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Abstract: This  p a p e r  dea l s  wi th  the  p r o b l e m  of  rank ing  several  a l t e rna t ives  on the basis  of  a va lued  
p r e f e r ence  re la t ion .  A system of  t h r ee  i n d e p e n d e n t  axioms is shown to cha rac te r i ze  a rank ing  m e t h o d  
b a s e d  on ' n e t  flows'  which conta ins  as pa r t i cu l a r  cases  the  rules  of  C o p e l a n d  and B o r d a  and is used  in 
one  of  the  PROMETHEE m e t h o d s  
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I. Introduction 

Suppose  tha t  you want  to c o m p a r e  a n u m b e r  
of  a l t e rna t ives  tak ing  into account  d i f fe ren t  po in ts  
of  view, e.g. several  c r i t e r ia  or  the  op in ion  of  
severa l  voters .  A c o m m o n  prac t ice  in such s i tua-  
t ions is to associa te  wi th  each  o r d e r e d  pa i r  (a ,  b)  
of  a l t e rna t ives  a n u m b e r  ind ica t ing  the  s t reng th  
o r  the  c red ib i l i ty  of  the  p ropos i t i on  ' a  is at  leas t  
as good  as b ' ,  e.g. the  sum of  the  weights  of  the  
cr i te r ia  favour ing  a or  the  p e r c e n t a g e  of  voters  
dec la r ing  tha t  a is p r e f e r r e d  or  ind i f fe ren t  to b. 
Since Condorce t ,  we know that ,  when  the  differ-  
en t  po in ts  of  view t aken  into account  a re  confl ict-  
ual ,  it may  not  be  easy to c o m p a r e  the  a l t e rna -  
tives on the  basis  of  these  numbers .  In  this  p a p e r  
we s tudy a pa r t i cu l a r  m e t h o d  al lowing to bu i ld  a 
ranking ,  i.e. a c o m p l e t e  and  t rans i t ive  b inary  
(crisp)  re la t ion  1, on a set  of  a l t e rna t ives  given 
such in format ion .  In  a s imi lar  context ,  Bouyssou 
and Perny  (1990) envisage m o r e  gene ra l  m e t h o d s  
bu i ld ing  par t i a l  rankings ,  i.e. reflexive and  t rans i -  
tive b inary  re la t ions .  

Le t  A be a f ini te  set  of  objects  ca l led  ' a l t e rna -  
t ives '  wi th  at  leas t  two e lenients .  W e  def ine  a 
va lued  (binary)  re la t ion  on A as a funct ion  R 
associa t ing  with each  o r d e r e d  pa i r  of  a l t e rna t ives  
(a ,  b)  ~ A  2 with a 4: b an e l e m e n t  of  [0, 1]. F r o m  
a technica l  po in t  o f  view, the  condi t ion  a 4: b 
could  be  omi t t ed  f rom this def in i t ion  at  the  cost  
of  a minor  modi f i ca t ion  of  ou r  th i rd  axiom. How-  
ever,  s ince it is c lear  tha t  the  va lues  R(a, a) are  
immate r i a l  in o r d e r  to r ank  the  a l ternat ives ,  we 
will use this def in i t ion  t h roughou t  the  paper .  A 
ranking  m e t h o d  ~ is a funct ion assigning a rank-  
ing ~, ( R )  on A to any va lued  re la t ion  R on A.  

A n  obvious way to ob ta in  a rank ing  m e t h o d  is 
to associa te  a score S(a, R) with each  a l te rna t ive  

i A (crisp) binary relation S on a set A is complete if for all 
a, b ~ A either a S b or b S a. It is transitive if for all a, b, 
c ~ A, a S b and b S c imply a S c. It is connected if for all 
a, b~  A with a ~ b, either a S b or b S a. It is asymmetric 
if for all a, b ~ A, a S b implies Not b S a. It is reflexive if 
a S a for all a ~ A .  
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a ~ A  and to rank the alternatives according to 
their scores, i.e. 

a ~ (R)b  iff S(a, R) > S(b, R).  (1) 

The purpose of this paper  is to present an ax- 
iomatic characterization of the ranking method 
based on the following score: 

SNF(a, R) = Y'~ (R(a ,  c) - R ( c ,  a)). (2) 
c~A\{a} 

We will refer to the ranking method defined by 
(1) and (2) as the Net Flow Method. 

When R is crisp, i.e. when R(a, b) can only 
take the value 0 or 1, this ranking method amounts 
to the well-known Copeland ranking method (see 
Goodman,  1954; or Fishburn, 1973). It has been 
characterized by Rubinstein (1980) when R is a 
tournament  (i.e. a connected and asymmetric crisp 
binary relation). This result has been extended by 
Henriet  (1985) to the case of crisp and connected 
relations. 

When R(a, b) is interpreted as a percentage 
of voters considering that a is preferred or indif- 
ferent to b, this ranking method is the well-known 
method of Borda (see Fishburn, 1973). It has 
been characterized by several authors (Young, 
1974; Hansson and Sahlquist, 1976; Nitzan and 
Rubinstein, 1981) in contexts involving a 'variable 
electorate' .  

The Net  Flow Method is also used in the 
Multiple Criteria Decision Making method 
PROME'rlaEE n (Brans and Vincke, 1985). 

Our  results can be viewed as an extension of 
the work of Rubinstein and Henriet  to the case of 
valued relations or as an alternative partial char- 
acterization of the Borda rule. 

When crossing the line between crisp and val- 
ued relations, it is necessary to take a position on 
the nature and the significance of the valuations 
R(a, b). Contrary to methods using only the Min 
a n d / o r  Max operators, it should be strongly em- 
phasized that the Net Flow Method makes use of 
the 'cardinal '  properties of the valuations. In fact, 
it is obvious from (1) and (2) that we may well 
have ~ (R) 4: ~ (R4,), where R,~ is defined by 
Re~(a, b) = cb(R(a, b)) for all a, b ~ A  and ~b is a 
strictly increasing transformation on the real line 
such that ~b(0) = 0 and ~b(1) = 1. Thus this method 
does not seem to be appropriate  when the com- 
parisons of the valuations only have an ordinal 
meaning in term of credibility. 

2. The main result 

Throughout  the paper,  we note ~ (R)  and 
>-(R) the symmetric and asymmetric parts of 

(R), i.e. for all a, b ~A ,  [a ~ (R)b i f f (a  ~ (R)b 
and b ~ (R)a)] and [a >- (R)b iff (a ~ (R)b and 
not b ~ (R)a)]. 

A ranking method is said to be neutral if and 
only if, for all permutat ion o- on A, for all valued 
relation R on A and all a, b ~ A ,  

a ~ (R)b  ~ o'(a) ~ (R'~)o'(b) 

where R ~ is defined by R'~(o'(a), o'(b)) = R(a, b) 
for all a, b ~ A. 

Neutrality expresses the fact that a ranking 
method does not discriminate between alterna- 
tives just because of their labels. It is a classical 
property in this context (see, e.g., Rubinstein, 
1980; or Henriet,  1985). The Net Flow Method is 
obviously neutral. It is easily checked that neu- 
trality implies that if R(a, b)= R(b, a) and for 
all c ~ A \ { a ,  b}, R(a, c) =R(b, c) and R(c, a) 
= R(c, b), then a = (R)b. 

A ranking method is said to be strongly mono- 
tonic if the ranking responds ' in the right direc- 
tion' to a modification of R. More formally, ~ is 
strongly monotonic if and only if for all a, b ~ A 
and for all valued relation R on A, 

a ~ ( R ) b ~ a > - ( R ' ) b  

where R '  is identical to R except that [R(a, c) < 
R'(a, c) or R(c, a)>R'(c,  a) for some c ~ A \  
{a}]. 

Suppose that R" is identical to R except that 
R(b, d ) >  R"(b, d) or R(d, b)<R"(d ,  b) for 
some d e A \ { b } .  It is easy to prove that strong 
monotonicity implies that [a ~ (R)b ~ a >.- 
(R")b].  As defined here, strong monotonicity is a 
very strong property excluding, in particular, the 
use of any threshold in the t reatment  of the 
valuations. However, it is obvious that the Net 
Flow Method is strongly monotonic. 

An important characteristic of a ranking 
method lies in the way it deals with 'intransitivi- 
ties' of R. In order to formalize this point, let us 
recall some well-known definitions used in Graph  
Theory. 

A digraph consists in a set of nodes X and a 
set of arcs U _ X  2. We say that x is the initial 
extremity and y is the final extremity of the arc 
u = ( x ,  y) E U .  
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A circuit (a cycle) of length q in a digraph is 
an ordered collection of arcs (ul,  u 2 . . . . .  Uq) such 
that for i = 1, 2 . . . . .  q, the initial extremity of u, 
is the final extremity of u i_ 1 and the final extrem- 
ity of u, is the initial extremity of u,+ 1 (u, ~ u,_ 1, 
one of the extremities of u, is an extremity of 
u,_ 1 and the other an extremity of u,+l),  where 
u 0 is interpreted as uq and Uq+~ as u v A circuit 
(a cycle) is e lementary if and only if each node 
being the extremity of one arc in the circuit (the 
cycle) is the extremity of exactly two arcs in the 
circuit (the cycle). 

Let us consider a digraph which set of nodes is 
A and which set of arc U is {(a, b): a, b c A  and 
a ~: b}. It is obvious that there is a one-to-one 
correspondence between valued relations on A 
and valuations between 0 and 1 of the arcs of this 
graph. In the sequel, we identify a valued relation 
with its associated valued digraph in which the 
valuation vn(u) of the arc u = (a, b) is R(a, b). 

A transformation on an elementary circuit 
consists in adding a same positive or negative 
quantity to the valuations of the arcs in the cir- 
cuit. A transformation is admissible if the trans- 
formed valuations are still between 0 and 1. When 
we apply an admissible transformation to the 
graph associated with a valued a valued relation 
R, we obtain another  valued relation R '  and we 
say that R '  has been obtained from R through an 
admissible transformation on an elementary cir- 
cuit. 

A ranking method is independent  of circuits if 
and only if for all valued relation R and R' ,  [R '  
can be obtained from R through an admissible 
transformation on an elementary circuit of length 
2 or 3] ~ ~ (R)  = ~ (R ' ) .  

It is obvious that an admissible transformation 
on an elementray circuit does not alter the score 
of any of the alternatives, when the scores are 
defined by (2), so that the Net Flow Method is 
independent  of circuits. 

This axiom has a straightforward interpreta- 
tion. Independence of 2-circuits, i.e. of circuits of 
length 2, implies that the ranking is only influ- 
enced by the differences R(a, b) - R(b, a). Inde- 
pendence of 3-circuits implies that intransitivities 
of the kind R(a, b) > O, R(b, c) > 0 and R(c, a) 
> 0 can be 'wiped out '  subtracting Min(R(a,  b); 

R(b, c); R(c, a)) from the 3-circuit ((a, b); (b, c); 
(c, a)). Contrary to neutrality and monotonicity, 
this axiom makes explicit use of the cardinal 

propert ies of the valuations. It is obvious that 
adding to this axiom a condition on 1-circuits 
would allow to consider valued relations for which 
R(a, a) is defined. 

We are now in position to state our main 
result. 

Theorem. The Net Flow Method is the only ranking 
method that is neutral, strongly monotonic and 
independent of circuits. 

We already noticed that the Net Flow Method 
is neutral, strongly monotonic and independent  
of circuits. The proof  that it is the only one 
appears  in the next section. Let us first notice 
that the three axioms characterizing the Net Flow 
Method are independent  as shown by the follow- 
ing examples: 

(i) Let ~ b : A ~ { 1 , 2 , . . . , I A I }  be a one-to- 
one function. Define ~ as 

a ~ ( R ) b  iff Sl(a, R)>_SI(b,  R) 

where for all c c A ,  Sl(C , R) = SNF(C, R) × q)(C). 
This ranking method is strongly monotonic and 
independent  of circuits but not neutral. 

(ii) Define ~ as 

a ~ ( R ) b  iff S2(a,  R)S2(b,  R) 

where for all c c A ,  $2(c , R) = --SNF(C, R). This 
ranking method is neutral and independent of 
circuits but not strongly monotonic. 

(iii) Define ~ as 

a ~ ( R ) b  iff S3(a , R)  >_ S3(b , R) 

where for all c ~ A, 

S 3 ( c , R ) =  E R ( c , d )  2 -  E R ( d , c )  2. 
d~A\{c} d~A\{c} 

This ranking method is neutral and strongly 
monotonic but not independent  of circuits. 

3. Proofs 

Before proving the main theorem we shall go 
through a number  of lemmas. Some of them are 
interesting on their own given the proximity of 
this problem with some aspects of the theory of 
flows on networks (see Ford and Fulkerson 
(1962)). 

Lemma 1. For all valued relations R and R' on A, 
if [ R' can be obtained from R through an admissi- 
ble transformation on an elementary circuit], then 
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[ R'  can be obtained from R through a finite num- 
ber of  admissible transformations on elementary 
circuits of  length 2 or 3]. 

Proof. The  proof  is by induction on the length q 
of  the e lementary circuit. I f  q = 2 or  3, then the 
lemma is proved. Suppose now that the lemma is 
t rue for all q _< k with k >_ 3 and let us show that 
it is t rue for q = k + 1. Consider  an e lementary  
circuit of  length k + 1, u 1 = ( a m ,  a2)  , U2=  

(a 2, a 3) . . . . .  u k = ( a  k, a k + l ) ,  Uk+l = (ak+l ,  ax), 
and suppose that  R '  has been  obta ined from R 
adding 6 on the arcs of  that  circuit. I f  8 = 0, 
there  is nothing to prove. Suppose that  8 > 0 (the 
proof  is similar for 6 < 0). We define r = ( a l ,  a k) 
and s = (ak,  am). If  v r ( r ) <  1 - 8  and VR(S)< 1 
-- 8, then we have two circuits (Ul, u2 , . . .  ,u k_ 2, s) 
and (u k, uk+ 1, r)  of  respective length k and 3 on 
which adding ~ is an admissible t ransformation.  
Now, subtracting 8 from the 2-circuit (r, s) is an 
admissible t ransformat ion which leads to R ' .  I f  
vr(r)  > 1 - 6 and vr(s) < 1 - 8 (the case  VR(r) <_ 
1 - 8 and VR(S) > 1 -- 8 is symmetric), then adding 
8 on (Ul, u 2 . . . .  ,uk_ m, s) is an admissible trans- 
formation.  Since now the valuations of  s and r 
are strictly positive, we can find a sufficiently 
large integer n so that  subtracting B/n  f rom the 
2-circuit (r ,  s) is an admissible t ransformation.  
Adding  8 / n  on (u k, ug+ 1, r)  is now an admissi- 
ble t ransformation.  Repea t ing  n times these op- 

erations leads to R '  (see Figure 1). I f  vr(r)  > 1 - 
8 and vr ( s )>  1 - 8 ,  both  of  VR(S) and v r ( r )  are 
strictly positive and we can find a sufficiently 
large integer n so that  subtracting 8 / n  f rom the 
2-circuit (r,  s) is an admissible t ransformation.  
A d d i n g  ~ / n  on  (Uk, Uk+l, r) and  on  
(u 1, u 2 . . . .  ,Uk_ l, S) are now admissible transfor-  
mations. Repea t ing  this n times leads to R ' .  

This completes  the p roof  of  lemma 1, because 
since A is finite, the maximum length of  an 
e lementary  circuit is finite as well. [] 

Consider  an e lementary cycle in the graph 
associated with a valued relation. An  arc u, in a 
cycle is forward if its common  extremity with u,_ m 
is its initial extremity and backward otherwise. A 
t ransformat ion on a e lementary cycle consists in 
adding a positive or  negative quanti ty to the 
valuation of  the forward arcs in the cycle and 
subtracting it f rom the valuation of  the backward 
arcs. A t ransformat ion on a cycle is admissible if 
all the t ransformed valuations are still be tween 0 
and 1. It is obvious that  an admissible transfor-  
mat ion on an e lementary  cycle does not  alter the 
score of  any of  the alternatives when the scores 
are defined by (2). 

Lemma 2. For all valued relations R and R'  on A ,  
if [ R '  can be obtained from R through an admissi- 
ble transformation on an elementary cycle] then 

• t j  
• J 

l n times 

Figure 1. Transformation on a 4-circuit via a number of transformations on 2 or 3-circuits. When R(b, d) _< 1 - 8 and R(d, b) > 1 - 8, 
a transformation of 8 on the 4-circuit [(a, b), (b, c), (c, d), (d, a)] is obtained after adding 8 on the 3-circuit [(a, b), (b, d), (d, a)] 
and performing n times a transformtion of - 8 / n  on the 2-circuit [(b, d), (d, b)] and a transformation of 8/n on the 3-circuit 

[(b, c), (c, d), (d, b)] 
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[ R' can be obtained from R through a finite num- 
ber of  admissible transformations on elementary 
circuits ]. 

Proof. Consider an elementary cycle in the graph 
associated with R and suppose that R'  has been 
obtained from R by adding 6 to the forward arcs 
of the cycle and subtracting 8 from the backward 
arcs. We respectively note U F and U s the set of 
forward and backward arcs in the cycle. If ~5 = 0, 
there is nothing to prove. Suppose that 6 > 0 (the 
proof is similar for 8 < 0). Define 

OLma x = Max UR(b , a). 
( a , b )  ~ U B 

If ama x < 1 -- 8, then adding 8 on the elementary 
circuit obtained by considering the arcs in U F and 
the set {(b, a) c U: (a, b) c UB} , is an admissible 
transformation. Now, subtracting ~ from all the 
2-circuits of the type ((a, b), (b, a)) with (a, b) c 
U B are admissible transformations which lead to 
R'. If ama x > 1 --8,  define 

Up = {(a, b) c UB: ug(b , a) > 1 -- 6}. 

For all (a, b ) c  Up, we have VR(a , b)>_8 and 
ug(b, a ) >  0. Since 8 > 0, we can find a suffi- 
ciently large integer n such that subtracting 8 /n  
from all the 2-circuits ((a, b), (b, a)) with (a, b) 
c Up are admissible transformations. Then 
adding 8 /n  to the circuit obtained by considering 
the arcs in U F and the arcs (b, a), if (a, b) is in 
U B, is an admissible transformation. It is easily 

t 
Q ~  

Rt 
Q 

© 

seen that it is possible to repeat these operations 
n times. We thus obtain R'  after subtracting 
from the 2-circuits ((a, b), (b, a)) with (a, b) c 
UB\  Up, all these transformations being admissi- 
ble by construction (see Figure 2). 

This completes the proof of Lemma 2, because 
since A is finite, the maximum length of an 
elementary cycle, is finite as well. [] 

Lemma 3. For all ualued relations R and R' on A, 
[SNF(C, R) = SNF(C, R') for all c c A] ,~, [R' can 
be obtained from R through a finite number of  
admissible transformations on elementary cycles]. 

Proof. The = part is obvious. In order to prove 
the ~ part, suppose that for some R and R'  and 
for all c c A  we have SNF(C, R)= SNF(C, R'). If 
R = R '  the lemma is proved. If R4:R' ,  then 
R(a, b) 4: R'(a, b) for some a, b c A  with a ~ b 
and we suppose further for definiteness that 
R(a, b)> R'(a, b), since the other case is sym- 
metric. We claim that either R(c, a) > R'(c, a) or 
R(a, d ) < R ' ( a ,  d) for some c, d c A \ { a } ;  
since JR(c, a ) < R ' ( c ,  a), R(a, d )>  R'(a, d) 
for all c, d c A \ { a ,  b}, R(a, b ) > R ' ( a ,  b) 
and R(b, a) < R'(b,  a)] would contradict  
SNF(a, R )=  SNF(a, R'). In either case, we can 
repeat the same argument and therefore, since 
the number of alternatives is finite, this process 
will lead to an elementary cycle in the graph 
associated with R. Let A be the minimum over 
the arcs (e, f )  in the cycle of mR(e, f ) -  

® G 

~2 

l n times 
r -  

® ® 

t +~5/n ~5/n 1 
Q +~/n Q 

J • • 

Figure 2. Transformation on a cycle via a number  of transformations on circuits. When R(b, c) > 1 + 6, a transformation of 6 on 
the cycle [(a, b), (c, b), (c, d), (d, a)] is obtained by performing n times a transformation of - 6 /n  on the 2-circuit [(b, c), (c, b)] 

and a transformation of 6 /n  on the 4-circuit [a, b), (b, c), (c, d), (d, a)] 
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R'(e, f ) l .  It is easily checked that adding a to 
the arcs in the cycle such that R(x, y) < R ' ( x ,  y) 
and subtracting it from the arcs in the cycle such 
that R(x, y) > R'(x, y) is an admissible transfor- 
mation on the cycle. We thus obtain a valued 
relation R 1. If R l = R '  the lemma is proved. If 
not, we can repeat the same argument starting 
with R 1 instead of R. Because A is finite, there 
is only a finite number of arcs such that R(x, y) 
--g R'(x, y). Since, at each step the number of 
arcs on which the current relation and R'  are 
different, is decreased by at least one unit, this 
process will thus terminate after a finite number 
of steps, which completes the proof of Lemma 3. 
[] 

Proof  of the Theorem. All we have to prove is 
that if ~ is neutral, strongly monotonic and 
independent of circuits, then 

[a ~ (n)b ~ SNF(a, R)  > SNF(b, R) ] ,  

i.e. 

SNF (a ,  R) = SNF (b,  R) ~ a --- ( n )  b and (3) 

SNF (a ,  R) > SNF (b,  R) = a ~- ( R )  b. (4) 

First, suppose that SNF(a, R)=  SNF(b , R) for 
some a, b o A .  We have either a ~ ( R )  b or 
b ~ (R) a. If a ~ (R) b, define 0 as the permuta- 
tion on A transposing a and b. We have 
SNF(C , R)=SNF(C , R O) for all c c A .  Given 
Lemma 3, we know that R ° can be obtained from 
R through a finite number of admissible transfor- 
mations on elementary cycles. Combining Lem- 
mas 1 and 2 we conclude that R ° can be obtained 
from R through a finite number of admissible 
transformations on elementary circuits of length 2 
or 3. Thus, using independence of circuits we 
obtain ~ (R) = ~ (R °) so that a ~ (R °) b. Thus, 
neutrality implies that b ~ (R) a, which estab- 
lishes (3). 

Suppose now that SNF(a, R)>  SNF(b , R) for 
some a, b c A  and let 6 = SNF(a, R) - SNF(b, R). 
We define the following sets of alternatives: 

Z 1 

A2 

A3 

A4 

We denote by B, 
{a, b}. 

= { c c A \ ( a ,  b}: n(a, c) >O}, 

= (d c A \ { a ,  b}: n(b, d) <1} ,  

= { e c A \ { a ,  b}: R(e, a) <1} ,  

= { f c A \ { a ,  b}: R(f ,  b) > 0}. 

the complement of A, in A \  

If 

<- E n(a, c) + E (a -n(b ,  d)) 
c ~ A  I d ~ A  2 

+ • ( 1 - R ( e , a ) )  + E R ( f , b ) ,  (5) 
e ~ A ~  f ~ A  4 

it is easy to see that it is possible to obtain a 
valued relation _R identical to R except on the 
ordered pairs of alternatives (a, c) with c c A  1, 
(e, a) with e cA3 ,  (b, d) with d c A  2 and ( f ,  b) 
with f cA4 ,  such that SNF(a, _R)=SNF(b, _/3). 
Thus (3) implies a = (_/3) b and repeated applica- 
tions of strong monotonicity lead to a ~- (R) b. 

Let us show that (5) holds. We have 

SNF(a, R) = Y'~ (R(a, c) -R(c ,  a)) 
c ~ A \ { a }  

= E R(a,  c) - ~, R(e,  a) - In  3 I 
c ~ A  1 e ~ A  3 

+R(a, b) -R (b ,  a), 

SNF(b, R) = Y'~ (n(b,  c) -R(c ,  b)) 
c ~ A \ { b }  

= E R(b, d) + [B21 
d E A  2 

- ~ R ( f ,  b) + R ( b ,  a) 
f ~ A 4  

- n ( a ,  b). 

Thus 

= 2 ( R ( a ,  b) - n ( b ,  a)) - I B 2 [ -  I B 3 I 

+ E R ( a , c ) -  E R(e,a) 
c E A  1 e E A  3 

- E R ( b , d ) +  ~_~ R ( f , b ) .  
d E A  2 l E A  4 

Noticing that I A, [ + I B, I = [ A I - 2, it is easy to 
see that (5) holds as soon as I A I > 3. If not, then 
A = {a, b}, and define R as =R(a, b ) =  =R(b, a ) =  
R(b, a). Thus a = (R) b by (3) and strong mono- 
tonicity leads to a >-(R) b which completes the 
proof of the Theorem. [] 

Let us finally notice that a similar method of 
proof can be used to characterize other ranking 
methods based on scores. For instance, a charac- 
terization of the 'leaving flow' method defined by 

a ~ ( R ) b  iff • R(a ,c )>  Y~. R(b,c)  
c ~ A \ { a }  c ~ A \ { b }  
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is at hand keeping neutrality unchanged and 
modifying monotonicity and independence of cir- 
cuit in an obvious way. A similar remark holds for 
the method based on (the opposite) of 'entering 
flows'. Other extensions of this method of proof 
may be found in Bouyssou and Perny (1990). 
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