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Abstract

Conjoint measurement studies binary relations defined on product sets and investi-
gates the existence and uniqueness of, usually additive, numerical representations
of such relations. It has proved to be quite a powerful tool to analyze and compare
MCDM techniques designed to build a preference relation between multiattributed
alternatives and has been an inspiring guide to many assessment protocols. The
aim of this paper is to show that additive representations can be obtained on the
basis of much poorer information than a preference relation. We will suppose here
that the decision maker only specifies for each object if he/she finds it “attrac-
tive” (better than the status quo), “unattractive” (worse than the status quo) or
“neutral” (equivalent to the status quo). We show how to build an additive rep-
resentation, with tight uniqueness properties, using such an ordered partition of
the set of objects. On a theoretical level, this paper shows that classical results of
additive conjoint measurement can be extended to cover the case of ordered parti-
tions and wishes to be a contribution to the growing literature on the foundations
of sorting techniques in MCDM. On a more practical level, our results suggest an
assessment strategy of an additive model on the basis of an ordered partition.

Keywords: Additive conjoint measurement, Multiple criteria analysis, Sorting,
Ordered categories.
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1 Introduction and motivation

The aim of most MCDM techniques (see Belton and Stewart, 2001, Bouyssou
et al., 2006, for recent reviews) is to build a model allowing to compare alterna-
tives evaluated on several attributes in terms of preference. Conjoint measurement
(see Krantz et al., 1971, Ch. 6 & 7 or Fishburn, 1970, Ch. 4 & 5) is a branch of
measurement theory studying binary relations defined on product sets and investi-
gating the existence and uniqueness of, usually additive, numerical representations
of such relations. Denoting by % an “at least as good as” preference relation on
the set of alternatives, the central model in conjoint measurement is the additive
value function model in which,

x % y ⇔
n∑
i=1

vi(xi) ≥
n∑
i=1

vi(yi),

where it is understood that x and y are alternatives and that xi denotes the evalua-
tion of alternative x on the ith attribute. The real-valued functions vi numerically
recode the evaluations of the alternatives on the various attributes, in such a way
that alternatives can simply be compared taking the sum of these functions.

Additive conjoint measurement has proved to be a powerful tool to analyze
and compare MCDM techniques. It has also been an inspiring guide to many
assessment protocols, i.e., structured way to interact with a decision maker (DM)
in order to build an additive numerical representation and, therefore, to structure
his/her preferences (see, e.g., Keeney and Raiffa, 1976 or von Winterfeldt and
Edwards, 1986).

In some instances, building a recommendation on the basis of a preference rela-
tion between alternatives does not seem to be fully adequate. Indeed, a preference
relation between alternatives is an evaluation model that has only a relative char-
acter. Hence, it may well happen that the best alternatives are not desirable at
all. This calls for MCDM techniques building evaluation models having a more
absolute character. Such models belong to what Roy (1996) called the “sorting”
problem statement. Suppose, e.g., that an academic institution wants a model
that would help the committee responsible for the admission of students in a given
program. A model only aiming at building a relation comparing students in terms
of “performance” is unlikely to be much useful. We expect such an institution to
be primarily interested in a model that would isolate, within the set of all candi-
dates, the applicants that are most likely to meet its standards defining what a
“good” student is.

MCDM techniques designed to cope with such problems most often lead to
build a partition of the set of alternatives into ordered categories, e.g., through
the comparison of alternatives to “norms” or the analysis of assignment examples.
This type of techniques has recently attracted much attention in the literature (see
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Greco et al., 1999, 2002a,b, Zopounidis and Doumpos, 2000a, 2002, for reviews).
For instance, the UTADIS technique (see Jacquet-Lagrèze, 1995, Zopounidis and
Doumpos, 2000b) uses an additive value function to sort alternatives between
several ordered categories.

The aim of this paper is to contribute to a recent trend of research (see Bouys-
sou and Marchant, 2007a,b, S lowiński et al., 2002) aiming at providing sound
theoretical foundations to such methods. S lowiński et al. (2002), extending Gold-
stein (1991), have concentrated on models admitting a “decomposable” numerical
representation that have a simple interpretation in terms of “decision rules” and
investigated some of its variants. Bouyssou and Marchant (2007a,b) have stud-
ied a model that is close to the one used in the ELECTRE TRI technique (see
Mousseau et al., 2000, Roy and Bouyssou, 1993) that turns out to be a particular
case of the decomposable models studied in S lowiński et al. (2002).

This paper concentrates on additive numerical representations. We will sup-
pose that alternatives evaluated on several attributes are presented to a DM. These
attributes describe features of the alternatives that are pertinent to the DM and
use various types of scales. Instead of comparing alternatives by pairs in order to
define a preference relation, the DM is expected to answer by specifying for each
alternative if he/she finds it “attractive” (better than the status quo), “unattrac-
tive” (worse than the status quo) or “neutral” (equivalent to the status quo). We
show how to build an additive representation, with tight uniqueness properties,
using such an ordered partition of the set of objects. Our main objective will be
to show how to adapt the classical results of conjoint measurement characterizing
the additive value function model (i.e., the ones presented in Krantz et al., 1971,
Ch. 6 & 7) to the case of ordered categories (a related path was followed by Naka-
mura, 2004, for the case of decision making under risk). In performing such an
adaptation, we will try to keep things as simple as possible. A companion paper
(Bouyssou and Marchant, 2009) is devoted to the more technical issues involved
by such an adaptation.

The rest of this paper is organized as follows. We introduce our setting in
Section 2. Section 3 informally discusses our axioms and gives the sketch of an
assessment protocol for our model. Section 4 contains our main results. Section 5
shows how to extend these results to cover more general cases involving several
ordered categories. A final section discusses our findings and, in particular, relates
them to Vind’s (1991). For space reasons and with apologies to the reader, most
proofs are relegated to the supplementary material to this paper.
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2 Definitions and notation

2.1 The setting

Let n ≥ 2 be an integer and X = X1 × X2 × · · · × Xn. The interpretation is as
follows. We have alternatives evaluated on a set N = {1, 2, . . . , n} of attributes.
The set Xi gathers all possible levels that an alternative can possibly take on the
ith attribute. The set X is the set of all possible vectors of evaluations on the
n attributes. As is customary in conjoint measurement, we identify the set of
all alternatives with X. Therefore, elements x, y, z, . . . of X are interpreted as
alternatives evaluated on a set of n attributes.

For any nonempty subset J of the set of attributes N , we denote by XJ (resp.
X−J) the set

∏
i∈J Xi (resp.

∏
i/∈J Xi). With customary abuse of notation, when

x, y ∈ X, (xJ , y−J) will denote the element w ∈ X such that wi = xi if i ∈ J and
wi = yi otherwise. We often omit braces around sets and write, e.g., X−i, X−ij or
(xi, xj, y−ij). This should cause no confusion.

2.2 Primitives

The traditional primitive of conjoint measurement is a binary relation % defined
on X with x % y interpreted as “x is at least as good as y”. Our primitives
will consist here in the assignment of each object x to a category that has an
interpretation in terms of the intrinsic desirability of x.

More precisely, we suppose that alternatives in X are presented to a DM. For
each of these alternatives, he/she will specify whether he/she finds it “attractive”
(better than the status quo), “unattractive” (worse than the status quo) or “neu-
tral” (equivalent to the status quo). Similar primitives are considered in Nakamura
(2004) for the case of decision making under risk and in Goldstein (1991) in a mul-
tiattribute setting similar as ours. This process defines a threefold ordered partition
〈A ,F ,U 〉 of the set X (note that we abuse terminology here since we do not re-
quire each of A , F and U to be nonempty; this will result from the structural
conditions used below). Alternatives in A are judged Attractive. Alternatives in
U are judged Unattractive. Alternatives in F are judged neutral and therefore
lies at the Frontier between attractive and unattractive alternatives. We often
write AF instead of A ∪F and FU instead of F ∪U . The three categories in
〈A ,F ,U 〉 are ordered. All alternatives in A are preferable to all alternatives in
F and the latter are preferable to all alternatives in U . It is important to notice
that alternatives belonging to A are not “equally” preferable. Some of them may
be quite attractive while others may only be slightly better than the status quo.
A similar remark holds for U .
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Definition 1
We say that 〈A ,F ,U 〉 is non-degenerate if both A and U are nonempty.

We say that an attribute i ∈ N is influent for 〈A ,F ,U 〉 if there are xi, yi ∈ Xi

and a−i ∈ X−i such that (xi, a−i) and (yi, a−i) do not belong to the same category
in 〈A ,F ,U 〉.

2.3 The model

In this paper we concentrate on additive representations of 〈A ,F ,U 〉, i.e., a
model in which there are real-valued functions vi on Xi such that, for all x ∈ X,

x ∈


A
F
U

⇔
n∑
i=1

vi(xi)


>
=
<

 0. (A)

Let us note that the study of model (A) involves many different cases requiring
rather distinct types of analysis. When n = 2, the analysis of model (A) belongs
more to the field of ordinal measurement than to that of conjoint measurement
(we have x ∈ A ⇔ v1(x1) > −v2(x2), which is quite reminiscent of ordinal
measurement). This case is tackled in Bouyssou and Marchant (2008b) using
extensions of classical results on biorders (Doignon et al., 1984). In the same vein,
the case in which X is finite involves the use of standard separation techniques
from Linear Algebra. It is analyzed in Bouyssou and Marchant (2008a). We
concentrate here on the case in which n ≥ 3 and the set of alternatives has a “rich”
structure, which is obtained using solvability assumptions. We will show that it
is possible to adapt in a simple way the classical results of conjoint measurement
characterizing the additive value function model (see Krantz et al., 1971, Ch. 6)
to analyze model (A). The price to pay for such a simple adaptation will be the
need for strong solvability assumptions. In a companion paper (Bouyssou and
Marchant, 2009), we consider weaker solvability assumptions that lead to results
that are more powerful but that are no more simple adaptations of classical conjoint
measurement results.

3 Intuition of the axioms and sketch of an as-

sessment protocol

We want to build real-valued functions vi on Xi such that model (A) holds through
a structured dialogue with the DM. In this dialogue, several alternatives will be
presented to him/her and he/she is expected to answer indicating to which category
in 〈A ,F ,U 〉 these alternatives belong. No other type of questions will be asked
to the DM. The aim of this section is to give a rough sketch of an assessment
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protocol of the an additive value function model representing an ordered partition
〈A ,F ,U 〉. This will also be the occasion to informally motivate the various
conditions that we will later use. Formal definitions will be given in Section 4.

3.1 Ordering the elements of Xi and compatibility

An obvious consequence of model (A) is that the function vi induces a weak order-
ing (i.e., a complete and transitive binary relation) on the elements of Xi letting,
for all xi, yi ∈ Xi,

xi %i yi ⇔ vi(xi) ≥ vi(yi).

This weak order %i is compatible with the partition 〈A ,F ,U 〉 in the following
sense. If xi %i yi and (yi, a−i) ∈ A it follows that (xi, a−i) ∈ A . Moreover, if
xi %i yi and (yi, a−i) ∈ F it follows that (xi, a−i) ∈ AF . The linearity condition
introduced below will ensure that it is possible to define a weak order on each Xi

that is compatible with 〈A ,F ,U 〉 on all i ∈ N . It excludes, e.g., the existence
of xi, yi ∈ Xi and a−i, b−i ∈ X−i such that (xi, a−i) ∈ A , (yi, b−i) ∈ A , (yi, a−i) ∈
FU , (xi, b−i) ∈ FU . Indeed, such a configuration is clearly incompatible with
model (A) since the first and the third relation imply vi(xi) > vi(yi), while the
second and the fourth imply vi(yi) > vi(xi).

Observe that, in fact, model (A) require more. For all nonempty proper subset
I of N , we should be in position de define a weak order %I that is compatible with
〈A ,F ,U 〉. This is what we will call below strong linearity.

3.2 Strict compatibility

We have just shown how we can define a weak order %i on each Xi that is compati-
ble with 〈A ,F ,U 〉. We now pay attention to category F that plays in model (A)
the role of a frontier between A and U . Suppose that we know that (xi, a−i) ∈ F
and (yi, a−i) ∈ F . Clearly model (A) implies that we must have vi(xi) = vi(yi).
This implies that, whatever b−i ∈ X−i, it is impossible that (xi, b−i) and (yi, b−i)
belong to different categories in 〈A ,F ,U 〉. This motivates the thinness condition
introduced below that captures the fact that category F is indeed special in our
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model. This condition would not hold in a model such that, for all x, y ∈ X,

x ∈ A ⇔
n∑
i=1

vi(xi) > 1,

x ∈ F ⇔ −1 ≤
n∑
i=1

vi(xi) ≤ 1,

x ∈ U ⇔
n∑
i=1

vi(xi) < −1.

An easy but important consequence of adding thinness to linearity is that if
(yi, a−i) ∈ F and xi �i yi, we must have (xi, a−i) ∈ A . Similarly, (yi, a−i) ∈ F
and yi �i zi imply (zi, a−i) ∈ U . These additional conditions lead to what we call
strict compatibility between %i and 〈A ,F ,U 〉.

Finally as in the case of linearity, model (A) requires that we should have a
similar condition for all nonempty proper subset I of N . This is what we will call
below strong thinness.

At this stage, we know that if linearity and thinness (resp. strong linearity and
strong thinness) hold, there will be a weak order on each Xi (resp. XI) that is
strictly compatible with 〈A ,F ,U 〉.

3.3 Uniqueness

Suppose that there are real-valued functions vi on Xi such that model (A) holds.
It is clear that these functions are not unique. For instance, let ui = αvi + βi with
α > 0 and

∑n
i=1 βi = 0. It is easy to check that the functions ui also represent

〈A ,F ,U 〉 in model (A). This means that we can arbitrarily choose the “unit of
measurement” in our model (this corresponds to the parameter α) and that we
can always arbitrarily choose the “origin of measurement” (this corresponds to the
parameters βi). We will later see that, when the set of alternatives is rich, these
are the only transformations that can be applied to the functions vi.

3.4 Conventions and normalization

We suppose till Section 3.8 that n = 3. This will turn out to be the most difficult
case. Hence, we have X = X1 ×X2 ×X3. We want to build real-valued functions
v1, v2 and v3 so that model (A) holds.

Suppose that we can find an alternative (x01, x
0
2, x

0
3) ∈ F (in what follows

superscripts are often used to differentiate elements and not to indicate exponenti-
ation). From the above remarks on uniqueness, it is clear that we may always take
v1(x

0
1) = 0, v2(x

0
2) = 0 and v3(x

0
3) = 0. These choice will fix the origins of the scales
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vi. Take any element x−11 ∈ X1 such that x01 �1 x
−1
1 . Strict compatibility implies

(x−11 , x02, x
0
3) ∈ U . We can always suppose that we have v1(x

−1
1 ) = −1. This will

fix the unit of the scale v1 using the parameter α introduced above. Hence, this
will also fix the unit of all scales vi. Once these choices are made we should be in
position to assess the entire functions vi.

Notice that we have supposed that we will be able to find an object (x01, x
0
2, x

0
3)

belonging to F . This will result from our unrestricted solvability assumption
below that will require that for all x ∈ X and for all i ∈ N , there will be a yi ∈ Xi

such that (yi, x−i) ∈ F . Notice also that the above normalization requires that
there are two elements x01, x

−1
1 ∈ X1 such that x01 �1 x

−1
1 . This will require that

attribute 1 is influent.

3.5 Building diagonal standard sequences

The classical theory of conjoint measurement vitally rests on the possibility to
build standard sequences on each attributes, i.e., sequences of elements that are
equally spaced in the numerical model. The same will be true here. The main
difference with the classical case is that the process of building standard sequences
here will, in fact, lead to build equally spaced sequences on two attributes at the
same time. This is what we call a diagonal standard sequence. The assessment
protocol will single out one attribute and concentrate on the tradeoffs between the
remaining two attributes on which we will build a diagonal standard sequence. We
single out attribute 1 since it was chosen above to fix the unit of measurement in
the model.

The first question to the DM aims at finding an element x12 ∈ X2 such that
(x−11 , x12, x

0
3) ∈ F . If model (A) holds, we must have v1(x

−1
1 ) +v2(x

1
2) +v3(x

0
3) = 0.

This implies v2(x
1
2) = 1. We next ask for a value x−13 ∈ X3 such that (x01, x

1
2, x
−1
3 ) ∈

F . This implies v3(x
−1
3 ) = −1. The reader will have noticed that the questions

alternate using x−11 and x01 as benchmarks. Hence the next question is to find x22
such that (x−11 , x22, x

−1
3 ) ∈ F , implying v2(x

2
2) = 2. We then ask for x−23 such that

(x01, x
2
2, x
−2
3 ) ∈ F , implying v3(x

−2
3 ) = −2. Note that this process can be iterated

to define x`2 and x−`3 such that (x−11 , x`2, x
−`+1
3 ) ∈ F , (x01, x

`
2, x
−`
3 ) ∈ F , v2(x

`
2) = `,

and v3(x
−`
3 ) = −`.

For the time being we have only assessed points with positive values on X2 and
points with negative values on X3. Hence we start another round of questions to
assess points with positive values on X3 and points with negative values on X2.
This is done as follows. We first find x13 such that (x−11 , x02, x

1
3) ∈ F , implying

v3(x
1
3) = 1. We then find x−12 such that (x01, x

−1
2 , x13) ∈ F , implying v2(x

−1
2 ) = −1.

The assessment process continues in the same way as before. We ask for x23 such
that (x−11 , x−12 , x23) ∈ F , implying v3(x

2
3) = 2. We then ask for x−22 such that

(x01, x
−2
2 , x23) ∈ F , implying v2(x

−2
2 ) = −2. We will eventually find x−`2 and x`3 such
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that (x−11 , x−`+1
2 , x`3) ∈ F and (x01, x

−`
2 , x`3) ∈ F , v3(x

`
3) = `, and v2(x

−`
2 ) = −`.

This process is illustrated in Figure 1.
As in classical conjoint measurement, we have therefore built on both X2 and

X3 sequences of elements that must be equally spaced. Clearly, it is important
that these sequences can “reach” any element of X2 and X3. This will be the
role of the Archimedean condition introduced below. It roughly says that if the
elements xτ2 for τ ∈ T ⊆ Z, are equally spaced and there are x2, x2 ∈ X2 such that
x2 �2 x

τ
2 �2 x2 then the standard sequence must be finite, i.e., the above process

will lead to define only finitely many elements of X2 that are equally spaced. This
allows us to rule out the existence of elements of X2 that would be so desirable or
so undesirable that the above process would not allow to reach them.

3.6 The Thomsen condition

We now have to check that the standard sequences on X2 and X3 built above
give a sound basis for the construction of our additive representation. We must
also show how to define a standard sequence on the attribute 1 that was singled
out above. The clue to this step will be the Thomsen condition. It says that if
(a1, x2, x3) ∈ F , (x2, x3) ∼23 (y2, y3), (b1, y2, z3) ∈ F , and (y2, z3) ∼23 (z2, x3)
then we must have (x2, z3) ∼23 (z2, y3).

This condition will allow us to extend the standard sequences to X1 in a consis-
tent way. Indeed, we know that (x01, x

1
2, x
−1
3 ) ∈ F and (x01, x

0
2, x

0
3) ∈ F . Because

of strict compatibility, this implies that (x12, x
−1
3 ) ∼23 (x02, x

0
3). Similarly, we know

that (x−11 , x02, x
1
3) ∈ F and (x−11 , x22, x

−1
3 ) ∈ F . Because of strict compatibility,

this implies that (x02, x
1
3) ∼23 (x22, x

−1
3 ). Using the Thomsen condition, we ob-

tain that (x12, x
1
3) ∼23 (x22, x

0
3). Using solvability, we can find a x−21 such that

(x−21 , x12, x
1
3) ∈ F . Because (x12, x

1
3) ∼23 (x22, x

0
3), we know that we also have that

(x−21 , x22, x
0
3) ∈ F . This is illustrated in Figure 2.

It is easy to see, using Figure 2, that this process can be repeated to create
an entire new curve corresponding to the element x−21 . Once this is done, we can
build an entire curve corresponding to x−31 and so on.

Similarly, we can also use the Thomsen condition to build a curve corresponding
to x11, x

2
1, x

3
1, etc. For all these elements x`1, it is clear that we must have v1(x

`
1) = `.

For instance, we know that (x−11 , x02, x
1
3) ∈ F and (x−11 , x12, x

0
3) ∈ F , so that

(x02, x
1
3) ∼23 (x12, x

0
3). We also have (x01, x

1
2, x
−1
3 ) ∈ F and (x01, x

−1
2 , x13) ∈ F , so

that (x12, x
−1
3 ) ∼23 (x−12 , x13). Using the Thomsen condition implies (x02, x

−1
3 ) ∼23

(x−12 , x03). The level x11 is defined in such a way that (x11, x
0
2, x
−1
3 ) ∈ F (and, hence,

(x11, x
−1
2 , x03) ∈ F ). The reader will easily check that if we use this newly defined

level x11 to build a diagonal standard sequence on X2 and X3 we would obtain the
same diagonal standard sequence as the one found based on x−11 .

Finally observe that using the level x−12 (resp. x−13 ), we can build a diagonal
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X2

X3

x12 x22 x32 x42

x−12x−22x−32x−42

x13

x23

x33

x43

x−13

x−23

x−33

x−43

Figure 1: Building diagonal standard sequences. Points joined by a curve belong
to F when adjoined the same element in X1 (x01 for the lower curve, x−11 for the
upper curve).

Sequence of questions:

(x01, x
0
2, x

0
3) ∈ F ,

(x−11 , x12, x
0
3) ∈ F , (x01, x

1
2, x
−1
3 ) ∈ F ,

(x−11 , x22, x
−1
3 ) ∈ F , (x01, x

2
2, x
−2
3 ) ∈ F ,

(x−11 , x32, x
−2
3 ) ∈ F , (x01, x

3
2, x
−3
3 ) ∈ F ,

(x−11 , x42, x
−3
3 ) ∈ F , (x01, x

4
2, x
−4
3 ) ∈ F ,

(x−11 , x02, x
1
3) ∈ F , (x01, x

−1
2 , x13) ∈ F ,

(x−11 , x−12 , x23) ∈ F , (x01, x
−2
2 , x23) ∈ F ,

(x−11 , x−22 , x33) ∈ F , (x01, x
−3
2 , x33) ∈ F ,

(x−11 , x−32 , x43) ∈ F , (x01, x
−4
2 , x43) ∈ F .
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X2

X3

x22 x32 x42

x−12x−22x−32x−42

x13

x23

x33

x43

x−13

x−23

x−33

x−43

Figure 2: Using the Thomsen condition.

(x01, x
1
2, x
−1
3 ) ∈ F , (x01, x

0
2, x

0
3) ∈ F

(x−11 , x02, x
1
3) ∈ F , (x−11 , x22, x

−1
3 ) ∈ F

}
⇒ (x−21 , x12, x

1
3) ∈ F , (x−21 , x22, x

0
3) ∈ F .
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standard sequence on X1 and X3 (resp. X1 and X2). It is simple to check that
building this diagonal standard sequence will lead to define the same points xk1
and xk3 (resp. xk1 and xk2) as before. For instance, we would ask the DM for y11
and y13 such that (y11, x

−1
2 , x03) ∈ F and (x01, x

−1
2 , y−13 ) ∈ F . Since we know that

(x01, x
−1
2 , x−13 ) ∈ F , strict compatibility implies that y−13 ∼3 x

−1
3 . Similarly, since

we know that (x11, x
−1
2 , x03) ∈ F , we must have y11 ∼1 x

1
1.

3.7 Checking and completing the construction

Let us first show that the above construction is sound. On each of the attributes we
have found equally spaced points xki and xk+1

i , for k ∈ Z. In any additive numerical
representation that is normalized as decided above, we must have that vi(x

k
i ) = k.

It remains to be shown that for all k, `,m ∈ Z, we have (xk1, x
`
2, x

m
3 ) ∈ F iff

k + ` + m = 0 and (xk1, x
`
2, x

m
3 ) ∈ A iff k + ` + m > 0. Using Figure 2, it is

clear that we have, for all k ∈ Z, (xk1, x
−k
2 , x03) ∈ F . Furthermore, we know that if

(xk1, x
`
2, x

m
3 ) ∈ F then we also have (xk1, x

`+1
2 , xm−13 ) ∈ F .

Consider now (xk1, x
`
2, x

m
3 ) such that k+ `+m = 0, which implies that `+m =

−k. After having added several times 1 to ` and subtracted it to m, we will find an
element (xk1, x

`+m
2 , x03) such that `+m = −k. But we know that (xk1, x

−k
2 , x03) ∈ F .

This will imply, in view of Figure 2, that (xk1, x
`
2, x

m
3 ) ∈ F when k+`+m = 0. The

fact that (xk1, x
`
2, x

m
3 ) ∈ A when k + ` + m > 0 is easily shown. Since we always

have xki �i xk−1i , the desired conclusion follows from the fact that all relations
%i are strictly compatible with 〈A ,F ,U 〉. Hence, our construction of equally
spaced points on each Xi is sound.

Let us briefly show how it is possible to extend this construction to all points of
Xi. We do so for X2. Suppose for definiteness that y2 �2 x

1
2. Our aim is to assess

v2(y2). The process is simple. Using solvability, we find an element y−11 ∈ X1 such
that (y−11 , y2, x

0
3) ∈ F . We then use this value y−11 to build a diagonal standard

sequence on X2 and X3. Consider the elements of the diagonal standard belonging
to X2 and label these elements y12 = y2, y

2
2, y32, and so on. It is easy to see that

each element yk2 of this new standard sequence will lie in between two elements of
the original standard sequence, i.e., for all k such that yk2 is an element of the new
standard sequence, there are elements x`2 and x`+1

2 of the original standard sequence
such that x`2 %2 y

k
2 %2 x

`+1
2 . We know that v2(x

`
2) = ` and v2(x

`+1
2 ) = ` + 1.

Furthermore, it must be true that v2(y
k
2) = kv2(y2), because y12 = y2, y

2
2, y32 is a

standard sequence. Hence we have `/k ≤ v2(y2) ≤ (` + 1)/k. This gives an easy
way to approximate v2(y2). Increasing k will make this approximation more and
more precise. At the limit, this will give a precise value for v2(y2).
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3.8 At least four attributes

The process outlined above to assess an additive value when there are three at-
tributes can be conducted in a similar way when there are four attributes or more.
The main difference in this case will be that it will not be necessary to explicitly
invoke the Thomsen condition It will be implied by the conjunction of our other
conditions 1. Intuitively, when there are three attributes, saying that linearity
holds on each attribute implies strong linearity. Indeed ordering the elements of
Xi implies ordering the elements in X−i, so that linearity on all attributes implies
linearity of all proper subsets of attributes. This is no more true when there are
four attributes. If the elements of X1 are ordered, this will imply that the elements
in X2×X3×X4 are ordered but not necessarily that the elements in X3×X4 are
ordered. This shows that strong linearity implies more than just linearity when
there are four attributes or more.

Let us briefly illustrate the assessment process when n = 4. We start with
an alternative (x01, x

0
2, x

0
3, x

0
4) ∈ F . We may always take v1(x

0
1) = 0, v2(x

0
2) = 0,

v3(x
0
3) = 0, and v4(x

0
4) = 0. Take any element x−14 ∈ X4 such that x04 �1 x

−1
4 . We

normalize v4 in such a way that v4(x
−1
4 ) = −1.

Using the level x−14 , we can build a diagonal standard sequence on X1 and
X2. Such a process will lead, in particular, to define the points x11, x

−1
2 , x21 and

x−22 such that (x11, x
0
2, x

0
3, x
−1
4 ) ∈ F , (x11, x

−1
2 , x03, x

0
4) ∈ F , (x21, x

−1
2 , x03, x

−1
4 ) ∈ F ,

(x21, x
−2
2 , x03, x

0
4) ∈ F .

Similarly, using x−14 we can build a diagonal standard sequence on X1 and
X3. Such a process will lead to define the points y11, x−13 , y21 and x−23 such that
(y11, x

0
2, x

0
3, x
−1
4 ) ∈ F , (y11, x

0
2, x
−1
3 , x04) ∈ F , (y21, x

0
2, x
−1
3 , x−14 ) ∈ F , (y21, x

0
2, x
−2
3 , x04) ∈

F .
Because we have (x11, x

0
2, x

0
3, x
−1
4 ) ∈ F and (y11, x

0
2, x

0
3, x
−1
4 ) ∈ F , we must have

y11 ∼1 x11. Let us check that we also have y21 ∼1 x21. Indeed, we know that
(x11, x

−1
2 , x03, x

0
4) ∈ F and (x11, x

0
2, x
−1
3 , x04) ∈ F . This implies that (x−12 , x03) ∼23

(x02, x
−1
3 ). Hence (x21, x

−1
2 , x03, x

−1
4 ) ∈ F implies (x21, x

0
2, x
−1
3 , x−14 ) ∈ F . Since we

know that (y21, x
0
2, x
−1
3 , x−14 ) ∈ F , we obtain y21 ∼1 x

2
1. This reasoning is easily

extended to show that all points xk1 defined building a diagonal standard sequence
on X1 and X2 and all points yk1 defined building a diagonal standard sequence on
X1 and X3 will coincide.

Using a similar reasoning shows that the process of building diagonal standard
sequences will never lead to contradictions. The completion of the construction is
obtained as before, using the Thomsen condition.

Let us outline the proof of the fact that the Thomsen condition will hold when
n ≥ 4. Suppose that (x1, x2, a3, a4) ∈ F , (x1, x2) ∼12 (y1, y2), (y1, z2, b3, b4) ∈ F ,

1A similar effect occurs in classical conjoint measurement: the Thomsen condition has there
only to be invoked when there are two attributes
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and (y1, z2) ∼12 (z1, x2). We must show that we have (x1, z2) ∼12 (z1, y2).
Let c4 ∈ X4. Using solvability, we will be able to find c3, d3 ∈ X3 such

that (x1, x2, c3, c4) ∈ F , and (y1, x2, d3, c4) ∈ F . This implies (x1, c3) ∼13

(y1, d3). Since (x1, x2) ∼12 (y1, y2), we also have (y1, y2, c3, c4) ∈ F . In view
of (y1, x2, d3, c4) ∈ F and (y1, y2, c3, c4) ∈ F , we obtain (x2, d3) ∼23 (y2, c3).

Using solvability, we can find d4 ∈ X4 such that (z1, x2, d3, d4) ∈ F . Since
(x2, d3) ∼23 (y2, c3), we know that (z1, y2, c3, d4) ∈ F . Similarly, since (y1, z2) ∼12

(z1, x2), (z1, x2, d3, d4) ∈ F implies (y1, z2, d3, d4) ∈ F . Since we know that
(y1, z2, d3, d4) ∈ F and (x1, c3) ∼13 (y1, d3), we obtain (x1, z2, c3, d4) ∈ F . Hence,
we have (x1, z2, c3, d4) ∈ F and (z1, y2, c3, d4) ∈ F , which implies (x1, z2) ∼12

(z1, y2), as required.

4 Axioms and Results

Our aim in this section is to present conditions ensuring the existence of an additive
representation of 〈A ,F ,U 〉 when there are at least three attributes. Starting with
〈A ,F ,U 〉 on X = X1 × . . . X2 × · · · ×Xn, our strategy will be to build a binary
relation on a product set that leaves out one attribute, i.e., on a set

∏
i 6=j Xi. We

will impose conditions on 〈A ,F ,U 〉 ensuring that this binary relation satisfies the
standard axioms of conjoint measurement as given in Krantz et al. (1971, Ch. 6).
This ensures the existence of an additive representation of the binary relation.
Bringing the attribute that was left out in the construction of the binary relation
back into the picture again, we will show that the additive representation of the
binary relation can be used to obtain an additive representation of the ordered
partition 〈A ,F ,U 〉.

4.1 Necessary axioms

Given any nonempty proper subset I of N , our first condition amounts to requiring
that it is possible to weakly order the elements of XI in such a way that this weak
order is compatible with 〈A ,F ,U 〉.

Definition 2 (Linearity)
Let I be a nonempty proper subset of N . We say that 〈A ,F ,U 〉 is

1. A -linear on I (condition A -linearI) if

(xI , a−I) ∈ A
and

(yI , b−I) ∈ A

⇒


(yI , a−I) ∈ A
or

(xI , b−I) ∈ A
(A -linearI)
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2. F -linear on I (condition F -linearI) if

(xI , a−I) ∈ F
and

(yI , b−I) ∈ F

⇒


(yI , a−I) ∈ AF
or

(xI , b−I) ∈ AF
(F -linearI)

3. AF -linear on I (condition AF -linearI) if

(xI , a−I) ∈ A
and

(yI , b−I) ∈ F

⇒


(yI , a−I) ∈ A
or

(xI , b−I) ∈ AF
(AF -linearI)

for all xI , yI ∈ XI and a−I , b−I ∈ X−I . We say that 〈A ,F ,U 〉 is linearI if it is
A -linearI , F -linearI and AF -linearI . We say that 〈A ,F ,U 〉 is strongly linear
if it satisfies linearI , for all nonempty proper subset I of N .

It is easy to check that the existence of an additive representation implies strong
linearity. For instance, suppose that (xI , a−I) ∈ A and (yI , b−I) ∈ A , so that∑

i∈I vi(xi) +
∑

j /∈I vj(aj) > 0 and
∑

i∈I vi(yi) +
∑

j /∈I vj(bj) > 0. If
∑

i∈I vi(xi) ≥∑
i∈I vi(yi), we have

∑
i∈I vi(xi) +

∑
j /∈I vj(bj) > 0, so that (xI , b−I) ∈ A . Other-

wise, we have
∑

i∈I vi(yi) >
∑

i∈I vi(xi), which implies
∑

i∈I vi(yi) +
∑

j /∈I vj(aj) >
0 and (yI , a−I) ∈ A .

It is easy to check that if an ordered partition satisfies linearI then it will satisfy
a similar condition in which all instances of A (resp. AF ) are replaced by U (resp.
FU ). This shows that this condition deals with A and U in a symmetric way.

The consequences of our linearity conditions can be clearly understood consid-
ering the trace that 〈A ,F ,U 〉 generates on each XI . Let I be a nonempty proper
subset of N . We define on XI the binary relation %I letting, for all xI , yI ∈ XI ,

xI %I yI ⇔ for all a−I ∈ X−I ,

{
(yI , a−I) ∈ A ⇒ (xI , a−I) ∈ A ,

(yI , a−I) ∈ F ⇒ (xI , a−I) ∈ AF .

We say that %I is the trace on XI generated by 〈A ,F ,U 〉. By construction,
%I is always reflexive and transitive. We use �I and ∼I as is usual. The role of
linearI is precisely to ensure that the trace %I is complete, so that it becomes a
weak order. By construction, this relation is compatible with 〈A ,F ,U 〉. This is
summarized in the following lemma. We omit its simple proof.

Lemma 1
For all x, y ∈ X and all nonempty proper subset I of N , we have:

[y ∈ A and xI %I yI ]⇒ (xI , y−I) ∈ A ,

[y ∈ F and xI %I yI ]⇒ (xI , y−I) ∈ AF ,

[xi %i yi, for all i ∈ I]⇒ [xI %I yI ].

Furthermore, a threefold partition 〈A ,F ,U 〉 is linearI iff %I is complete.
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As explained in Section 3.2, our next condition aims at capturing the special
role played by category F .

Definition 3 (Thinness)
Let I be a nonempty proper subset of N . We say that the threefold partition
〈A ,F ,U 〉 is thin on I (condition thinI) if,

(xI , a−I) ∈ F
and

(yI , a−I) ∈ F

⇒
{

(xI , b−I) ∈ A ⇔ (yI , b−I) ∈ A ,

(xI , b−I) ∈ U ⇔ (yI , b−I) ∈ U ,

for all xI , yI ∈ XI and a−I , b−I ∈ X−I . We say that 〈A ,F ,U 〉 is strongly thin if
it is thinI , for all nonempty proper subset I of N .

It is easy to check that the existence of an additive representation implies that
the partition must be strongly thin. Indeed, if (xI , a−I) ∈ F and (yI , a−I) ∈
F , we must have that

∑
i∈I vi(xi) =

∑
i∈I vi(yi), so that replacing xI by yI will

never modify the assignment of an alternative. As discussed in Section 3.2, the
combination of linearI and thinI will ensure that the weak order %I becomes
strictly compatible with 〈A ,F ,U 〉. This is summarized in the following lemma,
which obvious proof is omitted.

Lemma 2
Suppose that 〈A ,F ,U 〉 is linearI and thinI on a nonempty proper subset I of N .
Then

[(xI , a−I) ∈ F and yI �I xI ]⇒ (yI , a−I) ∈ A ,

[(xI , a−I) ∈ F and xI �I zI ]⇒ (zI , a−I) ∈ U ,

for all xI , yI , zI ∈ XI and a−I ∈ X−I .

It is easy to build examples showing that condition thinI is, in general, independent
from A -linearI , F -linearI and AF -linearI .

The next condition will only come into play when n = 3. Its importance for
building additive representations was stressed in Section 3.6.

Definition 4 (Thomsen condition)
We say that 〈A ,F ,U 〉 on X satisfies the Thomsen condition if

(xi, xj, a−ij) ∈ F and (xi, xj) ∼ij (yi, yj)
(yi, zj, b−ij) ∈ F and (yi, zj) ∼ij (zi, xj)

}
⇒ (xi, zj) ∼ij (zi, yj),

for all i, j ∈ N with i 6= j, all xi, yi, zi ∈ Xi, all xj, yj, zj ∈ Xj and all a−ij, b−ij ∈
X−ij.
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Let us show that this condition is necessary for model (A). Indeed, (xi, xj, a−il) ∈
F and (xi, xj) ∼ij (yi, yj) imply that (yi, yj, a−il) ∈ F . This implies vi(xi) +
vj(xj) = vi(yi) + vj(yj). Similarly, (yi, zj, b−il) ∈ F and (yi, zj) ∼ij (zi, xj) lead to
vi(yi) + vj(zj) = vi(zi) + vj(xj). Hence, we have vi(zi) + vj(yj) = vi(xi) + vj(zj), so
that (xi, zj) ∼ij (zi, yj). We have shown in Section 3.6 that this condition is central
in the construction of an additive representation when there are three attributes.

Our next condition is a possible formalization of diagonal standard sequences
and an Archimedean condition for ordered partitions. This formalization follows
the construction presented above in Section 3.5.

Definition 5 (Diagonal standard sequences)
Let i, j ∈ N with i 6= j. Let T be any set (finite or infinite) of consecutive
integers (positive or negative). We say that {xτi ∈ Xi, x

τ
j ∈ Xj, : τ ∈ T} is

a diagonal standard sequence for 〈A ,F ,U 〉 on attributes i, j ∈ N if there are
a−ij, b−ij ∈ X−ij such that Not[a−ij ∼−ij, b−ij] (i.e., there are ai ∈ Xi and aj ∈ Xj

such that (ai, aj, a−ij) and (ai, aj, b−ij) do not belong to the same category) and

(xτi , x
τ−1
j , b−ij) ∈ F , (1a)

(xτi , x
τ
j , a−ij) ∈ F , (1b)

(xτ+1
i , xτj , b−ij) ∈ F , (1c)

for all τ ∈ T.

In Figure 1 above, we have illustrated a diagonal standard sequence on X2 and
X3. The role of a−ij, b−ij ∈ X−ij is played by the two elements x01 and x−11 . It is
clear that if the sequence on i is increasing (i.e., xτ+1

i �i xτi ) then the sequence on
j is decreasing (i.e., xτ−1j �j xτj ) and vice versa.

Suppose that {xτi ∈ Xi, x
τ
j ∈ Xj, : τ ∈ T}, is a diagonal standard sequence

on attributes i and j. Because we have supposed that Not [a−ij ∼−ij, b−ij], in any
additive representation 〈vi〉i∈N of 〈A ,F ,U 〉, we must have∑

k 6=i,j

vk(ak)−
∑
k 6=i,j

vk(bk) = δ 6= 0.

Furthermore, (1b) and (1c) imply

vi(x
τ
i ) + vj(x

τ
j ) +

∑
k 6=i,j

vk(ak) = 0,

vi(x
τ+1
i ) + vj(x

τ
j ) +

∑
k 6=i,j

vk(bk) = 0.

This implies that, for all τ ∈ T, we have

vi(x
τ+1
i )− vi(xτi ) = δ 6= 0.
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Similarly, (1a) and (1b) imply

vi(x
τ
i ) + vj(x

τ−1
j ) +

∑
k 6=i,j

vk(bk) = 0,

vi(x
τ
i ) + vj(x

τ
j ) +

∑
k 6=i,j

vk(ak) = 0.

This implies that, for all τ ∈ T, we have

vj(x
τ−1
j )− vi(xτi ) = δ 6= 0.

Hence, the elements of a diagonal standard sequence are equally spaced in the
numerical representation.

Definition 6 (Strictly bounded diagonal standard sequence)
Let i, j ∈ N with i 6= j and T be a set of consecutive integers. Let {xτi ∈ Xi,
xτj ∈ Xj, : τ ∈ T}, be a diagonal standard sequence on i, j ∈ N . We say that this
diagonal standard sequence is strictly bounded on i ∈ N if there are xi, xi ∈ Xi

such that xi �i xτi and xτi �i xi for all τ ∈ T.

Suppose that a diagonal standard sequence on i, j ∈ N is strictly bounded on
i ∈ N by xi and xi ∈ Xi. It is simple to check that we must have

vi(xi) < vi(x
τ
i ) < vi(xi).

Because vi(x
τ+1
i ) − vi(xτi ) = δ 6= 0 the set T must be finite. This is the motiva-

tion for our Archimedean condition stated below that is clearly necessary for the
existence of an additive representation.

Definition 7 (Archimedean condition)
Let i, j ∈ N with i 6= j and T be a set of consecutive integers. Let {xτi ∈ Xi,
xτj ∈ Xj, : τ ∈ T}, be a diagonal standard sequence on i, j ∈ N . If this standard
sequence is strictly bounded on i or on j then the set T is finite.

Under the unrestricted solvability assumption stated below, it is simple to check
that a diagonal standard sequence on i, j ∈ N is strictly bounded on i iff it is
strictly bounded on j. As in classical conjoint measurement, the Archimedean
axiom is not particularly intuitive. Its role is to forbid the existence of elements of
Xi that would be so good or so bad that a standard sequence would not be able
to reach them.
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4.2 Structural axioms

Our main unnecessary assumption is a strong solvability assumption that says
that category F can always be reached by modifying an evaluation on a single
attribute. It cannot be overemphasized that this is a very strong hypothesis that
will force all functions vi used in a representation in model (A) to be unbounded.

Definition 8 (Unrestricted solvability)
We say that 〈A ,F ,U 〉 satisfies unrestricted solvability if, for all i ∈ N and all
x−i ∈ X−i, (xi, x−i) ∈ F , for some xi ∈ Xi.

On top of unrestricted solvability, we will also suppose that 〈A ,F ,U 〉 is a non-
degenerate partition. This is a rather mild restriction.

Let us note that if 〈A ,F ,U 〉 is a non-degenerate partition satisfying unre-
stricted solvability and that is strongly linear and strongly thin, then, for all i ∈ N ,
there are zi, wi ∈ Xi such that zi �i wi. Indeed using non-degeneracy, we know
that x ∈ A , for some x ∈ X. Using unrestricted solvability, we have (yi, x−i) ∈ F ,
for some yi ∈ Xi. This implies that xi ∼i yi is impossible. Therefore, under the
above conditions, all attributes are influent for 〈A ,F ,U 〉.

4.3 Results

Our first result gives conditions ensuring the existence of an additive representation
with tight uniqueness properties.

Proposition 1
Suppose that 〈A ,F ,U 〉 is an ordered partition of a set X = X1 ×X2 × · · · ×Xn

with n ≥ 3. Suppose that 〈A ,F ,U 〉 is non-degenerate and satisfies unrestricted
solvability, strong linearity, strong thinness and the Archimedean condition. If
n = 3, suppose furthermore that 〈A ,F ,U 〉 satisfies the Thomsen condition. Then
there is an additive representation 〈vi〉i∈N of 〈A ,F ,U 〉 in model (A).

Under the above conditions, 〈ui〉i∈N and 〈vi〉i∈N are two additive representations
of 〈A ,F ,U 〉 in model (A) iff there are real numbers β1, β2, . . . , βn, α with α > 0
and

∑n
i=1 βi = 0 such that for all i ∈ N and all xi ∈ Xi, vi(xi) = αui(xi) + βi.

The proof appears in section A in the supplementary material to this paper.
Let us give two typical examples of ordered partitions satisfying the conditions

of Proposition 1. The first corresponds to discrete equally spaced structure. The
second is a continuous structure.

Example 1
Let X = Z3 with A = {x ∈ X : x1+x2+x3 > 0} and F = {x ∈ X : x1+x2+x3 =
0}. Taking, for all i ∈ N , vi(xi) = xi clearly gives a representation of this ordered
partition in model (A). 3
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Example 2
Let X = R3 with A = {x ∈ X : x1+x2+x3 > 0} and F = {x ∈ X : x1+x2+x3 =
0}. Taking, for all i ∈ N , vi(xi) = xi clearly gives a representation of this ordered
partition in model (A). 3

Observe that for the uniqueness part of the above proposition, we have sup-
posed that the threshold 0 was fixed. This may give the impression that this
uniqueness result is stronger than what it really is. If the threshold used for F
is taken to be variable from one representation to another, it is easy to see that
one goes from an additive representation to another one simply by multiplying all
functions ui by the same positive constant and adding a constant βi to each of
them. If the first representation uses a null threshold, the second one will use a
threshold equal to

∑n
i=1 βi.

Proposition 1 uses strong linearity and strong thinness. Although this allows to
simply grasp the conditions underlying the result, this involves some redundancy.
For instance, it is clear that conditions A -linearI and A -linear−I are equivalent.
This brings us to the main results in this section that show how to sharpen the
conditions used above. The uniqueness of the representation obtained with these
two results is the same as in Proposition 1.

We say that 〈A ,F ,U 〉 is ν-A -linear if it satisfies A -linearI for all nonempty
proper subset I of N such that |I| = ν > 0. We use a similar convention for
ν-F -linear, ν-AF -linear, ν-linear and ν-thin.

Theorem 1
Let 〈A ,F ,U 〉 be an ordered partition of a set X = X1×X2×X3. If 〈A ,F ,U 〉 is
non-degenerate and satisfies unrestricted solvability, the Archimedean condition, 1-
A -linear, 1-F -linear, 1-thin and the Thomsen condition, then there is an additive
representation of 〈A ,F ,U 〉.

Theorem 2
Suppose that 〈A ,F ,U 〉 is a non-degenerate ordered partition of a set X = X1 ×
X2×· · ·×Xn with n ≥ 4. Suppose that 〈A ,F ,U 〉 satisfies unrestricted solvabili-
ty, the Archimedean condition, 1-A -linear, 1-F -linear, 2-A -linear, 1-thin. Then
there is an additive representation of 〈A ,F ,U 〉.

Theorems 1 and 2 are proved in section B in the supplementary material to this
paper. They give reasonably simple conditions ensuring the existence of additive
representations with tight uniqueness properties. In Section 6, we relate them to
the existing literature on the subject and discuss their interest.
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5 Beyond threefold partitions

The approach taken above can be generalized to cover the case of more than two
categories separated by a single frontier. This case is dealt with separately since
it will use our results for the case of two categories separated by a single frontier
as a lemma.

5.1 The setting

Let r ≥ 2 be an integer. Let R = {1, 2, . . . , r}. An r-fold ordered covering of the set
X is a collection of nonempty sets 〈C1, C2, . . . , Cr〉 such that C1∪C2∪· · ·∪Cr = X
and Ck ∩ C` = ∅, for all k, ` ∈ R such that |k − `| > 1. We define for all k ∈ R,
Ck
≥ =

⋃r
j=k C

j, Ck
≤ =

⋃k
j=1C

j. Note that we use here superscripts for categories
and not to indicate exponentiation.

The alternatives in Ck ∩ Ck+1 are interpreted as lying at the frontier between
categories Ck and Ck+1. For k ∈ R, we define ∆k = Ck \

[
Ck−1 ∪ Ck+1

]
, with

the convention that C0 = Cr+1 = ∅. The alternatives in ∆k are therefore the
alternatives that belong to Ck and do not lie at the frontier between Ck and one
of its adjacent categories. We define, for all k ∈ {1, 2, . . . , r− 1}, ∆k

≥ = ∆k ∪Ck+1
≥

and ∆k
≤ = ∆k ∪ Ck−1

≤ .
The ordered covering 〈C1, C2, . . . , Cr〉 may therefore be viewed as an ordered

partition 〈∆1, C1 ∩ C2,∆2, C2 ∩ C3,∆3, . . . , Cr−1 ∩ Cr,∆r〉. Clearly, for all k ∈
{1, 2, . . . , r − 1}, this ordered partition generates a threefold ordered partition
〈∆k
≤, C

k ∩ Ck+1,∆k+1
≥ 〉. Each of these threefold partitions can be analyzed using

the results in Section 4.
We say that 〈C1, C2, . . . , Cr〉 is non-degenerate if ∆k 6= ∅, for all k ∈ R.

5.2 The model

We consider an ordered covering 〈Ck〉k∈R, possibly with r ≥ 3. We are interested
in a representation of 〈Ck〉k∈R such that, for all x ∈ X, and all k ∈ R,

x ∈ Ck ⇔ σk−1 ≤
n∑
i=1

vi(xi) ≤ σk, (A∗)

with the convention that σ0 = −∞, σr = +∞ and where σ1, σ2, . . . , σr−1 are real
numbers such that σ1 < σ2 < · · · < σr−1 and vi is a real-valued function on Xi.
This clearly implies that x ∈ Ck ∩ Ck+1 ⇔

∑n
i=1 vi(xi) = σk and x ∈ ∆k+1

≥ ⇔∑n
i=1 vi(xi) > σk. Hence, when model (A∗) holds, each of the threefold partitions

(for r ∈ {1, 2, . . . , r−1}) 〈∆k
≤, C

k∩Ck+1,∆k+1
≥ 〉 have a representation in model (A)

and the basis of our analysis will be the results obtained for model (A) in Section 4.
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5.3 Axioms and result

Our strategy is as follows. We will suppose that one of the threefold partition
〈∆k
≤, C

k ∩ Ck+1,∆k+1
≥ 〉 satisfies the conditions of Theorem 1 (when n = 3) or of

Theorem 2 (when n ≥ 4). We will then add extra conditions ensuring that the
additive representation of 〈∆k

≤, C
k ∩ Ck+1,∆k+1

≥ 〉 also gives a representation of
〈Ck〉k∈R in model (A∗).

Our first additional condition strengthens thinness so that if two alternatives
differing in only one attribute are caught in a frontier, changing the n−1 common
values of these two alternatives will never allow to distinguish them.

Definition 9 (Generalized 1-thinness)
We say that 〈Ck〉k∈R satisfies generalized 1-thinness if for all h ∈ {1, 2, . . . , r−1},
all i ∈ N , all ai, bi ∈ Xi and all c−i, d−i ∈ X−i, [(ai, c−i) ∈ Ch ∩ Ch+1 and
(bi, c−i) ∈ Ch ∩ Ch+1] ⇒ [(ai, d−i) ∈ Ck ⇔ (bi, d−i) ∈ Ck, for all k ∈ R].

It is easy to see that generalized 1-thinness is necessary for model (A∗), since
[(ai, c−i) ∈ Ch ∩ Ch+1 and (bi, c−i) ∈ Ch ∩ Ch+1] imply vi(ai) = vi(bi). This
condition clearly implies that all the threefold partitions 〈∆k

≤, C
k ∩ Ck+1,∆k+1

≥ 〉
induced by 〈Ck〉k∈R are 1-thin.

Our second additional condition aims at imposing that two distinct frontiers
between categories have the same shape. It says that when the tradeoff between
ai and aj is “equivalent” to the tradeoff between bi and bj because both are caught
in the same frontier when adjoined a common element in X−ij, then a similar
conclusion will hold when considering other frontiers.

Definition 10 (Parallelism)
An ordered covering 〈Ck〉k∈R satisfies parallelism if

(ai, aj, c−ij) ∈ Ch ∩ Ch+1

(bi, bj, c−ij) ∈ Ch ∩ Ch+1

(ai, aj, d−ij) ∈ Ck ∩ Ck+1

⇒ (bi, bj, d−ij) ∈ Ck ∩ Ck+1.

for all h, k ∈ {1, 2, . . . , r − 1}, all ai, bi ∈ Xi, all aj, bj ∈ Xj and all c−ij, d−ij ∈
X−ij.

It is easy to check that parallelism is a necessary condition for model (A∗). Indeed,
(ai, aj, c−ij) ∈ Ch ∩ Ch+1 and (bi, bj, c−ij) ∈ Ch ∩ Ch+1 imply in model (A∗) that
vi(ai) + vj(aj) = vi(bi) + vj(bj). Hence if (ai, aj, d−ij) ∈ Ck ∩ Ck+1, i.e., vi(ai) +
vj(aj) +

∑
k 6=i,j vk(dk) = σk, we have vi(bi) + vj(bj) +

∑
k 6=i,j vk(dk) = σk, so that

(bi, bj, d−ij) ∈ Ck ∩ Ck+1.
The next two conditions ensures a minimal consistency between all the twofold

coverings that are induced from 〈Ck〉k∈R.
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Definition 11 (�-Mixed-1-linearity)
We say that 〈Ck〉k∈R satisfies mixed-1-linearity w.r.t. the frontiers or, for short,
�-mixed-1-linearity, if

(xi, a−i) ∈ Ck−1 ∩ Ck

and
(yi, b−i) ∈ Ch−1 ∩ Ch

⇒


(yi, a−i) ∈ Ck
≥

or
(xi, b−i) ∈ Ch

≥

for all k, ` ∈ R, all i ∈ N , all xi, yi ∈ Xi and all a−ij, b−ij ∈ X−ij.

Definition 12 (∆-Mixed-1-linearity)
We say that 〈Ck〉k∈R satisfies mixed-1-linearity with respect to the interior or, for
short, ∆-mixed-1-linearity if

(xi, a−i) ∈ ∆k
≥

and
(yi, b−i) ∈ ∆h

≥

⇒


(yi, a−i) ∈ ∆k
≥

or
(xi, b−i) ∈ ∆h

≥

for all k, ` ∈ R, all i ∈ N , all xi, yi ∈ Xi and all a−ij, b−ij ∈ X−ij.

These two conditions are clearly necessary for model (A∗). For instance, if (xi, a−i) ∈
Ck−1 ∩ Ck and (yi, b−i) ∈ Ch−1 ∩ Ch, we have vi(xi) +

∑
j 6=i vj(aj) = σk−1 and

vi(yi)+
∑

j 6=i vj(bj) = σh−1. If vi(xi) ≥ vi(yi), it follows that vi(xi)+
∑

j 6=i vj(bj) ≥
σh−1, so that (xi, b−i) ∈ Ch

≥. Otherwise, we have vi(yi) > vi(xi), which implies
vi(yi) +

∑
j 6=i vj(aj) > σk−1, so that (yi, a−i) ∈ Ck

≥. In Bouyssou and Marchant
(2008a), we show the importance of generalized 1-thinness �-Mixed-1-linearity
and ∆-Mixed-1-linearity to obtain a strictly increasing decomposable representa-
tion of 〈Ck〉k∈R, i.e, a model that is similar to (A∗) except that the sum has been
replaced by a function F that is strictly increasing in all its arguments.

Observe that if 〈Ck〉k∈R satisfies �-mixed-1-linearity and ∆-mixed-1-linearity
then all the threefold partitions 〈∆k

≤, C
k ∩ Ck+1,∆k+1

≥ 〉 will satisfy 1-A -linear,

1-F -linear, with the convention that A = ∆k+1
≥ and F = Ck ∩ Ck+1.

Our final additional condition is a strengthening of unrestricted solvability
saying that starting with any alternative one can reach any frontier by modifying
this alternative on a single attribute. This is a strong condition that is clearly not
necessary for model (A∗).

Definition 13 (Unrestricted solvability w.r.t. all frontiers)
An ordered covering 〈Ck〉k∈R satisfies unrestricted solvability w.r.t. all frontiers if
if, for all h ∈ {1, 2, . . . , r− 1}, all i ∈ N and all a−i ∈ X−i, (ai, a−i) ∈ Ch ∩Ch+1,
for some ai ∈ Xi.

Our main result in this section is the following:
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Theorem 3
Let 〈Ck〉k∈R be a non-degenerate ordered covering of X such that:

1. 〈Ck〉k∈R satisfies generalized 1-thinness, �-mixed-1-linearity, ∆-Mixed-1-linearity,
parallelism and unrestricted solvability w.r.t. all frontiers,

2. for some k ∈ {1, 2, . . . , r − 1}, the threefold partition 〈∆k
≤, C

k ∩ Ck+1,∆k+1
≥ 〉

satisfies the Archimedean condition and either Thomsen condition (if n = 3)
or or 2-A -linear (if n ≥ 4) (using the obvious convention that A = ∆k+1

≥ ).

Then, there is an additive representation of 〈Ck〉k∈R in model (A∗).
Under the above conditions, 〈ui〉i∈N and 〈vi〉i∈N are two additive representations

of 〈Ck〉k∈R using the same thresholds σ1 < σ2 < · · · < σr−1 iff there are real
numbers β1, β2, . . . , βn with

∑n
i=1 βi = 0 such that for all i ∈ N and all xi ∈ Xi,

vi(xi) = ui(xi) + βi.

The proof appears in section C in the supplementary material to this paper.
The following section discusses our results and positions them w.r.t. the existing

literature on the subject.

6 Relation to the literature and discussion

6.1 Relation to the literature

This paper has shown how to adapt classical results of conjoint measurement
giving conditions guaranteeing the existence of additive representations of binary
relations to the case of ordered partitions.

The only results we are aware of that deal with a problem comparable to ours
are the ones in Vind (1991) (almost identical results appear in Vind, 2003, Ch. 5
& 9). Vind (1991) considers a subset A of a product set X with n ≥ 4. Condition
A -linearI is required to hold for all nonempty proper subset I of N . This allows to
define a weak order on each Xi in an obvious way (i.e., xi %A

i yi ⇔ [for all a−i ∈
X−i, (yi, a−i) ∈ A ⇒ (xi, a−i) ∈ A ]). Using this weak order, Vind imposes that
each set Xi is connected in the order topology generated by %A

i . The product set
X is endowed with the product topology. All attributes are required to be essential
in the following sense. For all i ∈ N and for all xi ∈ Xi, there are a−i, b−i ∈ X−i
such that (xi, a−i) ∈ A and (xi, b−i) /∈ A .

The main result in Vind (1991) is as follows.

Theorem (Vind, 1991, Th. 1, p. 122)
Let X be such that n ≥ 4 and, for all i ∈ N , |Xi| > 1. Suppose that:

1. all attributes are essential,
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2. for all nonempty proper subset I of N , condition A -linearI holds,

3. for all i ∈ N , Xi is connected in the order topology induced by the weak order
%A
i , and

4. A is open in the product topology on X,

then there are real-valued vi on Xi such that, for all x ∈ X, x ∈ A ⇔
∑n

i=1 vi(xi) >
0. Under the above conditions, the uniqueness of the functions vi is as in Theo-
rem 1.

Compared to the above result, our own results have advantages and disadvantages.
Let us begin by the positive side. We have dealt with the case of three attributes

and the case with more than two ordered categories separated by a single frontier.
These two cases are not dealt with in Vind (1991). We have also outlined an
assessment protocol of the functions vi, a point that is not explicitly tackled in
Vind (1991). Moreover, our results do not exclude the case of discrete equally
spaced structures, such as the one in Example 1, a case that is not covered by
Vind’s (1991) result since it clearly violates the connectedness of each Xi. A final
argument on the positive side is the simplicity of our results that are rather direct
extensions of classical results. Vind’s (1991) proofs are based on theory of mean
groupöıds. Besides the fact that his proofs are somewhat sketchy, we feel that ours
are far simpler.

On the negative side, we have to mention two main points. First, as already
stressed, the simplicity of our results are mainly due to our use of a strong solv-
ability assumption. Indeed, unrestricted solvability forces all functions vi used in
a representation in model (A) to be unbounded. This not the case in Vind (1991).
It is important to stress that the approach taken here vitally depends on this hy-
pothesis. We investigate in Bouyssou and Marchant (2009) another approach that
uses the results in Chateauneuf and Wakker (1993) allowing to build additive rep-
resentations of weak orders defined on subsets of product sets (since this approach
appeals to connectedness, it does not allow to cover the case of discrete equally
spaced structures as in Example 1 however). Another weak point of our results
compared to Vind’s (1991) is that we use conditions that explicitly appeal to the
frontier F . In the topological setting of Vind (1991), the treatment of the frontier
may remain implicit: since A is open, the element of F may be viewed as the
elements belonging to cl(A ) \A , where ‘cl’ denotes the closure operator. In our
algebraic setting, we need to impose conditions dealing with the alternatives in F .
Clearly, such conditions are less intuitive than conditions that would only involve
A and U . In an algebraic setting, this seems unavoidable however.

24



6.2 Discussion

The analysis in this paper was conceived within the framework of conjoint mea-
surement: the only primitive in our model is a judgment on the objects in the
product set X. Such a framework is especially attractive for psychologists. In-
deed, they often have to test whether data collected in experiments are or not
compatible with a given representation model. They also commonly want to de-
sign and conduct experiments that would try to falsify the hypotheses underlying
a given model. Our results are partly intended to facilitate such analyses. They
underline the importance of a small number of conditions (mainly linearity and
thinness) for the existence of additive representations of ordered partitions. These
conditions are reasonably simple and could well be the subject of experimental
research. This is however clearly outside the scope of this paper.

Most readers of this journal will not be psychologists however. Hence, it may
be important to explain why our results may be of interest to people working in
the field of MCDM.

Most MCDM techniques using an additive value function model for sorting,
such as UTADIS (see Jacquet-Lagrèze, 1995, Zopounidis and Doumpos, 2000b),
proceed as follows. The DM is asked to assign some alternatives in X to ordered
categories. A Linear Programming (LP) model is then used to test whether or not
the collected information is compatible with an additive model. If there is such
a model, the method will then try to propose an assignment of all alternatives
in X to ordered categories. Note that the elaboration of the prescription should
clearly deal with the indetermination of the value function obtained as the result of
the optimization model. Indeed, in general, there will be infinitely many additive
models (using the same normalization) that allow to recover the information given
by the DM. If there is no additive model compatible with the information that was
collected, one may try to use an additive model that is as “close” as possible to
this information. Alternatively, one may try to interact with the DM explaining
why the information is incompatible with an additive model and suggesting the
revision of some of the initial judgments. This seems to be quite different from
the analysis in this paper. Therefore one could ask whether or not our results can
be useful for the practitioner of MCDM. We view our contribution for MCDM as
twofold.

First, we have shown that our results give clues on the construction of a struc-
tured assessment protocol of additive value functions for sorting. This gives a
direct way to assess an additive value function with tight uniqueness properties,
contrary to what is obtained with LP-based models. A second possible virtue of
our results is linked to the use of the axiomatic method as a tool to understand
and compare models. Since various sorting models have now been axiomatized
(see Bouyssou and Marchant, 2007a,b, Goldstein, 1991, S lowiński et al., 2002),
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our results can be used as a basis of comparison of different sorting techniques.
For instance, Bouyssou and Marchant (2007a) have shown that ELECTRE TRI
also appeals to an idea of linearity on each attribute, which shows that ELECTRE
TRI and the additive value function model do have some common features. The
main distinctive feature of ELECTRE TRI is that it induces on each attribute a
weak order that is coarse (i.e., distinguishing only very few distinct equivalence
classes). In the additive value function model, linearity is extended to subsets of
attributes and the resulting weak orders have a much richer structure. Our results
may be viewed as a further contribution towards a systematic axiomatic analysis
of ordered partitions in a conjoint measurement framework. We are confident that
such an analysis will not only deepen our understanding of MCDM techniques for
sorting but might also give rise to new methods and assessment protocols.
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Supplementary material

A Proof of Proposition 1

A.1 Preliminary results

Take any j ∈ N . Define on the set
∏

i 6=j Xj the binary relation %(j) letting, for all
x−j, y−j ∈ X−j,

x−j %
(j) y−j ⇔ (aj, x−j) ∈ AF and (aj, y−j) ∈ FU ,

for some aj ∈ Xj. We use �(j) and ∼(j) as is usual. Our proof rests on the following
lemma showing that under the conditions of Proposition 1, the relation %(j) will
satisfy the classical conditions ensuring the existence of an additive representation
for this relation.

Lemma A-1
Let 〈A ,F ,U 〉 be an ordered covering on a set X. Suppose that this covering is
strongly linear and strongly thin. Suppose furthermore that unrestricted solvability
holds. Let j ∈ N . We have:

1. For all x−j, y−j ∈ X−j,

x−j %
(j) y−j ⇔ x−j %−j y−j, (A-1)

so that %(j) is complete and transitive.

2. For all x−j, y−j ∈ X−j,

x−j ∼(j) y−j ⇔

{
(aj, x−j) ∈ F

(aj, y−j) ∈ F

}
for some aj ∈ Xj. (A-2)

3. For all x−j, y−j ∈ X−j,

x−j �(j) y−j ⇔

{
(aj, x−j) ∈ A

(aj, y−j) ∈ F

}
for some aj ∈ Xj. (A-3)

4. The binary relation %(j) is independent, i.e., for all i ∈ N\{j}, all xi, yi ∈ Xi

and all a−ij, b−ij ∈ X−ij,

(xi, a−ij) %
(j) (xi, b−ij)⇔ (yi, a−ij) %

(j) (yi, b−ij).
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5. The binary relation %(j) satisfies unrestricted solvability, i.e., for all y−j ∈
X−j, all i ∈ N \{j} and all a−ij ∈ X−ij, (xi, a−ij) ∼(j) y−j, for some xi ∈ Xi.

6. If 〈A ,F ,U 〉 is non-degenerate, there is at least one essential attribute for
%(j), i.e., (xi, a−ij) �(j) (yi, a−ij), for some i ∈ N \{j}, some xi, yi ∈ Xi and
some a−ij ∈ X−ij.

7. If 〈A ,F ,U 〉 satisfies the Archimedean condition, then %(j) satisfies the
Archimedean condition. More precisely, let T be any set of consecutive in-
tegers (positive or negative, finite or infinite). We say that the set {xτi ∈
Xi : τ ∈ T} is a standard sequence for %(j) on attribute i ∈ N if there
are a−ij, b−ij ∈ X−ij such that (yi, a−ij) �(j) (yi, b−ij), for some yi ∈ Xi

and (xτi , a−ij) ∼(j) (xτ+1
i , b−ij), for all τ ∈ T. This standard sequence is

said to be strictly bounded if there are xi, xi ∈ Xi such that, for all τ ∈ T,
(xi, c−ij) �(j) (xτi , c−ij) �(j) (xi, c−ij) for all c−ij ∈ X−ij. The relation %(j)

is said to satisfy the Archimedean condition, if, for all i ∈ N \ {j}, any
standard sequence on attribute i that is strictly bounded is finite.

8. Suppose that n = 3 and let N = {i, j, k}. If 〈A ,F ,U 〉 satisfies the Thomsen
condition, then %(j) satisfies the Thomsen condition, i.e., for all i, k ∈ N\{j}
with i 6= k, all xi, yi, zi ∈ Xi and all xk, yk, zk ∈ Xk,

(xi, xk) ∼(j) (yi, yk)

and

(yi, zk) ∼(j) (zi, xk)

⇒ (xi, zk) ∼(j) (zi, yk).

9. If there is an additive representation for %(j), then there is an additive rep-
resentation for 〈A ,F ,U 〉.

Proof
Part 1. Suppose that x−j %−j y−j, so that, for all aj ∈ Xj, (aj, y−j) ∈ A ⇒
(aj, x−j) ∈ A and (aj, y−j) ∈ F ⇒ (aj, x−j) ∈ AF . Using unrestricted solvabi-
lity, we know that (bj, y−j) ∈ F , for some bj ∈ Xj. Because x−j %−j y−j, this
implies that (bj, x−j) ∈ AF , so that x−j %(j) y−j.

Suppose now that x−j %(j) y−j so that (aj, x−j) ∈ AF and (aj, y−j) ∈ FU , for
some aj ∈ Xj. Suppose that Not [x−j %−j y−j]. Using (n−1)-linear, we know that
%−j is complete so that we have y−j �−j x−j. Using (n−1)-linear and (n−1)-thin,
y−j �−j x−j and (aj, x−j) ∈ AF imply (aj, y−j) ∈ A , a contradiction.

Part 2. The ⇐ part follows from the definition of %(j). Let us prove the ⇒
part. Suppose that x−j ∼(j) y−j, so that for some aj, bj ∈ Xj,

(aj, x−j) ∈ AF and (aj, y−j) ∈ FU ,

(bj, y−j) ∈ AF and (bj, x−j) ∈ FU .
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Using unrestricted solvability on attribute j, we know that there is a cj ∈ Xj

such that (cj, x−j) ∈ F . If (cj, y−j) ∈ F , there is nothing to prove. Suppose
that (cj, y−j) ∈ U . Using (n − 1)-linear, this implies that x−j �−j y−j. Using
(n− 1)-linear and (n− 1)-thin, (bj, y−j) ∈ AF and x−j �−j y−j imply (bj, x−j) ∈
A , a contradiction. Similarly if (cj, y−j) ∈ A , we obtain y−j �−j x−j so that
(aj, x−j) ∈ AF implies (aj, y−j) ∈ A , a contradiction.

Part 3. Suppose that x−j �(j) y−j. Using unrestricted solvability on attribute
j, we know that (aj, y−j) ∈ F , for some aj ∈ Xj. We have either (aj, x−j) ∈ A or
(aj, x−j) ∈ FU . The latter case implies y−j %(j) x−j and is therefore impossible.
Therefore, we have (aj, y−j) ∈ F and (aj, x−j) ∈ A .

Conversely, suppose that (aj, x−j) ∈ A and (aj, y−j) ∈ F , for some aj ∈ Xj.
This implies x−j %(j) y−j. Suppose now that y−j %(j) x−j, so that x−j ∼(j) y−j.
Using (A-2), we have (bj, x−j) ∈ F and (bj, y−j) ∈ F , for some bj ∈ Xj. Using
(n−1)-thin, this implies x−j ∼−j y−j. This contradicts the fact that (aj, x−j) ∈ A
and (aj, y−j) ∈ F .

Part 4. Suppose that, for some xi, yi ∈ Xi and some a−ij, b−ij ∈ X−ij,
(xi, a−ij) %(j) (xi, b−ij) and (yi, b−ij) �(j) (yi, a−ij). Using the definition of %(j),
(xi, a−ij) %(j) (xi, b−ij) implies (cj, xi, a−ij) ∈ AF and (cj, xi, b−ij) ∈ FU , for
some cj ∈ Xj. Using (A-3), (yi, b−ij) �(j) (yi, a−ij) implies (dj, yi, b−ij) ∈ A and
(dj, yi, a−ij) ∈ F , for some dj ∈ Xj. Using (n − 2)-linear and (n − 2)-thin, this
implies b−ij �−ij a−ij. But (cj, xi, a−ij) ∈ AF and b−ij �−ij a−ij imply, using
(n− 2)-linear and (n− 2)-thin, (cj, xi, b−ij) ∈ A , a contradiction.

Part 5. Let y−j ∈ X−j and a−ij ∈ X−ij. We must show that y−j ∼(j) (bi, a−ij),
for some bi ∈ Xi. Using unrestricted solvability on attribute j, we have (aj, y−j) ∈
F , for some aj ∈ Xj. Using unrestricted solvability on any attribute i 6= j, we
know that (aj, bi, a−ij) ∈ F , for some bi ∈ Xi. The conclusion follows from (A-2).

Part 6. Because 〈A ,F ,U 〉 is non-degenerate, we know that A 6= ∅. Let
x = (xj, xi, x−ij) ∈ A . Take any attribute i 6= j. Using unrestricted solvability
on i ∈ N , we have (xj, yi, x−ij) ∈ F , for some yi ∈ Xi. Using (A-3), this implies
(xi, x−ij) �(j) (yi, x−ij).

Part 7. Let i ∈ N \ {j}. Consider a standard sequence {xτi ∈ Xi : τ ∈
T} for %(j). Hence, there are a−ij, b−ij ∈ X−ij such that, for some ci ∈ Xi,
Not [(ci, a−ij) ∼(j) (ci, b−ij)] and (xτi , a−ij) ∼(j) (xτ+1

i , b−ij), for all τ ∈ T. Using
(n−2)-linear and (n−2)-thin, we know that Not [a−ij ∼−ij b−ij]. Using solvability,
we can find xτj , x

τ−1
j ∈ Xj such that (xτi , x

τ−1
j , b−ij) ∈ F , (xτi , x

τ
j , a−ij) ∈ F and

(xτ+1
i , xτj , b−ij) ∈ F . Hence, {xτi ∈ Xi, x

τ
j ∈ Xj, : τ ∈ T}, is a diagonal standard

sequence for 〈A ,F ,U 〉.
Suppose that there are xi, xi ∈ Xi such that, for all τ ∈ T, xi �(j)

i xτi and

xτi �
(j)
i xi, where %(j)

i is the marginal relation induced by %(j) on Xi. Using (A-1),
this clearly implies xi �i xτi and xτi �i xi, so that the diagonal standard sequence
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for 〈A ,F ,U 〉 is strictly bounded on i ∈ N . Using the Archimedean condition for
〈A ,F ,U 〉, we know that this sequence must be finite.

Part 8. Suppose that n = 3 and let N = {i, j, k}. Suppose that (xi, xk) ∼(j)

(yi, yk) and (yi, zk) ∼(j) (zi, xk). Using Part 4, we know that (xi, xk, aj) ∈ F and
(yi, zk, bj) ∈ F , for some aj, bj ∈ Xj. Using Part 1, we have (xi, xk) ∼ik (yi, yk)
and (yi, zk) ∼ik (zi, xk). Using Thomsen, we therefore obtain (xi, zk) ∼ik (zi, yk).
The conclusion follows from Part 1.

Part 9. Suppose that 〈ui〉i 6=j is an additive representation of %(j). Let xj ∈ Xj.
Using unrestricted solvability on any attribute i other than j, we can always find
a a−j ∈ X−j such that (xj, a−j) ∈ F . Now, define uj letting, for all xj ∈ Xj,

uj(xj) = −
∑
i 6=j

ui(ai) if (xj, a−j) ∈ F .

It is easy to see that uj is well-defined. Indeed if (xj, a−j) ∈ F and (xj, b−j) ∈ F ,
(A-2) implies a−j ∼(j) b−j, so that:∑

i 6=j

ui(ai) =
∑
i 6=j

ui(bi).

Let us now show that such a function uj together with the functions 〈ui〉i 6=j give
an additive representation for 〈A ,F ,U 〉.

If (xj, x−j) ∈ F , then, by construction, we have uj(xj) +
∑

i 6=j ui(xi) = 0.
Suppose that (xj, x−j) ∈ A . Using unrestricted solvability on any attribute

other than j, we know that (xj, a−j) ∈ F , for some a−j ∈ X−j. Hence, we have:

uj(xj) = −
∑
i 6=j

ui(ai).

Using (A-3), (xj, x−j) ∈ A and (xj, a−j) ∈ F imply x−j �(j) a−j, so that:∑
i 6=j

ui(xi) >
∑
i 6=j

ui(ai),

which implies

uj(xj) +
∑
i 6=j

ui(xi) > 0.

That (xj, x−j) ∈ U implies uj(xj) +
∑

i 6=j ui(xi) < 0 is shown similarly. Hence we
have built an additive representation of 〈A ,F ,U 〉. 2

A.2 Proof of Proposition 1: existence

Using Parts 1–8 of Lemma A-1, we know that %(j) is an independent weak order
satisfying unrestricted solvability and the Archimedean condition. Furthermore,
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we know that there is at least one essential attribute for %(j) and that, if n = 3,
%(j) satisfies the Thomsen condition. We can therefore use the classical theorems
of conjoint measurement (see Krantz et al., 1971, Ch. 6) 2 to obtain an additive
representation for %(j). The conclusion follows from Part 9 of Lemma A-1.

A.3 Proof of Proposition 1: uniqueness

It is clear that if 〈ui〉i∈N is an additive representation using the threshold 0 for
F of 〈A ,F ,U 〉, then 〈αui + βi〉i∈N with α > 0 and

∑n
i=1 βi = 0 will also be an

additive representation with the same threshold.
Let 〈ui〉i∈N be any additive representation of 〈A ,F ,U 〉. Let us show that

〈ui〉i 6=j must be an additive representation of %(j). Suppose that x−j ∼(j) y−j.
Using Part 2 of Lemma A-1, we must have

∑
i 6=j ui(xi) =

∑
i 6=j ui(yi). Similarly,

using Part 3 of Lemma A-1, x−j �(j) y−j implies
∑

i 6=j ui(xi) >
∑

i 6=j ui(yi). Hence,
any additive representation of 〈A ,F ,U 〉 must also be an additive representation
of %(j). Conversely, the proof of Part 9 of Lemma A-1 has shown that, given
any additive representation for %(j), we can obtain an additive representation for
〈A ,F ,U 〉 that uses the same functions for i 6= j.

Because %(j) satisfies all conditions the classical theorems of conjoint measure-
ment (see Krantz et al., 1971, Ch. 6), we know that any two additive representa-
tions 〈ui〉i 6=j and 〈vi〉i 6=j must be such that

vi(xi) = αui(xi) + βi.

with α > 0.
Using unrestricted solvability on any attribute distinct from j, for all xj ∈ Xj,

we have (xj, y−j) ∈ F , for some y−j ∈ X−j. This implies that if 〈ui〉i∈N and
〈vi〉i∈N are two representations of 〈A ,F ,U 〉, for all xj ∈ Xj, we have

uj(xj) = −
∑
i 6=j

ui(yi),

vj(xj) = −
∑
i 6=j

vi(yi) = −
∑
i 6=j

[αui(yi) + βi],

where y−j ∈ X−j is such that (xj, y−j) ∈ F . Therefore, we obtain vj = αuj −∑
i 6=j βi. Hence, the two sets of functions will be such that, for all i ∈ N , vi =

αui + βi with α > 0 and
∑n

i=1 βi = 0.

2More precisely, we make use of variants of Krantz et al. (1971, Theorem 6.2, page 257) (when
n = 3) and of Krantz et al. (1971, Theorem 6.13, page 302) (when n ≥ 4) in which restricted
solvability is replaced by unrestricted solvability. In this case, if there is at least one essential
attribute, then all attributes are essential.
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B Refining conditions

It is easy to check that the only consequences of strong linearity used in the
proof of Lemma A-1 are 1-linear, (n− 2)-linear and (n− 1)-linear. Similarly, the
only consequences of strong thinness that are used are 1-thin, (n − 2)-thin and
(n − 1)-thin. Therefore these conditions can fully replace strong linearity and
strong thinness in the statement of Proposition 1. Working with groups of n − 1
or n− 2 attributes is not particularly intuitive however. We show below how it is
possible to work only with singletons and pairs.

B.1 Proof of Theorem 1

We start with some preliminary results. The proof of the following lemma follows
directly from the definition of linearity.

Lemma A-2
1. 〈A ,F ,U 〉 satisfies A -linearI iff it satisfies A -linear−I ,

2. 〈A ,F ,U 〉 satisfies F -linearI iff it satisfies F -linear−I .

We have:

Lemma A-3
Let 〈A ,F ,U 〉 be an ordered covering satisfying A -linearI , F -linearI , thinI and
unrestricted solvability. Then 〈A ,F ,U 〉 satisfies AF -linearI .

Proof
Suppose that AF -linearI is violated, so that (xI , a−I) ∈ A , (yI , b−I) ∈ F ,
(yI , a−I) /∈ A , and (xI , b−I) /∈ AF .

Using unrestricted solvability, we can find a c−I ∈ X−I such that (xI , c−I) ∈
F . Using F -linearI , (xI , c−I) ∈ F , (yI , b−I) ∈ F , and (xI , b−I) /∈ AF imply
(yI , c−I) ∈ AF . Suppose first that (yI , c−I) ∈ F . Since (xI , c−I) ∈ F , thinI
implies that xI ∼I yI , contradicting the fact that (xI , a−I) ∈ A and (yI , a−I) /∈ A .
Suppose now that (yI , c−I) ∈ A . Since (xI , a−I) ∈ A , A -linearI implies either
(xI , c−I) ∈ A or (yI , a−I) ∈ A , a contradiction. 2

Lemma A-4
An ordered covering 〈A ,F ,U 〉 satisfies AF -linearI and thinI iff it satisfies AF -linear−I
and thin−I .

Proof
Suppose that thinI is violated, so that (xI , a−I) ∈ F , (yI , a−I) ∈ F , (xI , b−I) ∈ A ,
(yI , b−I) ∈ FU . If (yI , b−I) ∈ F , thin−I and (yI , a−I) ∈ F imply that a−I ∼−I
b−I , contradicting the fact that (xI , a−I) ∈ F and (xI , b−I) ∈ A . Suppose now
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that (yI , b−I) ∈ U . Using AF -linear−I , (xI , b−I) ∈ A and (yI , a−I) ∈ F imply
either (xI , a−I) ∈ A or (yI , b−I) ∈ AF , a contradiction.

Suppose now that AF -linearI is violated, so that we have (xI , a−I) ∈ A ,
(yI , b−I) ∈ F , (yI , a−I) ∈ FU and (xI , b−I) ∈ U . If (yI , a−I) ∈ F , thin−I and
(yI , b−I) ∈ F imply that that a−I ∼−I b−I , contradicting the fact that (xI , a−I) ∈
A and (xI , b−I) ∈ U . Suppose now that (yI , a−I) ∈ U . Using AF -linear−I ,
(xI , a−I) ∈ A and (yI , b−I) ∈ F imply either (xI , b−I) ∈ A or (yI , a−I) ∈ AF , a
contradiction. 2

Proof of Theorem 1
Using Lemma A-2, we know that 2-A -linear and 2-F -linear hold. Using Lemma A-
3, we know that 1-AF -linear holds. Using Lemma A-4, we know that 2-AF -linear
and 2-thin hold. The conclusion follows from Proposition 1. 2

B.2 Proof of Theorem 2

We start with some preliminary results.

Lemma A-5
If 〈A ,F ,U 〉 satisfies unrestricted solvability, 1-A -linear, 1-F -linear, 1-thin and
2-A -linear, then it satisfies 2-F -linear.

Proof
Suppose that 2-F -linear is violated, so that (xi, xj, a−ij) ∈ F , (yi, yj, b−ij) ∈ F ,
(yi, yj, a−ij) ∈ U , (xi, xj, b−ij) ∈ U . Using Lemma A-3, we know that 1-AF -linear
holds, so that %i is complete, for all i ∈ N . It is clearly impossible that we have
xi %i yi and xj %j yj. Indeed, (yi, yj, b−ij) ∈ F , xi %i yi and xj %j yj would imply
(xi, xj, b−ij) ∈ AF , a contradiction. Similarly, it is impossible that yi %i xi and
yj %j xj.

Suppose henceforth that xi �i yi and yj %j xj, the other case being dealt with
similarly. Because (yi, yj, b−ij) ∈ F and xi �i yi, we obtain (xi, yj, b−ij) ∈ A .
Using unrestricted solvability, we know that (xi, wj, b−ij) ∈ F , for some wj ∈ Xj.
Because (xi, xj, b−ij) ∈ U , we must have wj �j xj. Hence, from (xi, xj, a−ij) ∈ F ,
we obtain (xi, wj, a−ij) ∈ A . Similarly, using unrestricted solvability, we can find
a zj ∈ Xj such that (yi, zj, a−ij) ∈ F . Because (yi, yj, a−ij) ∈ U , it must be
true that zj �j yj. Using (yi, yj, b−ij) ∈ F , we obtain (yi, zj, b−ij) ∈ A . Using
2-A -linear, (xi, wj, a−ij) ∈ A and (yi, zj, b−ij) ∈ A imply either (yi, zj, a−ij) ∈ A
or (xi, wj, b−ij) ∈ A , a contradiction. 2

Lemma A-6
If 〈A ,F ,U 〉 satisfies unrestricted solvability, 1-A -linear, 1-F -linear, 2-A -linear,
1-thin and 2-thin, then it satisfies (n− 2)-linear, (n− 1)-linear, (n− 2)-thin and
(n− 1)-thin.
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Proof
Using Lemma A-5, we know that 2-F -linear holds. Using Lemma A-2, we know
that (n − 2)-A -linear, (n − 1)-A -linear, (n − 2)-F -linear and (n − 1)-F -linear
hold. Using Lemma A-3, we know that 1-AF -linear and 2-AF -linear hold. Using
Lemma A-4, we know that (n−2)-AF -linear, (n−1)-AF -linear, (n−2)-thin and
(n− 1)-thin hold. 2

Lemma A-7
If 〈A ,F ,U 〉 satisfies unrestricted solvability, 1-A -linear, 1-F -linear, 2-A -linear,
1-thin and the Archimedean condition, then it is 2-thin.

Proof
Suppose that 2-thin is violated, so that (xi, xj, a−ij) ∈ F , (yi, yj, a−ij) ∈ F ,
(xi, xj, b−ij) ∈ A , and (yi, yj, b−ij) ∈ FU . Using Lemma A-3, we know that 1-
AF -linear holds. Using Lemma A-5, we know that 2-F -linear holds. Note that
it is clearly impossible that a−ij ∼−ij b−ij.

Suppose first that (yi, yj, b−ij) ∈ U . Using unrestricted solvability, we have
(zi, xj, b−ij) ∈ F , for some zi ∈ Xi. Because (xi, xj, b−ij) ∈ A , we must have that
xi �i zi. Now, (xi, xj, a−ij) ∈ F and xi �i zi imply (zi, xj, a−ij) ∈ U . Using 2-
F -linear, (zi, xj, b−ij) ∈ F and (yi, yj, a−ij) ∈ F imply either (zi, xj, a−ij) ∈ AF
or (yi, yj, b−ij) ∈ AF , a contradiction.

Suppose now that (yi, yj, b−ij) ∈ F . It is easy to see that we cannot have
xi ∼i yi and xj ∼j yj. Indeed, using 1-linear and 1-thin, (xi, xj, b−ij) ∈ A would
imply (yi, yj, b−ij) ∈ A . Similarly, it is impossible to have [xi %i yi and xj �j yj]
or [yi %i xi and yj �j xj]. Indeed, in the first case, (yi, yj, a−ij) ∈ F and xi %i yi
would imply (xi, yj, a−ij) ∈ AF . Using xj �j yj, we would obtain (xi, xj, a−ij) ∈
A .

Suppose henceforth that xi �i yi and yj �j xj, the other case being symmetric.
Using (yi, yj, b−ij) ∈ F and yj �j xj, we obtain (yi, xj, b−ij) ∈ U . Using unre-
stricted solvability, we can find a zi ∈ Xi such that (zi, xj, b−ij) ∈ F . Because we
know that (xi, xj, b−ij) ∈ A , (zi, xj, b−ij) ∈ F and (yi, xj, b−ij) ∈ U , we must have
xi �i zi �i yi. Using (xi, xj, a−ij) ∈ F and xi �i zi, we obtain (zi, xj, a−ij) ∈ U .
Similarly, (yi, yj, a−ij) ∈ F and zi �i yi imply (zi, yj, a−ij) ∈ A . Using unre-
stricted solvability, we can find a zj ∈ Xj such that (zi, zj, a−ij) ∈ F . Because
(zi, yj, a−ij) ∈ A and (zi, xj, a−ij) ∈ U , we must have yj �j zj �j xj. Since
(zi, xj, b−ij) ∈ F and zj �j xj, we obtain (zi, zj, b−ij) ∈ A .
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We have started with the hypothesis that

xi �i yi, yj �j xj,
(yi, yj, a−ij) ∈ F ,

(yi, yj, b−ij) ∈ F ,

(xi, xj, a−ij) ∈ F ,

(xi, xj, b−ij) ∈ A .

We have shown that we can find zi ∈ Xi and zj ∈ Xj such that

xi �i zi �i yi, yj �j zj �j xj,
(zi, zj, a−ij) ∈ F ,

(zi, zj, b−ij) ∈ A .

Hence, we can iterate the above reasoning with zi and zj playing the roles of xi
and xj. Furthermore, we know that (zi, xj, b−ij) ∈ F .

Rename xi and xj as w1
i and w1

j and zi and zj as w2
i and w2

j . We have

(w1
i , w

1
j , a−ij) ∈ F ,

(w2
i , w

1
j , b−ij) ∈ F ,

(w2
i , w

2
j , a−ij) ∈ F ,

which shows that w1
i , w

2
i , w

2
j , w

2
j is a diagonal standard sequence on i, j, since we

know that we do not have a−ij ∼−ij b−ij.
The iteration of the above process will lead to build an infinite diagonal stan-

dard sequence. It is clear that this diagonal standard sequence is strictly bounded
on j by yj and xj. This violates the Archimedean condition. 2

Proof of Theorem 2
Using Lemma A-7, we know that 2-thin holds. The proof therefore follows from
Lemma A-6, Proposition 1 and the observations at the beginning of this section.2

We discuss below the independence of the conditions used in Theorems 1 and 2.

B.3 Examples

When n = 3, Theorem 1 uses, on top of non-degeneracy and unrestricted solvabili-
ty, five necessary condition for an additive representation: 1-A -linear, 1-F -linear
and 1-thin, the Thomsen condition and the Archimedean condition. Let us show
that none of these five conditions can be dropped.
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Example A-1 (1-thin)
Take X = R3 and let

x ∈ AF ⇔ x1 + x2 + x3 ≥ −1,

x ∈ FU ⇔ x1 + x2 + x3 ≤ 1.

It is easy to see that this covering satisfies 1-A -linear, 1-F -linear, unrestricted
solvability, Thomsen and the Archimedean condition. It clearly violates 1-thinness.3

Example A-2 (Thomsen condition)
Let X = R3 and consider the ordered covering such that:

x ∈ A ⇔ x1 + x2 + min(x1, x2) + x3 > 0,

x ∈ F ⇔ x1 + x2 + min(x1, x2) + x3 = 0.

It is easy to check that this covering is 1-A -linear, 1-F -linear and 1-thin. It
satisfies unrestricted solvability as well as the Archimedean condition. The Thom-
sen condition is violated however since we have (18, 0,−18) ∈ F , (6, 6,−18) ∈ F ,
(30, 0,−30) ∈ F , (6, 18,−30) ∈ F and (30, 6,−36) ∈ F but (18, 18,−36) ∈ A .3

Example A-3 (1-A -linear)
Take X = (0, 1)3 and let

x ∈ A ⇔


x1 + x2 + x3 > 1/2,
and
x1 + x2 + x3 6= 1,

x ∈ F ⇔ x1 + x2 + x3 = 1.

It is easy to check that this covering is 1-F -linear and 1-thin. It satisfies unre-
stricted solvability as well as the Archimedean condition and the Thomsen con-
dition. Condition 1-A -linear is violated since, for instance, (1/2, 1/4, 0) ∈ A ,
(1/4, 1/2, 0) ∈ A , (1/4, 1/4, 0) ∈ FU and (1/2, 1/2, 0) ∈ FU . 3

Example A-4 (1-F -linear)
Take X = (0, 1)3 and let

x ∈ A ⇔ x1 + x2 + x3 > 3/2,

x ∈ F ⇔ x1 + x2 + x3 = 1.

It is easy to check that this covering 1-A -linear and 1-thin. It satisfies unre-
stricted solvability as well as the Archimedean condition and the Thomsen con-
dition. Condition 1-F -linear is violated since, for instance, (1/3, 1/3, 1/3) ∈ F ,
(1/2, 1/4, 1/4) ∈ F , (1/3, 1/4, 1/4) ∈ U and (1/2, 1/3, 1/3) ∈ U . 3
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Our next example uses a binary relation satisfying all conditions of classical results
of conjoint measurement, except the Archimedean condition. Krantz et al. (1971,
Example 4, p. 261) give such an example. Unfortunately, we came to realize that
this example is not fully satisfactory since it violates independence. Krantz (2009)
suggested another example that has the desired properties. Let % be a binary
relation on X1×X2 and %′ be a binary relation on A1×A2. We suppose that these
two relations satisfy the classical conditions of additive conjoint measurement:
weak ordering, independence, Thomsen and the Archimedean condition (p. 256
Krantz et al., 1971). We also suppose that these two relations satisfy unrestricted
solvability. We now build a binary relation %◦ on [X1 × A1]× [X2 × A2] as follows.
We have:

[(x1, a1), (x2, a2)] �◦ [(y1, b1), (y2, b2)]⇔{
(x1, x2) � (y1, y2) or
(x1, x2) ∼ (y1, y2) and (a1, a2) �′ (b1, b2),

and
[(x1, a1), (x2, a2)] ∼◦ [(y1, b1), (y2, b2)]⇔

(x1, x2) ∼ (y1, y2) and (a1, a2) ∼′ (b1, b2).

A simple check shows that the relation %◦ on [X1 × A1]× [X2 × A2] satisfies weak
ordering, independence, Thomsen and unrestricted solvability but violates the
Archimedean condition. It is simple to extend this construction to cover the case
of more than two attributes.

Example A-5 (Archimedean condition)
The above technique gives a general method to obtain a binary relation satisfying
all conditions of classical results of conjoint measurement, except the Archimedean
condition. Consider any such binary relation %◦ on the set X. We denote by %◦I
the marginal relation that it induces on XI .

Let {βτi ∈ Xi : τ ∈ T} be an infinite standard sequence for %◦ that is
strictly bounded. Hence, there are a−i, b−i ∈ X−i such that Not [a−i ∼◦−i b−i] and

(βτi , a−i) ∼◦ (βτ+1
i , b−i), for all τ ∈ T. Furthermore, there are β

i
, βi ∈ Xi such

that, for all τ ∈ T, βi �◦i βτi �◦i βi, where �◦i denotes the asymmetric part of the
marginal relation on Xi induced by %◦.

Using unrestricted solvability on any attribute other than i, we can find cj, dj ∈
Xj and α−ij ∈ X−ij such that (cj, α−ij) ∼◦−i a−i and (dj, α−ij) ∼◦−i b−i. Hence, we
have (βτi , cj, α−ij) ∼◦ (βτ+1

i , dj, α−ij), for all τ ∈ T.
Consider any attribute k other than i and j. Let α0

k = αk. Hence we have

(βτi , cj, α
0
k, α−ijk) ∼◦ (βτ+1

i , dj, α
0
k, α−ijk),

for all τ ∈ T.
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Suppose w.l.o.g. that 1 ∈ T. Let us now build an ordered covering of X letting,
for all x ∈ X,

x ∈ A ⇔ x �◦ (β1
i , cj, α

0
k, α−ijk),

x ∈ F ⇔ x ∼◦ (β1
i , cj, α

0
k, α−ijk).

It is easy to check that this covering is strongly thin and strongly linear. It is clear
that it satisfies unrestricted solvability as well as Thomsen.

By construction of the standard sequence for %◦, we have (β1
i , cj, α

0
k, α−ijk) ∼◦

(β2
i , dj, α

0
k, α−ijk). By construction of F , we have (β2

i , dj, α
0
k, α−ijk) ∈ F . Because

∼◦ is reflexive, we also have (β1
i , cj, α

0
k, α−ij) ∈ F . We have therefore shown that

(β2
i , dj, α

0
k, α−ijk) ∈ F ,

(β1
i , cj, α

0
k, α−ij) ∈ F .

By definition of the standard sequence for %◦, we know that (β2
i , cj, α

0
k, α−ijk) ∼◦

(β3
i , dj, α

0
k, α−ijk). Using solvability on k ∈ N , we can find α−1k ∈ Xk such that

(β2
i , cj, α

−1
k , α−ijk) ∼◦ (β1

i , cj, α
0
k, α−ijk). Hence, we know that (β2

i , cj, α
−1
k , α−ijk) ∈

F . Let us show that we have (β3
i , dj, α

−1
k , α−ijk) ∼◦ (β1

i , cj, α
0
k, α−ijk), which will

imply that (β3
i , dj, α

−1
k , α−ijk) ∈ F .

Suppose in contradiction with the thesis that (β3
i , dj, α

−1
k , α−ijk) �◦ (β1

i , cj, α
0
k,

α−ijk), the opposite case being dealt with similarly. We have chosen α−1k in such
a way that (β2

i , cj, α
−1
k , α−ijk) ∼◦ (β1

i , cj, α
0
k, α−ijk). Because (β3

i , dj, α
−1
k , α−ijk) �◦

(β1
i , cj, α

0
k, α−ijk) and (β2

i , cj, α
−1
k , α−ijk) ∼◦ (β1

i , cj, α
0
k, α−ijk), we obtain (β3

i , dj, α
−1
k ,

α−ijk) �◦ (β2
i , cj, α

−1
k , α−ijk), since %◦ is a weak order. Using the independence of

%◦, this implies (β3
i , dj, α

0
k, α−ijk) �◦ (β2

i , cj, α
0
k, α−ijk), a contradiction. Hence, we

must have (β3
i , dj, α

−1
k , α−ijk) ∼◦ (β1

i , cj, α
0
k, α−ijk), which implies (β3

i , dj, α
−1
k , α−ijk) ∈

F . We therefore know that

(β3
i , dj, α

−1
k , α−ijk) ∈ F ,

(β2
i , cj, α

−1
k , α−ijk) ∈ F .

Iterating the above reasoning, for all τ ∈ T, we will find α−τ+1
k such that

(βτ+1
i , dj, α

−τ+1
k , α−ijk) ∈ F ,

(βτi , cj, α
−τ+1
k , α−ijk) ∈ F .

This shows that to the infinite standard sequence for %◦ {βτi : τ ∈ T} corresponds
an infinite diagonal standard sequence on i and k for the ordered partition. It
remains to show that this infinite diagonal standard sequence is strictly bounded.

We know that βi �◦i βτi �◦i βi. Furthermore, because (βτi , cj, α
−τ+1
k , α−ijk) ∈

F , we have (βτi , cj, α
−τ+1
k , α−ijk) ∼◦ (β1

i , cj, α
0
k, α−ijk). This implies that (βi, cj, α

−τ+1
k ,
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α−ijk) �◦ (β1
i , cj, α

0
k, α−ijk). Hence we know that (βτi , cj, α

−τ+1
k , α−ijk) ∈ F and

(βi, cj, α
−τ+1
k , α−ijk) ∈ A . This implies that βi �i βτi . The proof that βτi �i βi

is similar. Hence the infinite diagonal standard sequence on i and k is strictly
bounded on i. 3

When n ≥ 4, Theorem 2 uses, on top of non-degeneracy and unrestricted solvabili-
ty, five necessary conditions: the Archimedean condition, 1-A -linear, 1-F -linear,
2-A -linear, 1-thin. It is not difficult to adapt the above examples to show that
none of the Archimedean condition, 1-F -linear and 1-thin can be omitted from
this proposition. The following example show that 2-A -linear cannot be omitted
either.
Example A-6 (2-A -linear)
Take X = R4 and let

x ∈ AF ⇔ x1 + x2 + min(x1, x2) + x3 + x4 + min(x3, x4) ≥ 0,

x ∈ FU ⇔ x1 + x2 + min(x1, x2) + x3 + x4 + min(x3, x4) ≤ 0.

It is easy to check that this covering satisfies unrestricted solvability, the Archi-
medean condition as well as 1-A -linear, 1-F -linear and 1-thin. 2-A -linear is
violated since, e.g., (5, 5,−4,−4) ∈ A , (−4,−4, 5, 5) ∈ A but (5,−4, 5,−4) ∈ U
and (−4, 5,−4, 5) ∈ U . 3

Unfortunately, we have been unable to show that condition 1-A -linear cannot be
omitted (for more details on this point, see Bouyssou and Marchant, 2009).

C Proofs with more than two categories

C.1 Proof of Theorem 3: existence

Let k ∈ {1, 2, . . . , r − 1} be such that 〈∆k
≤, C

k ∩ Ck+1,∆k+1
≥ 〉 satisfies the condi-

tions mentioned in Part 2 of Proposition 3. Because 〈Ck〉k∈R is non-degenerate,
generalized 1-thinness, �-mixed-1-linearity, ∆-Mixed-1-linearity and unrestricted
solvability w.r.t. all frontiers hold, we know using Theorem 1 (if n = 3) or Theo-
rem 2 (if n ≥ 4) that there is an additive representation of 〈∆k

≤, C
k ∩Ck+1,∆k+1

≥ 〉
such that

x ∈ ∆k+1
≥ ⇔

n∑
i=1

v
(k)
i (xi) > 0,

x ∈ Ck ∩ Ck+1 ⇔
n∑
i=1

v
(k)
i (xi) = 0,

(A-4)

for all x ∈ X.
Our strategy will be to show that this additive representation also gives an

additive representation of 〈C1, C2, . . . , Cr〉 in model (A∗).
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Step 1

Let h ∈ {1, 2, . . . , r − 1} with h 6= k. Consider first any two alternatives x, y ∈
Ch ∩ Ch+1. Let us show that we must have

∑n
i=1 v

(k)
i (xi) =

∑n
i=1 v

(k)
i (yi).

Using unrestricted solvability w.r.t. Ch ∩Ch+1, we can find z21 , z
3
1 , . . . , z

n
1 ∈ X1

such that

(z21 , y2, x3, x4, x5, . . . , xn) ∈ Ch ∩ Ch+1,

(z31 , y2, y3, x4, x5, . . . , xn) ∈ Ch ∩ Ch+1,

(z41 , y2, y3, y4, x5, . . . , xn) ∈ Ch ∩ Ch+1,

...

(zn1 , y2, y3, y4, y5, . . . , yn) ∈ Ch ∩ Ch+1.

Using unrestricted solvability w.r.t. Ck ∩ Ck+1, we know that we can find w−12 ∈
X−12 such that (x1, x2, w−12) ∈ Ck ∩ Ck+1. Because (x1, x2, x−12) ∈ Ch ∩ Ch+1,
(z21 , y2, x−12) ∈ Ch ∩Ch+1 and (x1, x2, w−12) ∈ Ck ∩Ck+1, parallelism implies that
(z21 , y2, w−12) ∈ Ck ∩ Ck+1. Using the additive representation for 〈Ck

≤, C
k+1
≥ 〉, we

therefore know that:

v
(k)
1 (x1) + v

(k)
2 (x2) = v

(k)
1 (z21) + v

(k)
2 (y2). (A-5)

Let us now iterate the above reasoning. Using unrestricted solvability w.r.t. Ck ∩
Ck+1, we know that we can find w−13 ∈ X−13 such that (z21 , x3, w−13) ∈ Ck ∩
Ck+1. Because (z21 , y2, x3, x−123) ∈ Ch ∩ Ch+1, (z31 , y2, y3, x−123) ∈ Ch ∩ Ch+1 and
(z21 , x3, w−13) ∈ Ck ∩ Ck+1, parallelism implies that (z31 , y3, w−13) ∈ Ck ∩ Ck+1.
Using the additive representation for 〈∆k−1

≤ , Ck ∩ Ck+1,∆k+1
≥ 〉, we know that:

v
(k)
1 (z21) + v

(k)
3 (x3) = v

(k)
1 (z31) + v

(k)
3 (y3). (A-6)

Adding (A-5) and (A-6) and cancelling v
(k)
1 (z21) shows that:

v
(k)
1 (x1) + v

(k)
2 (x2) + v

(k)
3 (x3) = v

(k)
1 (z31) + v

(k)
2 (y2) + v

(k)
3 (y3).

Iterating the above reasoning easily shows that we must have:

v
(k)
1 (x1) + v

(k)
2 (x2) + · · ·+ v

(k)
n−1(xn−1) + v(k)n (xn) =

v
(k)
1 (zn1 ) + v

(k)
2 (y2) + · · ·+ v

(k)
n−1(yn−1) + v(k)n (yn).

Because we have (y1, y−1) ∈ Ch ∩ Ch+1 and (zn1 , y−1) ∈ Ch ∩ Ch+1, generalized
thinness implies that y1 and zn1 cannot be distinguished. In view of the proof
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of Proposition 1, this is easily seen to imply that v
(k)
1 (zn1 ) = v

(k)
1 (y1). Hence,

x, y ∈ Ch ∩ Ch+1 imply that

v
(k)
1 (x1) + v

(k)
2 (x2) + · · ·+ v

(k)
n−1(xn−1) + v(k)n (xn) =

v
(k)
1 (y1) + v

(k)
2 (y2) + · · ·+ v

(k)
n−1(yn−1) + v(k)n (yn),

so that 〈v(k)1 , v
(k)
2 , . . . , v

(k)
n 〉 is not only an additive representation of 〈Ck

≤, C
k
≥〉 but

is also an additive representation of Ch ∩Ch+1. It will be convenient to denote by
λh the common value given by the sum of the functions v

(k)
i to all alternatives in

Ch ∩Ch+1. Clearly if h > k then x ∈ Ch ∩Ch+1 implies x ∈ ∆k+1
≥ , so that λh > 0.

Similarly, if h < k, we have λh < 0.

Step 2

Suppose that x ∈ ∆h. Let us show that we have
∑n

i=1 v
(k)
i (xi) < λh.

Using unrestricted solvability w.r.t. Ch ∩ Ch+1, we can find z1 ∈ X1 such
that (z1, x−1) ∈ Ch ∩ Ch+1. Using unrestricted solvability w.r.t. Ck ∩ Ck+1, we
can find z2 ∈ X2 such that (x1, z2, x−12) ∈ Ck ∩ Ck+1. It is impossible that
(z1, z2, x−12) ∈ Ck ∩Ck+1. Indeed, since (x1, z2, x−12) ∈ Ck ∩Ck+1, we would have
a clear violation of generalized thinness since (z1, x−1) ∈ Ch∩Ch+1 and (x1, x−1) ∈
∆h. Hence we have either (z1, z2, x−12) ∈ ∆k

≤ or (z1, z2, x−12) ∈ ∆k+1
≥ . Suppose that

(z1, z2, x−12) ∈ ∆k
≤. We know that (x1, z2, x−12) ∈ Ck ∩ Ck+1 and (z1, x2, x−12) ∈

Ch ∩ Ch+1. Using �-mixed-1-linearity leads to either (z1, z2, x−12) ∈ Ck+1
≥ or

(x1, x2, x−12) ∈ Ch+1
≥ . This is contradictory since we know that (z1, z2, x−12) ∈ ∆k

≤
and x ∈ ∆h. Hence, we must have (z1, z2, x−12) ∈ ∆k+1

≥ . Because we know that

(x1, z2, x−12) ∈ Ck ∩ Ck+1, we must have v
(k)
i (z1) > v

(k)
i (x1). This proves that∑n

i=1 v
(k)
i (xi) < λh = v

(k)
i (z1) +

∑
j 6=1 vj(xj).

Step 3

Let us show that if x ∈ ∆h then
∑n

i=1 v
(k)
i (xi) > λh−1.

Using unrestricted solvability w.r.t. Ch−1 ∩ Ch, we can find z1 ∈ X1 such
that (z1, x−1) ∈ Ch−1 ∩ Ch. Using unrestricted solvability w.r.t. Ck ∩ Ck+1, we
can find z2 ∈ X2 such that (x1, z2, x−12) ∈ Ck ∩ Ck+1. It is impossible that
(z1, z2, x−12) ∈ Ck ∩Ck+1. Indeed, since (x1, z2, x−12) ∈ Ck ∩Ck+1, we would have
a clear violation of generalized thinness since (z1, x−1) ∈ Ch−1∩Ch and (x1, x−1) ∈
∆h. Hence we have either (z1, z2, x−12) ∈ ∆k

≤ or (z1, z2, x−12) ∈ ∆k+1
≥ . Suppose

that (z1, z2, x−12) ∈ ∆k+1
≥ . Since (x1, x2, x−12) ∈ ∆h

≥, using ∆-mixed-1-linearity

leads to either (x1, z2, x−12) ∈ ∆k+1
≥ or (z1, x2, x−12) ∈ ∆h

≥. This is contradictory
since we know that (x1, z2, x−12) ∈ Ck∩Ck+1 and (z1, x2, x−12) ∈ Ch−1∩Ch. Hence,
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we must have (z1, z2, x−12) ∈ ∆k
≤. Since we know that x ∈ ∆k, this implies that

v
(k)
i (z1) < v

(k)
i (x1). This proves that

∑n
i=1 v

(k)
i (xi) > λh−1 = v

(k)
i (z1)+

∑
j 6=1 vj(xj).

Step 4

Since we have supposed that 〈Ck〉k∈R is non-degenerate, we know that for all
h ∈ R, we have x ∈ ∆h, for some x ∈ X. Hence the last two steps show that
〈v(k)1 , v

(k)
2 , . . . , v

(k)
n 〉 is not only an additive representation of 〈∆k

≤, C
k ∩Ck+1,∆k+1

≥ 〉
in model (A) but is also an additive representation of 〈Ck〉k∈R in model (A∗).

C.2 Proof of Theorem 3: uniqueness

It is obvious that if 〈ui〉i∈N is an additive representation of 〈Ck〉k∈R using the
thresholds σ1 < σ2 < · · · < σr−1 then 〈ui + βi〉i∈N with

∑n
i=1 βi = 0 is another

additive representation of 〈Ck〉k∈R using the same thresholds.
Let k be the index of a twofold covering satisfying the conditions of Part 2 of

Theorem 3. It is clear that any additive representation 〈ui〉i∈N of 〈Ck〉k∈R is also
a representation of 〈Ck

≤, C
k+1
≥ 〉 using the threshold σk for Ck ∩ Ck+1. We know

from Theorem 1 the uniqueness of this representation. We may add a constant
βi to each ui provided that

∑n
i=1 βi = 0. We may also multiply each of the ui

by the same positive constant α. Because we have here fixed the value of each
x ∈ C` ∩ C`+1 to the constant σ`, such a dilatation is now incompatible with
keeping the same thresholds. Hence, we must take α = 1.

As above, the uniqueness result given above relies on keeping the thresholds
σ1 < σ2 < · · · < σr−1 fixed. When they are not, one may choose arbitrarily two
of them, via the multiplication of all ui by the same positive constant and the
addition of a constant βi to each ui. The value of the remaining thresholds is then
determined by these choices.
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