∑

s∈S

val∗s ≤

k
∑

s∈S

(val(C, s)− val∗s) +
∑

s∈S

val∗s = k
∑

s∈S

val(C, s)− (k − 1)
∑

s∈S

val∗s ≤ kval′(C)

In particular, if C is a minimum cut in I ′, we obtain val′(C∗) ≤ kopt(I ′).
Thus all optimal solutions to Discrete Min-Max Regret Cut are among
the k-approximate cuts in I ′. 2

The algorithms described above to solve Discrete Min-Max (Regret)
Cut are exponential in k. We prove in the following that when k is not constant,
both problems become strongly NP -hard.

Theorem 4. Discrete Min-Max (Regret) Cut are strongly NP-hard for a

non constant number of scenarios.

Proof. We use a reduction from Min Bisection. Consider an instance G =
(V,E) of Min Bisection with V = {1, . . . , 2n}, and a positive integer v. We

construct an instance G̃ = (Ṽ , Ẽ) of Discrete Min-Max Cut with a scenario

set S of size 2n. The node set is Ṽ = V ∪{1′, . . . , 2n′}∪{1′′, . . . , 2n′′}. The edge

set Ẽ = E ∪ {(i′, j′) : i, j = 1, . . . , 2n} ∪ {(i, i′), (i′, i′′) : i = 1, . . . , 2n}. Scenario
set S corresponds to nodes of G. The weights of the edges in any scenario si ∈ S

are defined as follows: wi
hj = 1 for all (h, j) ∈ E; wi

i′j′ = n2, for j = 1, . . . , 2n;

wi
h′j′ = 0 for h 6= i and j 6= i; wi

ii′ = wi
i′i′′ = n3 + n2 + 1; wi

jj′ = wi
j′j′′ = 0, for

j 6= i.
We claim that there exists a bisection C in G of value at most v if and only

if there is a cut C̃ in G̃ with maxs∈S val(C̃, s) ≤ n3 + v.
⇒ Consider a bisection C = (V1, V2) in G of value x ≤ v. We construct a cut

C̃ = (Ṽ1, Ṽ2) in G̃ where Ṽ1 = V1 ∪{i′, i′′ : i ∈ V1} and Ṽ2 = V2 ∪{i′, i′′ : i ∈ V2}.

For any scenario s ∈ S, we have val(C̃, s) ≤ n3 + v and thus maxs∈S val(C̃, s) ≤
n3 + v.
⇐ Consider now a cut C̃ = (Ṽ1, Ṽ2) in G̃ such that maxs∈S val(C̃, s) ≤ n3 + v.

Cut C̃ does not contain any edge (i, i′) or (i′, i′′) for some i = 1, . . . , 2n, since

otherwise, we have maxs∈S val(C̃, s) ≥ n3 + n2 + 1 > n3 + v. Denote by Vi, for

i = 1, 2, the restriction of Ṽi to the vertices of V . Suppose now that |V1| < |V2|,

then for any scenario si such that i ∈ V1 we have val(C̃, si) ≥ (n + 1)n2 + 1 >

n3 + v . Thus, we have necessarily |V1| = |V2| and the value of the bisection
(V1, V2) is at most v.

In order to prove the result for the min-max regret version, we use exactly
the same graph G̃ = (Ṽ , Ẽ). Notice that, for any scenario si ∈ S, cut C∗

i =

({j′′}, Ṽ \ {j′′}) for some j 6= i is a minimum cut in scenario si, with value 0.
Therefore, there exists a bisection in G of value at most v if and only if there
exists a cut C̃ in G̃ with Rmax(C̃) ≤ n3 + v. 2

Observe that in the previous proof we used the same graph G̃ both for the
min-max and min-max regret versions. Actually, a slightly simpler proof can be



Complexity of the min-max (regret) versions of cut problems 7

obtained, for the min-max part, considering only the subgraph of G̃ induced
by Ṽ \ {1′′, . . . , 2n′′}. Vertex subset {1′′, . . . , 2n′′} is necessary, for the min-max
regret part, to ensure the existence of minimum cuts of value 0 for each scenario.

4 Interval data case

We first state the polynomiality of the min-max cut problems (Section 4.1),
then we establish the strong NP -hardness of Interval Min-Max Regret s−t

Cut (Section 4.2) and the polynomiality of Interval Min-Max Regret Cut
(Section 4.2).

4.1 Min-max versions

In the interval data case, the min-max version of a minimization problem corre-
sponds to solving this problem in the worst-case scenario defined by the upper
bounds of all intervals. Therefore, a minimization problem and its min-max ver-
sion have the same complexity. Interval Min-Max s − t Cut and Interval
Min-Max Cut are thus polynomial-time solvable.

4.2 Min-max regret versions

When the number u ≤ m of uncertain/imprecise parameters, corresponding to
non-degenerate intervals, is small enough, then the problem becomes polynomial.
More precisely, as shown by Averbakh and Lebedev [5] for general networks
problems solvable in polynomial time, if u is fixed or bounded by the logarithm
of a polynomial function of m, then the min-max regret version is also solvable
in polynomial time (based on the fact that an optimal solution for the min-max
regret version corresponds to one of the optimal solutions for the 2u extreme
scenarios, where extreme scenarios have values on each edge corresponding to
either the lower or upper bound of its interval). This clearly applies to the s− t

min cut and min cut problems.

s − t min cut
We show now that Interval Min-Max Regret s − t Cut is strongly NP -

hard. For this purpose, we construct a reduction from the decision version of
s − t Min Bisection.

Theorem 5. Interval Min-Max Regret s − t Cut is strongly NP-hard.

Proof. Consider G = (V,E) an instance of s− t Min Bisection with |V | = 2n,

where V = {s = 1, . . . , t = 2n}. We construct from G an instance G̃ = (Ṽ , Ẽ) of
Interval Min-Max Regret s − t Cut as illustrated in Figure 1. The vertex
set is Ṽ = V ∪ {1′, . . . , 2n′} ∪{1′′, . . . , 2n′′} ∪{1′′′, . . . , 2n′′′} ∪{s̃, 2n + 1}, and
t̃ = t.



8 Hassene Aissi, Cristina Bazgan, and Daniel Vanderpooten

The edge set is Ẽ = E ∪ {(i′, i′′), (i′′, i′′′) : i = 1, . . . , 2n} ∪ {(i, i′′) : i =
2, . . . , 2n − 1} ∪ {(2n + 1, i′) : i = 1, . . . , 2n} ∪{(i′′′, t) : i = 1, . . . , 2n} ∪
{(s̃, 2n + 1), (s̃, s)}.

Let p and q verifying, respectively, p > n2 and q > 4n(p + 1)2. The weights
are defined as follows :

– wij = wij = 1, for all (i, j) ∈ E;

– wi′i′′ =

{
q for i = 1
0 otherwise

and wi′i′′ =

{
q for i = 1
p2 + p otherwise

– wi′′i′′′ = wi′′i′′′ =





p2 + np for i = 1
p2 for i = 2, . . . , 2n − 1
q for i = 2n

– wii′′ = wii′′ = q, for i = 2, . . . , 2n − 1;

– w(2n+1)i′ =

{
0 for i = 1
2p otherwise

and w(2n+1)i′ = q, for i = 1, . . . , 2n;

– wi′′′t = wi′′′t = q, for i = 1, . . . , 2n;

– ws̃(2n+1) = 2np and ws̃(2n+1) = q;

– ws̃s = 0 and ws̃s = q.

Clearly this transformation can be obtained in polynomial time.

We first establish the following property.

For any s̃ − t̃ cut C̃ = (Ṽ1, Ṽ2) in G̃ not including any edge (i, j) ∈ Ẽ with

wij = q, a minimum s̃ − t̃ cut C∗

w−(C̃)
in, w−(C̃), the worst scenario associated

to C̃, has value val(C∗

w−(C̃)
, w−(C̃)) = 2pmin{n, |V2|}, where V2 = Ṽ2 ∩ V .

Indeed, consider such a cut C̃ = (Ṽ1, Ṽ2) with s̃ ∈ Ṽ1, t̃ ∈ Ṽ2 and denote

V1 = Ṽ1 ∩V . Clearly, vertices 2n+1, 1′′ and i′, i = 1, . . . , 2n belong to Ṽ1. Also,
vertices 2n′′ and i′′′, i = 1, . . . , 2n belong to Ṽ2. Moreover, i and i′′ belong to
the same part, Ṽ1 or Ṽ2. It follows that

val(C̃, w−(C̃)) = x + (n + |V2|)p + 2np2 (1)

where x denotes the number of edges that have one endpoint in V1 and one
endpoint in V2.

By construction, C∗

w−(C̃)
necessarily cuts edge (s̃, s). Furthermore, there exist

two cases:

1. If |V2| ≤ n then C∗

w−(C̃)
= (Ṽ ∗

1 , Ṽ ∗ \ Ṽ ∗

1 ), where Ṽ ∗

1 = {s̃, 2n + 1} ∪ {i′ : i′′ ∈

Ṽ1, i 6= 1} and thus val(C∗

w−(C̃)
, w−(C̃)) = 2|V2|p.

2. If |V2| > n then C∗

w−(C̃)
= ({s̃}, Ṽ \{s̃}) and thus val(C∗

w−(C̃)
, w−(C̃)) = 2np.



Complexity of the min-max (regret) versions of cut problems 9

[0, q]
1
1 1

1

q

1

q p2 + np

[0, p2 + p] p2

[0, p2 + p] p2

[0, p2 + p] q

[0
, q

]

[2p
, q

]

[2p, q]

[2p, q]

[2
n

p
,
q
]

q q

q

q

q

s̃ s = 1

2

3

t̃ = t = 4

5

1′ 1′′ 1′′′

2′ 2′′ 2′′′

3′ 3′′ 3′′′

4′ 4′′ 4′′′

Fig. 1. Interval Min-Max Regret s − t Cut instance resulting from s − t Min
Bisection instance.

We claim that there exists an s − t bisection C = (V1, V2) of value no more

than v if and only if there exists an s̃− t̃ cut C̃ = (Ṽ1, Ṽ2) in G̃ with Rmax(C̃) ≤
v + 2np2.

⇒ Consider an s − t bisection C = (V1, V2) in G of value x ≤ v. We construct

an s̃− t̃ cut C̃ in G̃ deduced from C as follows: Ṽ1={s̃, 2n + 1} ∪ {1′, . . . , 2n′} ∪

V1 ∪ {i′′ : i ∈ V1} and Ṽ2={1′′′, . . . , 2n′′′} ∪ V2 ∪ {i′′ : i ∈ V2}. It is easy to verify

that val(C̃, w−(C̃)) = x + 2n(p + p2) and using the previous result, we have

Rmax(C̃) = x + 2np2 ≤ v + 2np2.

⇐ Consider an s̃−t̃ cut C̃ in G̃ with Rmax(C̃) ≤ v+2np2. Cut C̃ does not cut any

edge (i, j) ∈ Ẽ such that wij = q, since otherwise, val(C̃, w−(C̃)) ≥ q, and, since

a minimum s̃− t̃ cut C∗

w−(C̃)
in w−(C̃), does not cut any edge (i, j) ∈ Ẽ such that

wij = q, we have, using (1), val(C∗

w−(C̃)
, w−(C̃)) ≤ n2+3np+2np2 < 4np+2np2

and consequently, we have Rmax(C̃) > 2np2 + v.

Thus val(C̃, w−(C̃)) = y + 2np2 + np + p|V2| where y is the value of the cut

induced by C̃ in E. It follows that

Rmax(C̃) =

{
y + (n − |V2|)p + 2np2 if |V2| ≤ n

y + (|V2| − n)p + 2np2 if |V2| > n



10 Hassene Aissi, Cristina Bazgan, and Daniel Vanderpooten

Consequently, since Rmax(C̃) ≤ v + 2np2, and p > n2 ≥ v, we have |V1| = n =
|V2| and y ≤ v. 2

Min cut
We prove in this section that the min-max regret version of min-cut problem

is polynomial in the interval data case.

Theorem 6. Interval Min-Max Regret Cut is solvable in polynomial time

in the interval data case.

Proof. Consider an instance I of Interval Min-Max Regret Cut given by
graph G = (V,E) on n vertices and m edges. The weight wij of each edge
(i, j) ∈ E can take any value in the interval [wij , wij ]. We construct an instance
I ′ of Min Cut on the same graph, where w′

ij = wij . The algorithm consists
firstly of computing all the 2-approximate minimum cuts in I ′ and secondly of
choosing among these cuts one with a minimum maximum regret.

The running time of the algorithm is O(mn5 + n6 log m).
We prove now the correctness of the algorithm. Let C∗ be an optimal cut in I

and val′(C) denote the value of any cut C in I ′. Then the following inequalities
hold:

val′(C∗) = Rmax(C∗) + val∗w−(C∗)

≤ Rmax(C) + val(C,w−(C∗)) ≤ 2val′(C)

In particular, if C is a minimum cut in I ′, we obtain val′(C∗) ≤ 2opt(I ′). Thus
all optimal solutions to Interval Min-Max Regret Cut are among the 2-
approximate cuts in I ′. 2

References

1. H. Aissi, C. Bazgan, and D. Vanderpooten. Approximation complexity of min-max
(regret) versions of shortest path, spanning tree, and knapsack. In Proceedings of
the 13th Annual European Symposium on Algorithms (ESA 2005), Mallorca, Spain,
2005. to appear.

2. H. Aissi, C. Bazgan, and D. Vanderpooten. Complexity of the min-max and min-
max regret assignment problem. Operations Research Letters, 2005. to appear.

3. A. Armon and U. Zwick. Multicriteria global minimum cuts. In Proceedings of the
15th International Symposium on Algorithms and Complexity (ISAAC 2004), Hong
Kong, China, LNCS 3341, pages 65–76. Springer-Verlag, 2004.

4. I. D. Aron and P. Van Hentenryck. On the complexity of the robust spanning tree
with interval data. Operations Research Letters, 32:36–40, 2004.

5. I. Averbakh and V. Lebedev. Interval data min-max regret network optimization
problems. Discrete Applied Mathematics, 138:289–301, 2004.

6. M. Garey and D. Johnson. Computers and Intractability: A Guide to the theory of
NP-completeness. San Francisco, 1979.

7. P. Kouvelis and G. Yu. Robust Discrete Optimization and its Applications. Kluwer
Academic Publishers, Boston, 1997.



Complexity of the min-max (regret) versions of cut problems 11

8. H. Nagamochi, K. Nishimura, and T. Ibaraki. Computing all small cuts in an
undirected network. SIAM Journal on Discrete Mathematics, 10(3):469–481, 1997.

9. H. Yaman, O. E. Karaşan, and M. C. Pinar. The robust spanning tree problem with
interval data. Operations Research Letters, 29:31–40, 2001.


