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Abstract

This paper proposes a theory of subjective expected utility based on prim-
itives only involving the fact that an act can be judged either “attractive”
or “unattractive”. We give conditions implying that there are a utility func-
tion on the set of consequences and a probability distribution on the set
of states such that attractive acts have a subjective expected utility above
some threshold. The numerical representation that is obtained has strong
uniqueness properties.
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1. Introduction

In spite of the large amount of experimental evidence showing its lim-
ited ability to explain the behavior of many subjects, the classical model of
Subjective Expected Utility (henceforth model SEUc, the subscript c being
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a mnemonic for “classical”) remains the focal point of most works in deci-
sion under uncertainty. This is surely due to a rather unique combination of
simplicity, analytical tractability and normative appeal.

Four main routes have been followed to obtain behavioral foundations
for model SEUc (see Wakker 1989a). The first one works with a finite set
of states and a finite set of consequences and uses separation techniques to
ensure that the resulting equalities and inequalities will not be contradictory
(see Shapiro 1979). As in the case of conjoint measurement (see Scott 1964
or Krantz, Luce, Suppes, and Tversky 1971, Ch. 9), this technique leads to
complex conditions that are not easy to test and interpret. The resulting
numerical representation does not have strong uniqueness properties. The
second route was opened by Savage (1954). It makes no hypothesis on the
set of consequences but requires a rich set of states. It leads to relatively sim-
ple conditions. The obtained numerical representation has strong uniqueness
properties (for a recent advance along this line, see Abdellaoui and Wakker
2005). The third route is a kind of dual to the second one: it imposes richness
on the set of consequences, while working with a finite set of states. Early
contributions of this type include Gul (1992), Nakamura (1990) and Wakker
(1984, 1989b). Recent advances along this line are surveyed and consolidated
in Köbberling and Wakker (2003, 2004) and Wakker and Zank (1999). As
the second one, this route leads to simple conditions together with strong
uniqueness properties. It uses conditions that are easily compared with the
ones used in conjoint measurement (see Krantz et al. 1971, Ch. 6 or Wakker
1989a, Ch. 3) since, in this framework, acts can be viewed as elements of a ho-
mogeneous Cartesian product (nevertheless, this approach can be extended
to deal with more general set of states, see, e.g., Wakker 1989a, Ch. 5). A
fourth route includes “lotteries” using “objective probabilities” in the analy-
sis. It leads to relatively simpler results than the preceding two approaches.
The price to pay for this simplicity is a richer framework that is often seen
as less “pure” than frameworks refusing the introduction of objective prob-
abilities. This approach was pioneered by Anscombe and Aumann (1963).
It leads to simple conditions together with strong uniqueness properties (a
recent development along this line is Sarin and Wakker 1997). The last
three approaches have also been used to analyze models extending SEUc,
such as Rank Dependent Utility (Gilboa 1987, Wakker 1989a) or Cumulative
Prospect Theory (Tversky and Kahneman 1992, Wakker and Tversky 1993).
Recent reviews of the field of decision making under uncertainty are Gilboa
(2009) and Wakker (2010). This paper will only be concerned with subjective
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expected utility.
In line with the “revealed preferences” tradition in Economics, in the

four approaches considered above, the primitives consist of a (well behaved)
preference relation on the set of acts. Given any two acts, the decision
maker (DM) 1 is supposed to be in position to compare them in terms of
strict preference or indifference. With the last three approaches, i.e., the
ones leading to strong uniqueness results, the construction of the numerical
representation involves building “standard sequences” (Krantz et al. 1971,
Ch. 2). This clearly implies working with several indifference curves (see,
e.g., Wakker 1989a, Fig. 3.5.2, p. 54).

The central originality of this paper will be to work with different primi-
tives. For any act, we only expect the DM to be in position to tell us if she
finds it “attractive” or “unattractive”. Hence, our framework only allows
to work with a single indifference curve that implicitly lies at the frontier
between attractive and unattractive acts. We work with a finite set of states
and a rich set of consequences as in the third route mentioned above. We give
conditions implying that the set of attractive acts consists of all acts having
a subjective expected utility that is above some threshold. The numerical
representation in this new model will have strong uniqueness properties.

This paper is not the first one in decision theory to work with ordered
partitions instead of preference relations. The first move in this direction
was made by Vind (1991) (see also Vind 2003) in a rather abstract setting
that has immediate application to conjoint measurement. This work was
later developed in Bouyssou and Marchant (2009, 2010). While these pa-
pers were mainly concerned with additive representations, Goldstein (1991)
studied decomposable numerical representations on the basis of such prim-
itives. His work was later developed in Bouyssou and Marchant (2007a,b)
and S lowiński, Greco, and Matarazzo (2002). In the area of decision making
under risk, Nakamura (2004) has analyzed various models using similar prim-
itives. In particular, he gives expected utility à la von Neumann-Morgenstern
foundations that are similar to the ones sought here for subjective expected
utility.

Since our primitives are non-standard, they deserve to be motivated. Our
initial motivation was mainly of a theoretic nature: we wanted to derive a
model closely resembling model SEUc while using primitives that would be

1 Some of our readers may prefer to use the terms “agent” or “subject”.
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different from the classical ones.
Moreover, our primitives involve what seems to be a simple cognitive task:

the division of the set of acts between the ones that are “attractive” and the
ones that are not. These primitives may be seen as more parsimonious than
the classical ones consisting in a preference relation on the set of acts. Indeed,
given such a preference relation, one can always obtain a partition of the set
of acts between attractive and unattractive ones by choosing one act as a
reference act and declaring acceptable all acts that are strictly preferred to
it. Since this can done for several reference acts, a preference relation may
also be understood as several interconnected ordered twofold partitions. We
only use one.

A particularly interesting situation occurs when the reference act men-
tioned above is interpreted a “status quo”. In this case, an attractive act can
be interpreted as an act that the DM is willing to accept given her current
situation, i.e., an attractive act is felt strictly preferable to her “status quo”.
Bleichrodt (2007, 2009) has forcefully argued that, when the status quo is
available in all choice sets presented to the DM, it is unreasonable to sup-
pose that it is possible to derive a preference between acts that are judged
strictly less desirable than the status quo since such acts are never chosen 2.
In contrast, Bleichrodt (2007, 2009) supposes that a preference relation can
be derived for “attractive” acts. Bleichrodt (2009, Th. 1) studies a model
in which the preference relation between attractive acts can be explained
by subjective expected utility. Our paper may be viewed as an extension
of Bleichrodt (2009) that postulates a more radical form of incompleteness
since, in our model, “attractive” acts are not compared in terms of prefer-
ence. This situation may seem uncommon. For instance, in our setting, the
set of attractive acts may contain acts that are dominated by other accept-
able acts. Let us simply observe that, besides being parsimonious in terms of
information, this situation corresponds to the observation of the behavior of
a DM that judges all “attractive” acts “choosable”. This may happen, e.g.,
because she has no constraints and can afford to have them all or because this
is the result of first-cut analysis that only aims at discarding “unattractive”
acts 3. Examples of a DM willing to perform a first-cut analysis are easy to

2 We thank Peter P. Wakker for bringing these papers to our attention.
3As pointed out to us by a referee, the distinction between “attractive” and “unattrac-

tive” may also be of interest to analyze situations in which acts are only available as the
result of a costly search. Indeed, in such cases, many simple heuristics can be devised that
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imagine. For an example of a DM choosing all acceptable acts, we may think
of a banker receiving credit applications and facing no immediate budget
constraint: she is likely to accept all applications that meet the standards
defined by the bank.

In the model proposed in Bleichrodt (2009) the status quo is seen as
“reference point”, in line with models for decision making under uncertainty
that deviate from model SEUc such as Prospect Theory (Kahneman and
Tversky 1979, Tversky and Kahneman 1992) and other models (Kőszegi and
Rabin 2007, Sugden 2003). Therefore, he also studies what happens when the
reference point changes (Bleichrodt 2009, Th. 2). In this paper, we are much
closer to a strict Bayesian framework. In our model, subjective expected
utility will be used to distinguish between acts “above” and “below” the
status quo that is viewed as the current endowment of the DM and is not
supposed to vary. In our model, “tastes” and/or “beliefs” are identical above
and below the status quo.

The paper is organized as follows. Section 2 introduces our setting, model,
and notation. Section 3 presents the conditions used in this paper. Our main
result is presented and discussed in Section 4. Section 5 concludes. Most
proofs are relegated to Appendix I. A sketch of a possible assessment of the
parameters of our model is included in Appendix II.

2. The setting

2.1. Notation

We adopt a classical setting for decision under uncertainty with a finite
number of states and we mainly follow the terminology and notation used
in Wakker (1989a). Let Γ = {α, β, γ, . . .} be a set of consequences. The set
of states is N = {1, 2, . . . , n}. It is understood that the elements of N are
exhaustive and mutually exclusive: one and only one state will turn out to
be true. An act is a function from N to Γ. The set of all acts is denoted
by X = {a, b, c, . . .} = ΓN . It will prove convenient to identify the set of
acts with the homogeneous Cartesian product

∏n
i=1 Γi, where, for all i ∈ N ,

make use of the division between attractive and unattractive acts. Such an interpretation,
suggesting a form of bounded rationality, is however not well in line with the model that
we study below and the way in which we would like to interpret it. As with the classical
model based on a preference relation, our model based a twofold partition is proposed here
mainly with a normative interpretation in mind.
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Γi = Γ. Hence, the set X can be identified to Γn and the act a ∈ X will
often be written as (a1, a2, . . . , an).

Let E ⊆ N and a, b ∈ X . We denote by (aE, b−E) the act c ∈ X such
that ci = ai, for all i ∈ E, and ci = bi, for all i ∈ N \ E. We will also write
that aE ∈ ΓE and b−E ∈ Γ−E, abusing notation. Similarly (αE, b−E) will
denote the act d ∈ X such that di = α ∈ Γ, for all i ∈ E, and di = bi, for
all i ∈ N \E. When sets contain few elements, we often omit braces around
them and write, e.g., (ai, b−i), (αij, b−ij) or (αi, aj, b−ij). This should cause
no confusion.

2.2. Primitives

The classical primitives in decision making under uncertainty consist of
a binary relation 4 % on X . We use here a twofold ordered partition of X .
We suppose that acts in X are presented to a DM. For each of these acts,
she will specify whether she finds it “attractive” or “unattractive”. This
process defines a twofold ordered partition 〈A ,U 〉 of the set X (note that
we abuse terminology here since, at this stage, we do not require each of
A and U to be nonempty). Acts in A are judged Attractive. Acts in U
are judged Unattractive. As already noted, a suggestive, but by no means
compulsory, interpretation of our setting is that attractive acts are the acts
that are judged strictly better than the status quo.

The two categories in 〈A ,U 〉 are ordered. All acts in A are preferable
to all acts in U . Our primitives are completely silent about the comparison
of two acts in A . Some of them may be quite attractive, while some others
are only slightly better than the status quo. A similar remark holds for U .

We say that a state i ∈ N is influential for 〈A ,U 〉 if there are α, β ∈ Γ
and a ∈ X such that (αi, a−i) ∈ A and (βi, a−i) ∈ U (this notion of influence
of a state is similar to the classical notion of essentialness used in models
based on a preference relation; we use a different word since our model uses
different primitives). A state that is not influential has no impact on the
ordered partition 〈A ,U 〉 and, thus, may be suppressed from N . Hence,
we will suppose that all states are influential. As explained in Bouyssou
and Marchant (2009, 2011), the analysis of the case of two states requires

4In what follows, whenever the symbol % is used to denote a binary relation, it will
be understood that � denotes its asymmetric part and ∼ its symmetric part. Similar
conventions hold when % is subscripted or superscripted. A complete and transitive binary
relation will be called a weak order.
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techniques that are quite different and much simpler than the ones used here
(this case does not lead to strong uniqueness results). This explains that the
following assumption is maintained throughout this paper.

Assumption 1. There are at least three states. All states are influential.

Observe that Assumption 1 implies that both A and U are nonempty.

2.3. Model

We analyze a model in which all attractive acts have a subjective expected
utility above some threshold. This model involves a real-valued function u
on Γ and nonnegative real numbers p1, p2, . . . , pn that add up to one. The
function u is interpreted as a utility function and the number pi as the sub-
jective probability of state i ∈ N . Hence

∑n
i=1 piu(ai) is interpreted as the

subjective expected utility of act a ∈ X . Our model is such that, for all
a ∈ X ,

a ∈ A ⇔
n∑
i=1

piu(ai) > 0. (SEUm)

In our model, an act is attractive if and only if its subjective expected utility
is above a threshold. Although it is based on subjective expected utility, our
model is clearly different from model SEUc in which the preference relation
between two acts is represented by a comparison of two subjective expected
utilities. We call our model SEUm in order to distinguish it from model
SEUc based on a preference relation, the subscript “m” is a mnemonic for
“manichean” since our primitives only distinguish two different types of acts5.

It is clear that it is not restrictive to suppose that the threshold separating
attractive and unattractive acts is set to 0. When the set Γ is endowed with
a topology, we might additionally require that the function u is continuous
w.r.t. this topology. We will do so below.

Under Assumption 1, all states are influential. It is easy to see that this
implies that, for all i ∈ N , pi > 0 and that u is nonconstant.

5We have chosen to define model SEUm using a strict inequality. This is a matter of
convention only. An obvious modification of condition A3 (Openness) defined below, would
allow us to deal with the case of a non-strict inequality in the definition of model SEUm.
When acceptable acts are defined with respect to a reference act interpreted as the status
quo, our model implies that the status quo is unacceptable. Although this may seem
strange, this might facilitate the assessment of the acts in A . An act will belong to A
only if the DM is prepared to pay something to obtain it.
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3. Axioms

3.1. Tradeoff consistency

Our main non-technical condition is presented first. It is inspired by the
“tradeoff consistency” conditions used in Wakker (1989a) and we have kept
this name.

A1 (Tradeoff consistency) For all i, j, k,∈ N , all α, β, γ, δ, λ, µ, τ, ξ ∈ Γ, all
a, b, c, d ∈ X ,

(αj, λk, a−jk) ∈ A and

(γj, µk, b−jk) ∈ A and

(δi, τk, c−ik) ∈ A and

(βi, ξk, d−ik) ∈ A

⇒


(βj, µk, a−jk) ∈ A or

(δj, λk, b−jk) ∈ A or

(γi, ξk, c−ik) ∈ A or

(αi, τk, d−ik) ∈ A .

Condition A1 (Tradeoff consistency) is necessary for model (SEUm). In-
deed, suppose it is violated. We easily obtain:

pju(α)− pju(β) > pku(µ)− pku(λ),

pku(µ)− pku(λ) > pju(δ)− pju(γ),

piu(δ)− piu(γ) > pku(ξ)− pku(τ),

pku(ξ)− pku(τ) > piu(α)− piu(β).

Since pi, pj > 0, the first two inequalities imply that u(α)−u(β) > u(δ)−u(γ)
while the last two imply u(δ)−u(γ) > u(α)−u(β), a contradiction. The inter-
pretation of the above condition is simple: tradeoffs between consequences
should be independent from the state in which they are revealed. Notice
that A1 (Tradeoff consistency) involves eight acts, as the original tradeoff
consistency condition (see Wakker 1989a, Lemma IV.2.5, p. 80)

Let us now introduce a condition that is a variant of a condition used in
Vind (1991) that has been modified to cope with the case of a homogeneous
Cartesian product.

B1 (1-Linearity) For all i, j ∈ N , all α, β ∈ Γ and all a, b ∈ X ,

(αi, a−i) ∈ A

and

(βj, b−j) ∈ A

⇒


(βi, a−i) ∈ A

or

(αj, b−j) ∈ A .
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Condition B1 is necessary for model (SEUm) since its violation would
lead to piu(α) > piu(β) and pju(β) > pju(α), a contradiction.

The intuitive idea behind this condition is that consequences can be or-
dered. We define the binary relation %A on Γ letting, for all α, β ∈ Γ,

α %A β ⇔ [(βi, a−i) ∈ A ⇒ (αi, a−i) ∈ A , for all i ∈ N and all a ∈ X ].

It is simple to check that %A is always reflexive and transitive. Hence, it will
be a weak order as soon as it is complete. The following lemma shows that
%A is complete iff 〈A ,U 〉 satisfies B1 (1-Linearity).

Lemma 1. The relation %A is complete iff 〈A ,U 〉 satisfies B1 (1-Linearity).

Proof. Necessity. Suppose that (αi, a−i) ∈ A and (βj, b−j) ∈ A . Because
%A is complete, we have either α %A β or β %A α. In the first case
(βj, b−j) ∈ A and α %A β imply (αj, b−j) ∈ A . In the second case,
(αi, a−i) ∈ A and β %A α imply (βi, a−i) ∈ A . Hence, 〈A ,U 〉 satisfies
B1 (1-Linearity).

Sufficiency. Suppose that Not [α %A β]. This implies that, for some i ∈ N
and some a ∈ X , (βi, a−i) ∈ A and (αi, a−i) ∈ U . Similarly, Not [β %A α]
implies that, for some j ∈ N and some b ∈ X , (αj, b−j) ∈ A and (βj, b−j) ∈
U . Using B1 (1-Linearity), (βi, a−i) ∈ A and (αj, b−j) ∈ A imply either
(αi, a−i) ∈ A or (βj, b−j) ∈ A , a contradiction.

It will be useful to note the following.

Lemma 2. If a twofold partition satisfies A1 (Tradeoff consistency) then it
satisfies B1 (1-Linearity).

Proof. Suppose that (αi, a−i) ∈ A and (βj, b−j) ∈ A . Take any k ∈ N such
that k 6= i, j. Using A1 (Tradeoff consistency),

(αi, ak, a−ik) ∈ A and

(αi, ak, a−ik) ∈ A and

(βj, bk, b−jk) ∈ A and

(βj, bk, b−jk) ∈ A

⇒


(βi, ak, a−ik) ∈ A or

(βi, ak, a−ik) ∈ A or

(αj, bk, b−jk) ∈ A or

(αj, bk, b−jk) ∈ A ,

which is clearly equivalent to B1 (1-Linearity).

It will be also useful to note that A1 (Tradeoff consistency) also implies
the following condition.
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B2 (2-Linearity) For all i, j ∈ N , all α, β, γ, δ ∈ Γ and all a, b ∈ X ,

(αi, βj, a−ij) ∈ A

and

(γi, δj, b−ij) ∈ A

⇒


(γi, δj, a−ij) ∈ A

or

(αi, βj, b−ij) ∈ A .

Lemma 3. If a twofold partition satisfies A1 (Tradeoff consistency) then it
satisfies B2 (2-Linearity).

Proof. Suppose that (αi, βj, a−ij) ∈ A and (γi, δj, b−jj) ∈ A . Using A1 (Tra-
deoff consistency),

(αi, βj, a−ij) ∈ A and

(γi, δj, b−ij) ∈ A and

(αi, βj, a−ij) ∈ A and

(γi, δj, b−ij) ∈ A

⇒


(γi, δj, a−ij) ∈ A or

(αi, βj, b−ij) ∈ A or

(γi, δj, a−ij) ∈ A or

(αi, βj, b−ij) ∈ A ,

which is clearly equivalent to B2 (2-Linearity).

3.2. Other conditions

Under A1 (Tradeoff consistency) and, hence, B1 (1-Linearity), we have a
weak order %A on Γ. The set Γ is endowed with the order topology generated
by %A . The set X , viewed as Γn, is then endowed with the product topology.
This will allow us to introduce our main structural assumption, the definition
of which presupposes that %A is a weak order. It is clearly not necessary for
model (SEUm).

A2 (Connectedness) When %A is a weak order, the set Γ is connected in the
order topology generated by %A .

Our next condition will be necessary if the function u on Γ is required to
be continuous w.r.t. the topology on Γ introduced above.

A3 (Openness) The set A is open in the product topology on X .

Our final condition says that, given any act a ∈ X and any state i ∈ N , it
is always possible to modify the consequence of act a on state i so as to reach
A and U . This will imply that in our model the function u has range R.
This condition is quite strong and, as in Bleichrodt (2009), we only introduce
it to keep things simple.

A4 (Unboundedness) For all i ∈ N and all a ∈ X , we have (αi, a−i) ∈ A
and (βi, a−i) ∈ U , for some α, β ∈ Γ.
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4. Result and comments

4.1. Result

Our characterization of model SEUm is as follows.

Theorem 1. Consider a twofold ordered partition 〈A ,U 〉 of X such that As-
sumption 1 holds. Suppose that 〈A ,U 〉 satisfies A1 (Tradeoff consistency),
A2 (Connectedness), A3 (Openness), and A4 (Unboundedness). Then there
are a continuous real-valued function u on Γ with range R and n strictly
positive numbers p1, p2, . . . , pn adding up to 1 such that (SEUm) holds.

The numbers p1, p2, . . . , pn are unique. The function u is unique up to a
multiplication by a strictly positive constant.

The proof of Theorem 1 is in Appendix I. It uses techniques from Ble-
ichrodt (2007, 2009) Bouyssou and Marchant (2009, 2010), and Gilboa,
Schmeidler, and Wakker (2002). In Appendix II, we sketch an assessment
procedure for the parameters of model (SEUm).

4.2. Interpretation and comments

The purpose of this subsection is twofold. First, we analyze the relations
between our uncommon primitives and the classical ones. Second, we analyze
the relation between the numerical representation obtained in Theorem 1 and
the one obtained in classical results on model SEUc.

4.2.1. Relation to classical results

Given any weak order % on X and given any act r ∈ X , we can build
an ordered partition letting Ar = {a ∈ X : a � r} and Ur = {a ∈ X :
r % a}. Classical results on model SEUc therefore, implicitly, manipulate
several twofold ordered partitions. We only use one. Yet, we obtain a model
closely resembling model SEUc and that has strong uniqueness properties.
The reader may therefore think that this is due to the fact that the conditions
used in Theorem 1 are quite strong. In order to show that this is not the
case, let us first briefly recall a classical result on model SEUc.

Let % be a binary relation on X . This relation is said to satisfy CCI (Car-
dinal Coordinate Independence. This condition was originally introduced in
Wakker (1984). It is often called “tradeoff consistency” in Wakker’s later
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texts, e.g., Wakker 1988b, 1989a) if:

(αi, a−i) % (βi, b−i)
and

(γi, b−i) % (δi, a−i)
and

(δj, c−j) % (γj, d−j)

⇒ (αj, c−j) % (βj, d−j),

for all i, j ∈ N , all a, b, c, d ∈ X and all α, β, γ, δ ∈ Γ. It is well known
that, when % is complete and satisfies CCI, if any of the premises of CCI
holds with � instead of %, the conclusion of CCI must hold with �. Simi-
larly, when the relation % is complete and satisfies CCI, it also satisfies CI
(Coordinate Independence), i.e., for all i ∈ N , all α, β ∈ Γ and all a, b ∈ X ,

(αi, a−i) % (αi, b−i)⇒ (βi, a−i) % (βi, b−i).

We say that a state i ∈ N is essential (for %) if there are α, β ∈ Γ and
a ∈ X such that (αi, a−i) � (βi, a−i). Essentialness plays the same rôle for
binary relations as does influence for twofold partitions.

When X is endowed with a topological structure, we say that a binary
relation % on X is continuous if the sets {a ∈ X : a � b} and {a ∈ X : b � a}
are open for all b ∈ X .

We have:

Theorem 2 (Wakker 1989a, Th. IV.2.7, page 83). Suppose that Γ is a con-
nected topological space and that X is endowed with the product topology.
Suppose furthermore that n ≥ 2 and that all states are essential.

If % is a weak order on X that satisfies CCI and is continuous there
are a continuous real valued function v on Γ and n strictly positive numbers
q1, q2, . . . , qn adding up to 1 such that, for all a, b ∈ X ,

a % b⇔
n∑
i=1

qiv(ai) ≥
n∑
i=1

qiv(bi). (SEUc)

Furthermore, the function u is unique up to scale and location and the
numbers qi are unique.

In the above statement, we have omitted the hypothesis that the topology
on Γ is separable, since this is only needed when only one state is essential
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(see Wakker 1989a, Remark A.3.1, page 163 or Wakker 1988a, Th. 6.2, page
430).

Suppose now that n ≥ 3 and that we have a binary relation on X satis-
fying the conditions of Theorem 2. Take any r ∈ X . Let us show that the
twofold ordered partition Ar = {b ∈ X : b � r} and Ur = {b ∈ X : r % b}
will satisfy the conditions of Theorem 1.

Let i ∈ N and define the binary relation %i on Γ letting, for all α, β ∈ Γ,
α %i β ⇔ [(αi, a−i) % (βi, a−i), for all a ∈ X ]. Let us also denote by α
the constant act giving the outcome α ∈ Γ in all states i ∈ N . Define the
relation %Γ on Γ by letting, for all α, β ∈ Γ, α %Γ β ⇔ α % β. Since % is
a weak order satisfying CCI, it is easy to check that %i = %j = %Γ, for all
i, j ∈ N , and that %Γ is a weak order. As observed in Wakker (1989a, p. 50),
the topology on Γ can always be taken to be the order topology generated
by %Γ.

By definition, α �Ar β implies that (αi, a−i) ∈ Ar and (βi, a−i) /∈ Ar,
for some a, b ∈ X and some i ∈ N . Hence, we have (αi, a−i) � r and
r % (βi, a−i), so that (αi, a−i) � (βi, a−i). This shows that α �Ar β implies
α �Γ β. Hence, the order topology generated by %Ar is coarser than the
order topology generated by %Γ. This shows that A2 (Connectedness) and
A3 (Openness) will hold.

Let us show that A1 (Tradeoff consistency) holds. Suppose, in contradic-
tion with the thesis that we have

(αj, λk, a−jk) ∈ Ar (βj, µk, a−jk) ∈ Ur

(γj, µk, b−jk) ∈ Ar (δj, λk, b−jk) ∈ Ur

(δi, τk, c−ik) ∈ Ar (γi, ξk, c−ik) ∈ Ur

(βi, ξk, d−ik) ∈ Ar (αi, τk, d−ik) ∈ Ur.

This implies
(αj, λk, a−jk) � r, r % (βj, µk, a−jk)

(γj, µk, b−jk) � r, r % (δj, λk, b−jk)

(δi, τk, c−ik) � r, r % (γi, ξk, c−ik)

(βi, ξk, d−ik) � r, r % (αi, τk, d−ik).
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Using the fact that % is a weak order, this leads to

(αj, λk, a−jk) � (βj, µk, a−jk)

(γj, µk, b−jk) � (δj, λk, b−jk)

(δi, τk, c−ik) � (γi, ξk, c−ik)

(βi, ξk, d−ik) � (αi, τk, d−ik).

Using CI, (γj, µk, b−jk) � (δj, λk, b−jk) implies (γj, µk, a−jk) � (δj, λk, a−jk).
Using CCI,

(αj, λk, a−jk) � (βj, µk, a−jk)

(γj, µk, a−jk) � (δj, λk, a−jk)

(δi, τk, c−ik) � (γi, ξk, c−ik)

⇒ (αi, τk, c−ik) % (βi, ξk, c−ik)

Using CI, (αi, τk, c−ik) % (βi, ξk, c−ik) implies (αi, τk, d−ik) % (βi, ξk, d−ik), a
contradiction. Hence, A1 (Tradeoff consistency) holds.

Finally, observe that, if the function v in Theorem 2 has range R, condi-
tion A4 (Unboundedness) will hold.

Hence, when there are at least three states, the conditions underlying
model SEUm do not seem to be stronger than the conditions usually supposed
in classical derivations of model SEUc. Any twofold partition derived from
a preference relation satisfying the conditions of Theorem 2 will satisfy the
conditions of Theorem 1 (up to the fact that a utility function obtained in
Theorem 2 does not have to have range R).

4.2.2. Relating numerical representations in models SEUc and SEUm

It is first clear that, starting with the representation u, p1, p2, . . . , pn of
〈A ,U 〉 built in Theorem 1, we can build a preference relation % on X
satisfying all conditions of Theorem 2. Indeed, it suffices to build % so as to
reflect the comparison of the subjective expected utility of each act as given
by u and p1, p2, . . . , pn. Clearly, such a relation % on X is unique and satisfies
all conditions of Theorem 2. Applying Theorem 2 to this relation will lead
to a representation v and q1, q2, . . . , qn. Clearly, we must have that pi = qi,
for all i ∈ N . Moreover, provided that v is appropriately scaled (i.e., scaled
in such a way that all acts in the equivalence class that includes the acts
belonging to the intersection of U and the closure of A have a subjective
expected utility of 0), we must have that u = v.

Conversely, starting with a relation % on X satisfying the conditions of
Theorem 2, we obtain a representation v and q1, q2, . . . , qn. Whenever v has
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range R, we know that taking any r ∈ X , the twofold partition 〈Ar,Ur〉
satisfies the conditions of Theorem 1. Applying Theorem 1 to 〈Ar,Ur〉 leads
to representation u, p1, p2, . . . , pn. It is clear that qi = pi, for all i ∈ N .
Moreover, provided that v is scaled in such a way as to give a subjective
expected utility of 0 to r, we have v = u.

Hence under minimal consistency requirements, the representation built
in Theorem 1 must be the same as the representation built in Theorem 2 (a
similar observation was made in Vind 2003, Th. 11, p. 42 in the context of
conjoint measurement). Obtaining model SEUm is therefore tantamount to
obtaining model SEUc. Whenever a preference relation is compatible with
the twofold partition that has been used to assess model SEUm, assessing
model SEUc on the basis of this preference relation will lead to the same
subjective probabilities and the same utility function as the ones obtained in
model SEUm. Therefore, although model SEUm that is based on the twofold
partition 〈A ,U 〉 is silent on the comparison in terms of desirability of the
acts in A and U , there is only one way to compare these acts in terms
of preference, if we want this preference relation to be compatible with the
ordered partition 〈A ,U 〉 and to have a representation in model SEUc. It
implies using the numerical representation obtained for model SEUm as if it
were a representation of model SEUc.

4.3. Relation to classical experiments

Our central condition is A1 (Tradeoff consistency). Although we have
not tested it in experiments, we have good reasons to believe that adapting
classical experiments to our setting will easily lead to falsify it. As pointed
out to us by a referee, the reader may be puzzled by the fact that what follows
seems to show that our model will be easily falsifiable. Our view is that model
SEUm, as model SEUc, is mainly intended for normative purposes.

4.3.1. Ellsberg’s problem

Consider first the classical problem presented in Ellsberg (1961) and de-
picted in Table 1. An urn contains 90 balls that are Red (R), Black (B) or
Yellow (Y). It is known that 30 of these balls are Red. The other 60 are
either Black or Yellow in unknown proportions. Confronted with the acts x,
y, z, and w in Table 1, the modal preferences of subjects in experiments are
x � y and w � z. These preferences are easily explained by the desire to bet
on an “unambiguous event” (R, when comparing x and y, and [B or Y], when
comparing z and w). They are incompatible with model SEUc (these modal
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preferences violate CI). In this example, it seems natural to suppose that all

R B Y

x 100 0 0
y 0 100 0
z 100 0 100
w 0 100 100

Table 1: Ellsberg’s problem.

acts will be judged acceptable since they all involve a possible gain without
any possibility of loosing money. Hence, this problem cannot directly lead
to falsify model (SEUm).

Consider now the following variation on Ellsberg’s theme. Suppose that
the urn contains 100 balls that are Red (R), White (W), Black (B) or Yellow
(Y). It is known that 30 balls are Red and that 10 are White. The other 60
are either Black or Yellow. Consider the acts described in Table 2 and let us
imagine how the subjects having the modal preference in Ellsberg’s problem
might react to them. Since x � y in the original problem and there are

R W B Y

xε 100 −ε 0 0
yε 0 −ε 100 0
zτ 100 −τ 0 100
wτ 0 −τ 100 100

Table 2: Ellsberg’s problem modified.

only 10 White balls, it is likely that these subjects will consider that xε � yε.
When ε is small, it is likely that both xε and yε will be considered acceptable.
When ε increases, the desirability of both acts decreases. We may eventually
find a value of ε such that, for many of these subjects, xε ∈ A and yε ∈ U .
Using a similar reasoning, it is likely that there will be a value of τ such that,
for many of these subjects, zτ ∈ U and wτ ∈ A . Summarizing, it is likely
that there will be subjects stating that:

xε = (100R,−εW , 0B, 0Y ) ∈ A , yε = ( 0R,−εW , 100B, 0Y ) ∈ U ,

wτ = ( 0R,−τW , 100B, 100Y ) ∈ A , zτ = (100R,−τW , 0B, 100Y ) ∈ U ,
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which will violate B2 (2-Linearity) with i = R and j = B. Hence, A1 (Tra-
deoff consistency) will be violated.

4.3.2. Allais’ problem

Tversky and Kahneman (1992) have shown how the classical problem in
Allais (1953) can be adapted to cover the case of decisions under uncertainty.
Their example involves a bet of the absolute value d of the difference between
the closing values of the Dow-Jones between two consecutive days. Given the
acts presented in Table 3, the modal preferences of subjects are x � y and
w � z, which is incompatible with model (SEUc) (these modal preferences
violate CI). Yet, these preferences are easily explained by the attraction of a
sure win (comparing x with y) combined with the desire to go for the larger
gain when uncertain (comparing w with z).

d < 30 30 ≤ d ≤ 35 35 < d

x 25 000 25 000 25 000
y 25 000 0 75 000
z 0 25 000 25 000
w 0 0 75 000

Table 3: Adaptation of Allais’ problem in Tversky and Kahneman (1992, p. 303).

Again, all these acts are likely to be judged acceptable since they do not
involve losses. Consider now the modified problem presented in Table 4.
Using the same reasoning as with Ellsberg’s problem, it is likely that there

0 ≤ d ≤ 1 1 < d < 30 30 ≤ d ≤ 35 35 < d

xε −ε 25 000 25 000 25 000
yε −ε 25 000 0 75 000
zτ −τ 0 25 000 25 000
wτ −τ 0 0 75 000

Table 4: Allais’ problem modified.

are ε and τ such that many subjects will state that xε ∈ A , yε ∈ U , zτ ∈ U
and wτ ∈ A . It is simple to check that this will violate B2 (2-Linearity) and,
hence, A1 (Tradeoff consistency).
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5. Discussion

This paper has analyzed decision making under uncertainty replacing the
classical primitives consisting of a preference relation on the set of acts by a
twofold ordered partition of this set. A possible interpretation of this setting
is that each act is positioned vis-à-vis a status quo and is either “accept-
able” or “unacceptable”. Within a framework using a finite set of states
and a rich set of consequences, we have given conditions on a twofold or-
dered partition ensuring that it can be represented in such a way that all
attractive acts have a subjective expected utility above some threshold. The
obtained representation has strong uniqueness properties. We have also seen
that any representation in model SEUc of a preference relation that is com-
patible with the twofold ordered partition must lead to a similar numerical
representation. This gives subjective expected utility alternative behavioral
foundations based on primitives that are more parsimonious than the ones
classically considered in the literature and using conditions that are reason-
ably simple. We have shown that our conditions do not seem to be stronger
than the classical ones used to characterize model SEUc. We have also shown
that it is likely that simple adaptations of Ellsberg’s and Allais’s problems
will lead to falsify our central condition (Tradeoff consistency).

The line of research consisting in replacing a preference relation by an or-
dered partition to analyze classical models is still quite open. Let us simply
mention here four directions for future research. First, it is clearly interesting
to present a result similar to Theorem 1 without the use of A4 (Unbound-
edness). In view of Bouyssou and Marchant (2009, Cor. 1), this should not
raise major problems. Second, an important question would be to study
models extending model SEUc, such as Rank Dependent Utility (Gilboa
1987, Wakker 1989a) or Cumulative Prospect Theory (Tversky and Kah-
neman 1992, Wakker and Tversky 1993), using primitives such as the ones
used here. Our method of proof does not however seem to be well adapted to
cover such models. Dealing with them is likely to require a rather different
type of analysis. The third question is empirical. On the basis of the nu-
merous empirical studies on the validity of model SEUc, we have suggested
experiments that are likely to lead to a falsification of our model. We have
not performed any empirical analysis however. It might be the case that
questions phrased in terms of our primitives generate different behavior than
questions phrased in terms of classical primitives (for an example of the in-
fluence of the questioning mode on behavior, see Tversky, Sattah, and Slovic
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1988). Moreover, we have conjectured that dividing acts between the ones
that are acceptable and the ones that are not is a simple cognitive task that,
in any case, does not seem to be more complex than the comparison of two
acts in terms of preference. This remains a conjecture however.

The fourth question is more conceptual. We have abandoned in this paper
the usual primitives in decision theory. Although we think to have shown that
this was a feasible and interesting avenue, this also comes at a cost. While
the foundations of the classical primitives have been investigated in depth
(in particular through the literature on “revealed preferences” connecting
preferences and choices), we are presently lacking similar foundations for the
primitives used here (such foundations do not seem out of reach however).
Moreover, our emphasis has been on obtaining a model that we are inclined
to motivate on a normative basis. It may be the case that models having a
less firm normative basis can also be profitably analyzed with our premises.
As already mentioned, a referee has suggested that this might well be the
case in situations, such as job search or mate selection, in which acts are not
readily available but have to be searched, this search involving a cost. In
such situations, stopping the search as soon as an acceptable act has been
obtained appears to be a reasonable heuristics that could be analyzed with
our primitives. Clearly, this would call for analyses that are rather different
from the ones proposed here.

Appendix I: Proofs
We suppose throughout this appendix that all conditions in Theorem 1 hold.
Define, for each i ∈ N , the binary relation %A

i on Γ letting, for all α, β ∈ Γ,

α %A
i β ⇔ [(βi, a−i) ∈ A ⇒ (αi, a−i) ∈ A , for all a ∈ X ].

It is clear that all relations %A
i are reflexive and transitive. We obviously

have that %A =
⋂n
i=1 %

A
i . When B1 (1-Linearity) holds, all relations %A

i are
complete and are compatible (see Lemma 1).

Let A = Cl(A ), F = A \ A , and U ◦ = U \ F . For all i ∈ N and
all a ∈ X , define U (a−i) = {β ∈ Γ : (βi, a−i) ∈ U }, A (a−i) = {α ∈ Γ :
(αi, a−i) ∈ A }, A (a−i) = {α ∈ Γ : (αi, a−i) ∈ A }, U ◦(a−i) = {α ∈ Γ :
(αi, a−i) ∈ U ◦}, and F(a−i) = {α ∈ Γ : (αi, a−i) ∈ F}. By construction, we
have that U (a−i) ∩A (a−i) = ∅ and U (a−i) ∪A (a−i) = Γ.
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A. Preliminary lemmas

Lemma 4. For all i ∈ N , the relation %A
i has no maximal or minimal

elements. The relation %A has no maximal or minimal elements.

Proof. Let α ∈ Γ, a ∈ X and i, j ∈ N with i 6= j. Using A4 (Unbounded-
ness), we have (αi, γj, a−ij) ∈ U , for some γ ∈ Γ. Using A4 (Unbounded-
ness), we have (βi, γj, a−ij) ∈ A , for some β ∈ Γ. This shows that α ∈ Γ
cannot be maximal for %A

i . The proof that %A
i cannot have minimal ele-

ments is similar. That %A has no maximal or minimal elements now follows
from the fact that %A =

⋂n
i=1 %

A
i .

Lemma 5. For all a ∈ X and all i ∈ N , we have U (a−i) 6= ∅ and A (a−i) 6=
∅. The set A (a−i) is open. The set U (a−i) is closed.

Proof. The first part results from A4 (Unboundedness). The second part
follows from A3 (Openness) (see Wakker 1989a, Lemma 0.2.1, p. 12). The
final part follows from the fact that U (a−i) = Γ \A (a−i).

Lemma 6. Let i ∈ N , and a ∈ X . We have (γi, a−i) ∈ F , for some γ ∈ Γ.

Proof. We know from Lemma 5 that U (a−i) 6= ∅ is closed and that A (a−i) 6=
∅ is open. Since A is closed, we know (see Wakker 1989a, Lemma 0.2.1,
p. 12) that the set A (a−i) is closed. It is nonempty because A (a−i) is
nonempty. If A (a−i) ∩ U (a−i) = ∅, we have separated Γ into two closed
nonempty sets, violating A2 (Connectedness). Hence we must have A (a−i)∩
U (a−i) 6= ∅. Taking any γ ∈ A (a−i)∩U (a−i), we obtain (γi, a−i) ∈ F .

Lemma 7. Let i ∈ N , and a ∈ X . We have U (a−i) = {β ∈ Γ : ι(a−i) %A β}
and A (a−i) = {β ∈ Γ : β �A ι(a−i)}, for some ι(a−i) ∈ Γ.

Proof. We know from Lemma 5 that the set U (a−i) = {β ∈ Γ : (βi, a−i) ∈
U } is nonempty and closed. Let β ∈ U (a−i). Since β �A γ implies β %A

i γ,
it is clear that β �A γ implies γ ∈ U (a−i). By construction, β ∼A γ implies
β ∼A

i γ, for all i ∈ N . Hence, β ∼A γ implies γ ∈ U (a−i). We have
shown that β ∈ U (a−i) and β %A γ imply γ ∈ U (a−i). This implies that
the nonempty set U (a−i) is unbounded below. Since it is closed, there is
ι(a−i) ∈ Γ such that, U (a−i) = {β ∈ Γ : ι(a−i) %A β}. This implies that
A (a−i) = {β ∈ Γ : β �A ι(a−i)}.

Lemma 8. Let i ∈ N , α, β ∈ Γ, and a ∈ X . If (αi, a−i) ∈ F and (βi, a−i) ∈
F then α ∼A β.
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Proof. In view of Lemma 7, we have A (a−i) = {δ ∈ Γ : δ %A ι(a−i)},
so that F(a−i) = A (a−i) ∩ U (a−i) = {δ ∈ Γ : δ ∼A ι(a−i)}. Therefore,
(α, a−i) ∈ F and (β, a−i) ∈ F imply that α ∼A ι(a−i) and β ∼A ι(a−i), so
that α ∼A β.

Lemma 9. Let i ∈ N , α, β ∈ Γ, and a ∈ X . If (αi, a−i) ∈ F and α ∼A β
then (βi, a−i) ∈ F .

Proof. Suppose (αi, a−i) ∈ F and α ∼A β. Because F(a−i) = {δ ∈ Γ : δ ∼A

ι(a−i)}, we know that α ∼A ι(a−i). Since α ∼A β, we obtain β ∼A ι(a−i),
so that (βi, a−i) ∈ F .

Lemma 10. For all i, j ∈ N , all a, b ∈ X and all α, β ∈ Γ,

(αi, a−i) ∈ F
and

(βi, a−i) ∈ F

⇒


(αj, b−j) ∈ A ⇔ (βj, b−j) ∈ A

(αj, b−j) ∈ F ⇔ (βj, b−j) ∈ F ,
(αj, b−j) ∈ U ◦ ⇔ (βj, b−j) ∈ U ◦.

Proof. Since (αi, a−i) ∈ F and (βi, a−i) ∈ F , Lemma 8 implies that α ∼A β.
The first part follows from the definition of %A . If (αj, b−j) ∈ F , Lemma 9

implies (βj, b−j) ∈ F . This proves the second part. The last part follows.

Lemma 11. For all i ∈ N , all α, β ∈ Γ and all a ∈ X ,

(αi, a−i) ∈ A and β %A α⇒ (βi, a−i) ∈ A ,

(αi, a−i) ∈ F and β �A α⇒ (βi, a−i) ∈ A ,

(αi, a−i) ∈ F and β ∼A α⇒ (βi, a−i) ∈ F ,
(αi, a−i) ∈ F and α �A β ⇒ (βi, a−i) ∈ U ◦,

(αi, a−i) ∈ U ◦ and α %A β ⇒ (βi, a−i) ∈ U ◦.

Proof. The first part follows from the definition of %A . For the second
part, observe, using Lemma 7 that, (αi, a−i) ∈ F implies α ∼A ι(a−i), so
that β �A α implies β �A ι(a−i). This implies that β ∈ A (a−i), so that
(βi, a−i) ∈ A . The third part follows from Lemma 9. To prove the fourth
part, suppose that (αi, a−i) ∈ F and α �A β. In view of the first two parts,
it is impossible that (βi, a−i) ∈ A . Hence, we must have (βi, a−i) ∈ U ◦.
The last part follows from the fact that, if (βi, a−i) ∈ A , α %A β implies
(αi, a−i) ∈ A , a contradiction.
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B. Additive representation of 〈A ,U 〉

Our aim is to show that there is an additive representation of 〈A ,U 〉,
i.e., that there are n real-valued functions v1, v2, v3, . . . , vn on Γ such that for
all a, b ∈ X ,

a ∈ A ⇔
n∑
i=1

vi(ai) > 0. (1)

This additive representation is said to be continuous if all functions vi are
continuous.

Let j ∈ N . Define the binary relations %(j) and %A
−j on the set

∏
i 6=j Γi

letting

a−j %
(j) b−j ⇔

[
(αj, a−j) ∈ A and (αj, b−j) ∈ U , for some α ∈ Γ

]
,

a−j %
A
−j b−j ⇔ [(αj, b−j) ∈ A ⇒ (αj, a−j) ∈ A , for all α ∈ Γ] .

B.1. Preliminary lemmas

Lemma 12. The relation %A
−j is a weak order.

Proof. This is an immediate consequence of B1 (1-Linearity).

Lemma 13. We have %(j) = %A
−j.

Proof. Suppose that x−j %
(j) y−j so that we have (αj, x−j) ∈ A and (αj, y−j) ∈

U , for some α ∈ Γ. In contradiction with the thesis, suppose that Not [x−j %A
−j y−j].

This implies that, for some β ∈ Γ, we have (βj, y−j) ∈ A and (βj, x−j) ∈ U .
If α %A β, (βj, y−j) ∈ A implies (αj, y−j) ∈ A , a contradiction. Hence, we
must have β �A α. Using Lemma 11, β �A α and (αj, x−j) ∈ A imply

(βj, x−j) ∈ A , a contradiction. Hence, x−j %
(j) y−j implies x−j %A

−j y−j.
Suppose that x−j %A

−j y−j. Using Lemma 6, we know that (βj, x−j) ∈ F ,

for some β ∈ Γ. If Not [x−j %
(j) y−j], we must have (βj, y−j) ∈ A . But

x−j %A
−j y−j then implies (βj, x−j) ∈ A , a contradiction.

Lemma 14. For all a, b ∈ X ,

a−j ∼(j) b−j ⇔

{
(αj, a−j) ∈ F
(αj, b−j) ∈ F

}
for some α ∈ Γ.
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Proof. The [⇐] part follows from the definition of %(j). Let us prove the [⇒]
part. Suppose that a−j ∼(j) b−j, so that, for some α, β ∈ Γ,

(αj, a−j) ∈ A and (αj, b−j) ∈ U ,

(βj, b−j) ∈ A and (βj, a−j) ∈ U .

Using Lemma 6, we know that there is a δ ∈ Γ such that (δj, a−j) ∈ F . If
(δj, b−j) ∈ F , there is nothing to prove.

Suppose that (δj, b−j) ∈ U ◦. Because (βj, b−j) ∈ A , using Lemma 7
implies that β %A ι(b−j) �A δ, so that β �A δ. Using Lemma 11, (δj, a−j) ∈
F and β �A δ imply (βj, a−j) ∈ A , a contradiction.

Suppose that (δj, b−j) ∈ A . Since (αj, b−j) ∈ U , we must have δ �A

α. Using Lemma 11, (αj, a−j) ∈ A and δ �A α imply (δj, a−j) ∈ A , a
contradiction.

Lemma 15. For all a, b ∈ X ,

a−j �(j) b−j ⇔

{
(αj, a−j) ∈ A

(αj, b−j) ∈ F

}
for some α ∈ Γ,

⇔

{
(δj, a−j) ∈ F
(δj, b−j) ∈ U ◦

}
for some δ ∈ Γ.

Proof. Suppose that (αj, a−j) ∈ A and (αj, b−j) ∈ F , for some α ∈ Γ. This

implies a−j %(j) b−j. If b−j %(j) a−j, we have a−j ∼(j) b−j and Lemma 14
implies that (βj, a−j) ∈ F and (βj, b−j) ∈ F , for some β ∈ Γ. Because
(αj, a−j) ∈ A , we must have that α �A β. Using (αj, b−j) ∈ F , Lemma 11
implies (βj, b−j) ∈ U ◦, a contradiction.

Suppose now that a−j �(j) b−j. We know that there is α ∈ Γ such that

(αj, b−j) ∈ F . If (αj, a−j) ∈ U , we obtain b−j %(j) a−j, a contradiction.
Hence, we must have (αj, a−j) ∈ A , as required. This completes the proof
of the first equivalence.

Suppose that (δj, a−j) ∈ F and (δj, b−j) ∈ U ◦, for some δ ∈ Γ. This

implies a−j %(j) b−j. If b−j %(j) a−j, we have a−j ∼(j) b−j and Lemma 14
implies that (βj, a−j) ∈ F and (βj, b−j) ∈ F , for some β ∈ Γ. Because
(δj, b−j) ∈ U ◦, we must have that β �A δ. Using (βj, a−j) ∈ F , Lemma 11
implies (δj, a−j) ∈ A , a contradiction.

Suppose now that a−j �(j) b−j. We know that there is δ ∈ Γ such that

(δj, a−j) ∈ F . If (δj, b−j) ∈ A , we obtain b−j %(j) a−j, a contradiction.
Hence, we must have (δj, b−j) ∈ U ◦, as required.
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Lemma 16. The relation %(j) satisfies CCI, i.e.,

(αi, a−ij) %
(j) (βi, b−ij)

and

(γi, b−ij) %
(j) (δi, a−ij)

and

(δk, c−kj) %
(j) (γk, d−kj)

⇒ (αk, c−kj) %
(j) (βk, d−kj),

for all i, k ∈ N \ {j}, all a, b, c, d ∈ X and all α, β, γ, δ ∈ Γ.

Proof. Suppose that (αi, a−ij) %
(j) (βi, b−ij), (γi, b−ij) %

(j) (δi, a−ij), (δk, c−kj) %
(j)

(γk, d−kj), and, in contradiction with the thesis, that (βk, d−kj) �(j) (αk, c−kj).

Using Lemma 15 and the definition of %(j), we know that we have

(τj, αi, a−ij) ∈ A , (2a)

(λj, γi, b−ij) ∈ A , (2b)

(ζj, δk, c−kj) ∈ A , (2c)

(ρj, βk, d−kj) ∈ A , (2d)

(τj, βi, b−ij) ∈ U , (2e)

(λj, δi, a−ij) ∈ U , (2f)

(ζj, γk, d−kj) ∈ U , (2g)

(ρj, αk, c−kj) ∈ F , (2h)

for some τ, λ, ζ, ρ ∈ Γ.
From (2d), using A2 (Connectedness), we can find ρ′ ∈ Γ such that

ρ �A ρ′ and (ρ′j, βk, d−kj) ∈ A . From (2h), using Lemma 11, we obtain.
(ρ′j, αk, c−kj) ∈ U ◦. Let ` 6= j, k. Using the fact that %A is unbounded and
A2 (Connectedness), we can find χ, ψ ∈ Γ such that d` �A ψ, χ �A c`, and

(ρ′j, βk, ψ`, d−k`j) ∈ A , (3a) (ρ′j, αk, χ`, c−k`j) ∈ U ◦. (3b)

Using (2c) and (2g), we have (ζj, δk, χ`, c−k`j) ∈ A , (ζj, γk, ψ`, d−k`j) ∈
U ◦. Using the fact that %A is unbounded and A2 (Connectedness), we can
find δ′, γ′ ∈ Γ such that γ′ �A γ and δ �A δ′ and

(ζj, δ
′
k, χ`, c−k`j) ∈ A , (3c) (ζj, γ

′
k, ψ`, d−k`j) ∈ U ◦. (3d)

Using (2b) and (2f), we obtain (λj, γ
′
i, b−ij) ∈ A , (λj, δ

′
i, a−ij) ∈ U ◦. Let

m 6= j, i. Using the fact that %A is unbounded and A2 (Connectedness), we
can find ν, ω ∈ Γ such that bm �A ω, ν �A am, and

(λj, γ
′
i, ωm, b−imj) ∈ A , (3e) (λj, δ

′
i, νm, a−imj) ∈ U ◦. (3f)

Using (2a) and (2e), we obtain

(τj, αi, νm, a−imj) ∈ A , (3g) (τj, βi, ωm, b−imj) ∈ U ◦. (3h)
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Summarizing, after rearranging the terms, we have:

(αi, τj, νm, a−imj) ∈ A , (3g)

(γ′i, λj, ωm, b−imj) ∈ A , (3e)

(βk, ρ
′
j, ψ`, d−k`j) ∈ A , (3a)

(δ′k, ζj, χ`, c−k`j) ∈ A , (3c)

(δ′i, λj, νm, a−imj) ∈ U ◦, (3f)

(βi, τj, ωm, b−imj) ∈ U ◦, (3h)

(γ′k, ζj, ψ`, d−k`j) ∈ U ◦, (3d)

(αk, ρ
′
j, χ`, c−k`j) ∈ U ◦, (3b)

which violates A1 (Tradeoff consistency).

Lemma 17. All states i ∈ N \ {j} are essential for the relation %(j).

Proof. Let i ∈ N \ {j}. We have to show that there are a ∈ X and α, β ∈ Γ
such that (αi, a−ij) �(j) (βi, a−ij).

Let a ∈ X and α ∈ Γ. Using Lemma 6, we can find ξ ∈ Γ such that
(ξj, αi, a−ij) ∈ F . Using Lemma 4, there is β ∈ Γ such that α �A β. Using
Lemma 11, we obtain (ξj, βi, a−ij) ∈ U ◦. Using Lemma 15, this implies that
(αi, a−ij) �(j) (βi, a−ij).

Let i 6= j. We define the relation %(j)
i on Γ letting,

α %(j)
i β ⇔ [(αi, a−ij) %

(j) (βi, a−ij), for all a ∈ X ].

Because %(j) is a weak order satisfying CCI, it satisfies CI. Hence, we have:

α %(j)
i β ⇔ [(αi, a−ij) %

(j) (βi, a−ij), for some a ∈ X ].

Lemma 18. For all i 6= j, we have %(j)
i = %A .

Proof. Suppose that β �A α and α %(j)
i β. We know that (δj, αi, a−ij) ∈

F , for some δ ∈ Γ. Using β �A α, we obtain (δj, βi, a−ij) ∈ A . Using

Lemma 15, this implies (βi, a−ij) �(j) (αj, a−ij), contradicting α %(j)
i β.

Suppose now that we have (βi, a−ij) �(j) (αj, a−ij), for some a ∈ X , and
α %A β. Using Lemma 15, we have (δj, βi, a−ij) ∈ A and (δj, αi, a−ij) ∈
F , for some δ ∈ Γ. Using α %A β and (δj, βi, a−ij) ∈ A , we obtain
(δj, αi, a−ij) ∈ A , a contradiction.

Lemma 19. The relation %(j) is continuous, i.e., for all i ∈ N \ {j} and all
a ∈ X the sets {b−j ∈

∏
i 6=j Γi : a−j �(j) b−j} and {b−j ∈

∏
i 6=j Γi : b−j �(j)

a−j} are open.
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Proof. We prove that {b−j ∈
∏

i 6=j Γi : b−j �(j) a−j} is open, the other case

being similar. Using Lemma 15, we have b−j �(j) a−j iff (αj, b−j) ∈ A and
(αj, a−j) ∈ F , for some α ∈ Γ.

Let k 6= j. The set ∆+
k (a−j) = {δ ∈ Γ : (αj, δk, b−jk) ∈ A } is nonempty

(it contains bk). The set ∆−k (a−j) = {δ ∈ Γ : (αj, δk, b−jk) ∈ U } is nonempty
(using Lemma 6). Using A3 (Openness), we know that the set ∆+

k (a−j) is
open.

We claim that there is β ∈ Γ such that bk �A β and (αj, βk, b−jk) ∈ A .
Otherwise, we would have ∆+

k (a−j) = {δ ∈ Γ : δ %A bk} which would imply
that ∆+

k (a−j) is closed. This contradicts A2 (Connectedness) since we know
that ∆+

k (a−j) is both closed and open, while being nonempty and different
from Γ.

Using (αj, βk, b−jk) ∈ A as a starting point, we can now use the same
reasoning on any state ` 6= j, k. It is easy to see that this will lead to find
c ∈ X such that (αj, c−j) ∈ A and, for all i 6= j, bi �A ci. This implies that
each b−j ∈

∏
i 6=j Γi such that b−j �(j) a−j is contained in an open set. The

set {b−j ∈
∏

i 6=j Γi : b−j �(j) a−j} is therefore open.

B.2. Additive representation of %(1)

We start by showing that the relation %(j) has an additive representation.
We only show this for j = 1.

Lemma 20. There are n−1 continuous functions v2, v3, . . . , vn such that for
all a, b ∈ X ,

a−1 %
(1) b−1 ⇔

n∑
i=2

vi(ai) ≥
n∑
i=2

vi(bi). (4)

If two sets of functions 〈vi〉i 6=1 and 〈ui〉i 6=1 satisfy (4) then there are there
are real numbers A,B2, B3, . . . , Bn such that A > 0 and, for all i ∈ N \ {1},
vi = Aui +Bi.

Proof. The plan is to use Wakker (1989a, Th. III.6.6, p. 70) on %(1) with
the following modifications. The hypothesis of topological separability can
be omitted when at least two attributes are essential (see Wakker 1989a,
Remark A.3.1, page 163 or Wakker 1988a, Th. 6.2, page 430). The topology
on Γi can be taken to be the order topology generated the induced marginal
relations on attribute i (Wakker 1989a, Step 1.2, p. 50).

We know from Lemma 13 that %(1) is a weak order. Using Lemma 17,
we know all states are essential and n − 1 ≥ 2. Lemma 16 has shown
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that %(1) satisfies CCI, which implies generalized triple cancellation in the
sense of Wakker (1989a, Th. III.6.6, p. 70). Because of Lemma 18 and
A2 (Connectedness), we know that each Γi is connected in the order topology

generated by %(1)
i = %A . Using Lemma 19, we know that %(1) is continuous.

Hence, applying Wakker (1989a, Th. III.6.6, p. 70) together with Wakker
(1989a, Observation III.6.6′, p. 71) gives the desired result.

B.3. Additive representation of 〈A ,U 〉
Lemma 21. If %(1) has a continuous additive representation then there is
an additive representation of 〈A ,U 〉.

Proof. Suppose that 〈vi〉i 6=1 is a continuous additive representation of %(1).
Let a ∈ X . Using Lemma 6, we can find α ∈ Γ such that (α1, a−1) ∈ F .
Conversely, given any α ∈ Γ, we have (α1, a−1) ∈ F , for some a ∈ X .

Now, define v1 letting, for all α ∈ Γ,

v1(α) = −
∑
i 6=1

vi(ai) if (α1, a−1) ∈ F .

It is easy to see that v1 is well-defined. Indeed if (α1, a−1) ∈ F and (α1, b−1) ∈
F , we know from Lemma 14 that a−1 ∼(1) b−1, so that:∑

i 6=1

vi(ai) =
∑
i 6=1

vi(bi).

Let us now show that such a function v1 together with the functions
〈vi〉i 6=1 give an additive representation for 〈A ,U 〉.

If (a1, a−1) ∈ F , then, by construction, we have v1(a1) +
∑

i 6=1 vi(ai) = 0.
Suppose that (a1, a−1) ∈ A . Using Lemma 6 on any state k other than

1, we know that (a1, αk, a−1k) ∈ F , for some α ∈ Γ. Hence, we have:

v1(a1) = −

[
vk(α) +

∑
i 6=1,k

vi(ai)

]
.

Using Lemma 15, (a1, a−1) ∈ A and (a1, αk, a−1k) ∈ F imply a−1 �(j)

(αk, a−1k), so that: ∑
i 6=1

vi(ai) > vk(α) +
∑
i 6=1,k

vi(ai),
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which implies

v1(a1) +
∑
i 6=1

vi(ai) > 0.

That (a1, a−1) ∈ U ◦ implies v1(a1) +
∑

i 6=1 vi(ai) < 0 is shown similarly.
Hence we have built an additive representation of 〈A ,U 〉. Observe that in
this representation, we know that v2, v3, . . . , vn are continuous functions.

Lemma 22. If there is an additive representation of 〈A ,U 〉 then, for all
i ∈ N ,

α �A β ⇒ vi(α) > vi(β).

Proof. Suppose that α �A β. We have, for some a ∈ X , (αi, a−i) ∈ A
and (βi, a−i) /∈ A . This implies that vi(αi) +

∑
j 6=1 vj(ai) > 0 and vi(βi) +∑

j 6=1 vj(ai) ≤ 0, so that vi(α) > vi(β).

Lemma 23. In the additive representation of 〈A ,U 〉 built in Lemma 21 the
range of each vi is R.

Proof. We first show that this is the case for all i 6= 1. Take α, β ∈ Γ
such that α �A β. Using Lemma 22, we know that vi(α) > vi(β). Let
vi(α) − vi(β) = K > 0. Let us show that we can find γ, δ ∈ Γ such that
vi(γ) − vi(α) = vi(α) − vi(β) = vi(β) − vi(δ) = K > 0, which will complete
the proof since we know that vi is continuous.

Take j 6= i, 1. We can find λ ∈ Γ such that (αi, λj, a−ij) ∈ F , for some
a ∈ X . We can find µ ∈ Γ and b ∈ X such that (βi, µj, a−ij) ∈ F and
(βi, λj, b−ij) ∈ F . Now, there is δ ∈ Γ such that (δi, µj, b−ij) ∈ F . This
implies vi(α)− vi(β) = vi(β)− vi(δ). The other part of the proof is similar.

Consider now the case of v1. For all a ∈ X , we know that there is α ∈ Γ
such that (α1, a−1) ∈ F . This implies v1(α) = −

∑n
i=2 vi(ai). Hence, v1 has

the same range as −
∑n

i=2 vi, i.e., R.

Lemma 24. In the additive representation of 〈A ,U 〉 built in Lemma 21
each function vi is continuous.

Proof. We only have to show that v1 is continuous. Let us show that v1

on the set Γ/∼A is continuous. If α �A β, we know that v1(α) > v1(β).
Hence the function v1 goes from Γ/∼A endowed with the order topology
generated by %A to R endowed with the standard topology. This function
is order preserving. It is bijective since the range of v1 is R. Hence, it is a
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homeomorphism (Munkres 1975, p. 111). The proof is complete since we can
extend v1 to Γ making it constant on each equivalence class of ∼A , in view
of the construction of v1 in Lemma 21 and Lemma 11.

Lemma 25. If there is a continuous additive representation of 〈A ,U 〉, i.e.,
(1) holds, then, for all a ∈ X ,

a ∈ F ⇔
n∑
i=1

vi(ai) = 0.

Proof. Suppose that a ∈ F . Because a ∈ F implies a ∈ U , we know that∑n
i=1 vi(ai) ≤ 0. Suppose that

∑n
i=1 vi(ai) < 0.

Let j ∈ N . Because vj is continuous and has range R, there is α ∈ Γ such
that vj(α) +

∑
i 6=j vi(ai) < 0. and vj(α) > vj(aj).

Let k 6= j. Because vk is continuous and has range R, there is β ∈ Γ such
that vj(α) + vk(β) +

∑
i 6=j,k vi(ai) > 0, and vj(aj) + vk(β) +

∑
i 6=j,k vi(ai) < 0.

This implies (αj, βk, a−jk) ∈ A and (aj, βk, a−jk) ∈ U , so that α �A aj.
Because a = (aj, a−j) ∈ F , Lemma 11 implies (αj, a−i) ∈ A , so that vj(α) +∑

i 6=j vi(ai) > 0, a contradiction.
Conversely, suppose that

∑n
i=1 vi(ai) = 0. By construction, it is impos-

sible that a ∈ A . Suppose that a ∈ U ◦. Let j ∈ N . Because U ◦ is
open, we can find α ∈ Γ such that α �A aj, and (αj, a−j) ∈ U ◦. Using
Lemma 22, we have vj(α) > vj(aj), so that vj(α) +

∑
i 6=j vi(ai) > 0. This

implies (αj, a−j) ∈ A , a contradiction.

Lemma 26. If there is a continuous additive representation of 〈A ,U 〉, i.e.,
(1) holds, then each function vi represents %A .

Proof. In view of Lemma 22, we only have to prove that α ∼A β implies
vi(α) = vi(β) Using Lemma 14, α ∼A β implies that for some a ∈ X ,
(αi, a−i) ∈ F and (βi, a−i) ∈ F . Using Lemma 25, this implies that vi(αi) +∑

j 6=1 vj(ai) = 0 and vi(βi) +
∑

j 6=1 vj(ai) = 0, so that vi(α) = vi(β).

Lemma 27. There are n continuous functions v1, v2, v3, . . . , vn such that for
all a, b ∈ X ,

a ∈ A ⇔
n∑
i=1

vi(ai) > 0.

The range of each function vi is R.
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If 〈vi〉i∈N and 〈ui〉i∈N are two sets of functions giving an additive repre-
sentation of 〈A ,U 〉 then there are real numbers A,B1, B2, . . . , Bn such that
A > 0 and

∑n
i=1Bi = 0 such that, for all i ∈ N , vi = Aui +Bi.

Proof. The existence part follows from combining Lemma 20 with Lemma 21.
The statement about the range of vi follows from Lemma 23. The continuity
of each vi follows from Lemma 24.

Let us prove the uniqueness part. It is first clear that multiplying each
function vi by the same positive constant gives another valid representation.
Adding to each vi a constant Bi is also possible, provided that

∑n
i=1Bi = 0.

Let us show that only such transformations are possible.
Let 〈vi〉i∈N be any additive representation of 〈A ,U 〉. Let us show that

〈vi〉i 6=1 must be an additive representation of %(1). Suppose that a−1 ∼(1) b−1.
Using Lemmas 14 and 25, we must have

∑
i 6=1 vi(ai) =

∑
i 6=1 vi(bi). Similarly,

using Lemmas 15 and 25, a−1 �(1) b−1 implies
∑

i 6=1 vi(ai) >
∑

i 6=1 vi(bi).
Hence, any additive representation of 〈A ,U 〉 must also be an additive rep-

resentation of %(1). Conversely, Lemma 21 has shown that given any additive
representation for %(1), we can obtain an additive representation for 〈A ,U 〉
that uses the same functions for i 6= 1.

Because %(1) satisfies all conditions of Wakker (1989a, Th. III.6.6, p. 70),

we know that we know that any two additive representations of %(1), 〈ui〉i 6=1

and 〈vi〉i 6=1, must be such that vi(ai) = Aui(ai) +Bi, with A > 0.
Let a ∈ X . Using Lemma 6 on any state k distinct from 1, we have

(a1, b−1) ∈ F , for some b ∈ X . This implies that if 〈ui〉i∈N and 〈vi〉i∈N are
two representations of 〈A ,U 〉, for all a ∈ X , we have

u1(a1) = −
∑
i 6=1

ui(bi),

v1(a1) = −
∑
i 6=1

vi(bi) = −
∑
i 6=1

[Aui(bi) +Bi],

where b ∈ X is such that (a1, b−1) ∈ F . Therefore, we obtain v1 = Au1 −∑
i 6=1Bi. Hence, the two sets of functions will be such that, for all i ∈ N ,

vi = Aui +Bi with A > 0 and
∑n

i=1Bi = 0.

C. Subjective Expected Utility representation of 〈A ,U 〉

We now show that the continuous additive representation of 〈A ,U 〉 can
be modified in such a way as to give a continuous representation of 〈A ,U 〉
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in model SEUm.

Lemma 28. Consider the continuous additive representation of 〈A ,U 〉 built
in Lemma 27. Take any two states i, j ∈ N with i 6= j. The function vi is
a positive affine transformation of the function vj, i.e., there are A,B ∈ R
with A > 0 such that vi = Avj +B.

Proof. Let us show that, for all α, β, γ, δ ∈ Γ, we have

vj(α)− vj(β) = vj(γ)− vj(δ)⇒ vi(α)− vi(β) = vi(γ)− vi(δ).

Because both vi and vj are continuous and have range R, this implies that
vi is an affine transformation of vj. Because both functions represent the
nontrivial relation %A , this affine transformation must be strictly positive.

Suppose now that vj(α) − vj(β) = vj(γ) − vj(δ). Take any k 6= i, j. We
can find λ, µ ∈ Γ and a, b ∈ X such that:

(αj, λk, a−jk) ∈ F , (βj, µk, a−jk) ∈ F ,
(γj, λk, b−jk) ∈ F .

Because vj(α)− vj(β) = vj(γ)− vj(δ), we must have (δj, µk, b−jk) ∈ F .
We can find λ′, µ′ ∈ Γ and c, d ∈ X such that

(αi, λ
′
k, c−ik) ∈ F , (βi, µ

′
k, c−ik) ∈ F ,

(γi, λ
′
k, d−ik) ∈ F .

Because (αj, λk, a−jk) ∈ F and (γj, λk, b−jk) ∈ F , Lemma 14 implies (αj, a−jk) ∼(k)

(γj, b−jk). Similarly, (βj, µk, a−jk) ∈ F and (δj, µk, b−jk) ∈ F imply (βj, a−jk) ∼(k)

(δj, b−jk). Finally (αi, λ
′
k, c−ik) ∈ F and (γi, λ

′
k, d−ik) ∈ F imply (αi, c−ik) ∼(k)

(γi, d−ik).

We have (δj, b−jk) %
(k) (βj, a−jk), (αj, a−jk) %

(k) (γj, b−jk), (γi, d−ik) %
(k)

(αi, c−ik). Using Lemma 16, we know that %(k) satisfies CCI. Hence, we

obtain (δi, d−ik) %
(k) (βi, c−ik).

Similarly, we have (βj, a−jk) %(k) (δj, b−jk), (γj, b−jk) %(k) (αj, a−jk),

(αi, c−ik) %
(k) (γi, d−ik). Using CCI, we obtain (βi, c−ik) %

(k) (δi, d−ik).
Hence, we have (βi, c−ik) ∼(k) (δi, d−ik). Since we know that (βi, µ

′
k, c−ik) ∈

F , using Lemma 11, we obtain (δi, µ
′
k, d−ik) ∈ F . Hence, we have

(αi, λ
′
k, c−ik) ∈ F , (βi, µ

′
k, c−ik) ∈ F ,

(γi, λ
′
k, d−ik) ∈ F , (δi, µ

′
k, d−ik) ∈ F ,

which implies that vi(α)− vi(β) = vi(γ)− vi(δ).

31



Proof of Theorem 1. Existence. Using Lemma 27, we know that there is a
continuous additive representation of 〈A ,U 〉. The function V =

∑n
i=1 vi on

Γ is continuous and has range R. Hence, there is α ∈ Γ such that α ∈ F .
Using the Bi in the uniqueness results of the functions vi, we can always
ensure that, for all i ∈ N , vi(α) = 0. Take any β �A α. Take any j ∈ N .
Using the A in the uniqueness result of the functions vi, we can always ensure
that, vj(β) = 1. For all i ∈ N , let vi(β) = λi > 0.

Define u = vj and, for all i ∈ N let pi = λi/
∑n

k=1 λk. With such
definitions, all terms piu are proportional to the vi, so that for all a ∈ X ,

a ∈ A ⇔
n∑
i=1

piu(ai) > 0.

Because the range of vj is R, the range of u is R. The continuity of u follows
from the continuity of vj. This completes the proof of the existence part.

Uniqueness. It is clear that multiplying u by a positive constant leads
to another continuous representation of 〈A ,U 〉 in model SEUm. The only
arbitrary choices made above were the choice of a particular j to set u = vj
and the choice of a particular β ∈ Γ with β �A α to set vj(β) = 1. Indeed,
the existence of a continuous representation in model SEUm implies that
there is an element α ∈ Γ such that α ∈ F . For this element, it is necessary
to have u(α) = 0. Since we have to rescale the functions vi in such a way
that for all i ∈ N , vi(α) = 0, all functions vi become identical up to the
multiplication by a positive constant. Now choosing k ∈ N with k 6= j to set
u = vk and γ ∈ Γ different from β and such that γ �A α to set vk(γ) = 1, will
only result in the multiplication of u by a positive constant. Finally, observe
that the choice of the pi is the only possible one to ensure that

∑n
i=1 pi = 1

and that, for all i ∈ N , piu is proportional to vi. It is clear that multiplying
each vi by a positive constant leaves all pi unchanged.

Appendix II: Assessment
The assessment of the parameters of model SEUc have been discussed at
length in the literature (see, e.g., Wakker 2010, Ch. 4). The purpose of
this appendix is to sketch how the parameters of model SEUm could be
assessed on the basis of a twofold partition 〈A ,U 〉 satisfying the conditions
of Theorem 1.
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For the assessment of model SEUm, it is crucial to find acts that belong
to the “frontier” between acceptable and unacceptable acts, i.e., to the set
F = A \A = A ∩U . Indeed6, the subjective expected utility of such acts
in model SEUm must be 0.

Although the frontier F is a derived concept, it seems feasible to build
acts belonging to F . Yet, obtaining acts in F is not as easy as obtaining
two acts that are indifferent: this is the price to pay for working with our
primitives.

To obtain an act in F , we may proceed as follows. Let a ∈ X and i ∈ N .
We know that there are α, β ∈ Γ such that (βi, a−i) ∈ A and (αi, a−i) ∈ U .
Consider now the set {γ ∈ Γ : (γi, a−i) ∈ U }. We know that it is closed,
nonempty and different from Γ. Taking the supremum, w.r.t. to %A , of the
elements of this set will lead to a unique (up to ∼A ) element in Γ. This
supremum clearly corresponds to an element in F . We suppose below that
acts in F can be assessed in such a way.

Practically, we start from an act (γi, a−i) that belongs to U and we
progressively increase γ (w.r.t. %A ) up to the point such that the act becomes
equivalent to the status quo, in the sense that any further increase in γ will
lead to an act in A , i.e., strictly better than the status quo.

Alternatively, if the ordered partition 〈A ,U 〉 has been obtained w.r.t. to
a clearly defined reference act r ∈ X , one may simply try to obtain acts that
are judged “equivalent” to the reference point r. Although our primitives do
not involve any notion of equivalence, we may interpret it here as saying that
an act a ∈ X is “equivalent” to r if improving a by any amount and on any
state will result in an act in A , i.e., an act strictly better than r.

D. Assessing the utility function

In order to assess u, let us show how we can find points in Γ that are
equally spaced in terms of u. Using standard arguments, this will lead to an
assessment procedure for u.

6In terms of assessment, it would have therefore been easier to work with a threefold
ordered partition, as done in Bouyssou and Marchant (2009, 2010), with the understand-
ing that the intermediate category plays the rôle of the frontier between acceptable and
unacceptable acts. Including this frontier in the primitives however leads to more complex
result than the one presented here.
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Take any ρ, τ ∈ Γ. Using Theorem 1, it is clear that (αi, ρj, a−ij) ∈ F
and (βi, τj, a−ij) ∈ F imply that pi(u(α) − u(β)) = pj(u(τ) − u(ρ)). Under
the conditions of Theorem 1, such a ∈ X and α, β ∈ Γ can always be found.

Let us now find b ∈ X and γ ∈ Γ such that (βi, ρj, b−ij) ∈ F and
(γi, τj, b−ij) ∈ F . This will imply that pi(u(β) − u(γ)) = pj(u(τ) − u(ρ)).
Under the conditions of Theorem 1, such b ∈ X and γ ∈ Γ can always be
found.

We have therefore assessed three elements in α, β, γ ∈ Γ that are such that
u(α)−u(β) = u(β)−u(γ). This is the beginning of a standard sequence. This
standard sequence may be extended and refined using classical techniques.

The proper scaling of u can be ensured noticing that there is δ ∈ Γ such
that δ ∈ F , which implies u(δ) = 0. We finally take any element λ ∈ Γ such
that λ �A δ and we set u(λ) = 1.

E. Assessing the subjective probabilities

We now suppose that u has been assessed and scaled in such a way that
u(δ) = 0 and u(λ) = 1.

Take i, j ∈ N with i 6= j. We can find α, β ∈ Γ such that (λi, αj, δ−ij) ∈ F
and (βi, λj, δ−ij) ∈ F .

Combining these two relations easily implies that: pi(1− u(β)) = pj(1−
u(α)). Moreover, observe that model SEUm implies that u(β) < 0 and
u(α) < 0, so that 1− u(β) > 0 and 1− u(α) > 0. Since we have assessed u,
this gives a linear equation linking pi and pj, with pj being a positive multiple
of pi.

We can use a similar technique to obtain a linear equation linking pi
to any pk, with k 6= i. This gives n − 1 linear equations that are clearly
independent. Adding the constraint that

∑n
i=1 pi = 1 will lead to determine

a unique value for the n numbers p1, p2, . . . , pn.
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Köbberling, V., Wakker, P. P., 2004. A simple tool for qualitatively testing, quanti-
tatively measuring, and normatively justifying Savage’s subjective expected util-
ity. Journal of Risk and Uncertainty 28 (2), 135–145.

Krantz, D. H., Luce, R. D., Suppes, P., Tversky, A., 1971. Foundations of mea-
surement. Vol. 1: Additive and polynomial representations. Academic Press, New

35



York.
Munkres, J. R., 1975. Topology. A first course. Prenctice-Hall, Englewood Cliffs,
New Jersey.

Nakamura, Y., 1990. Subjective expected utility with non-additive probabilities
on finite state spaces. Journal of Economic Theory 51 (2), 346–366.

Nakamura, Y., 2004. Trichotomic preferences for gambles. Journal of Mathematical
Psychology 48 (6), 385–398.

Sarin, R. K., Wakker, P. P., 1997. A single-stage approach to Anscombe and
Aumann’s expected utility. Review of Economic Studies 64 (3), 399–409.

Savage, L. J., 1954. The foundations of statistics. Wiley, New York.
Scott, D., 1964. Measurement structures and linear inequalities. Journal of Math-
ematical Psychology 1 (2), 233–247.

Shapiro, L., 1979. Necessary and sufficient conditions for expected utility maxi-
mization: The finite case. Annals of Statistics 7 (6), 1288–1302.
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