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Abstract

Traditional models of conjoint measurement look for an additive representa-
tion of transitive preferences. They have been generalized in two directions.
Nontransitive additive conjoint measurement models allow for nontransitive
preferences while retaining the additivity feature of traditional models. De-
composable conjoint measurement models are transitive but replace additiv-
ity by a mere decomposability requirement. This paper presents general-
izations of conjoint measurement models combining these two aspects. This
allows us to propose a simple axiomatic treatment that shows the pure conse-
quences of several cancellation conditions used in traditional models. These
nontransitve decomposable conjoint measurement models encompass a large
number of aggregation rules that have been introduced in the literature.

Keywords: Conjoint measurement, Cancellations conditions, Nontransitive
preferences, Decomposable models.

Suggested running title: Nontransitive Decomposable Conjoint Measurement



1 Introduction

Given a binary relation % on a set X = X1 ×X2 × · · · ×Xn, the theory of
conjoint measurement consists in finding conditions under which it is possible
to build a homomorphism between this relational structure and a relational
structure on R. In traditional models of conjoint measurement % is supposed
to be complete and transitive and the numerical representation is sought to
be additive; the desired measurement model is such that:

x % y ⇔
n∑

i=1

ui(xi) ≥
n∑

i=1

ui(yi) (1)

where ui are real-valued functions on the sets Xi and it is understood that
x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn).

Many axiom systems have been proposed in order to obtain such a rep-
resentation (Krantz, Luce, Suppes, & Tversky, 1971; Wakker, 1989). Two
main cases arise:

• When X is finite (but of arbitrary cardinality), it is well-known that the
system of axioms necessarily involves a denumerable number of cancel-
lation conditions guaranteeing the existence of solutions to a system of
(finitely many) linear inequalities through the use of various versions of
the theorem of the alternative (see Scott (1964) or Krantz et al. (1971,
Chapter 9). For recent contributions, see Fishburn (1996, 1997)).

• When X is infinite the picture changes provided that conditions are
imposed in order to guarantee that the structure of X is “close” to the
structure of R and that % behaves consistently in this continuum; this
is traditionally done using either an archimedean axiom together with
some solvability assumption (Krantz et al., 1971, Chapter 6) or impos-
ing some topological structure on X and a continuity requirement on
% (Debreu, 1960; Wakker, 1989). Under these conditions, it is well-
known that model (1) obtains using a finite—and limited—number of
cancellation conditions (for recent contributions, see Gonzales (1996,
2000) and Karni and Safra (1998); for an alternative approach, extend-
ing the technique used in the finite case to the infinite one, see Jaffray
(1974)). As opposed to the finite case, these structural assumptions
allow us to obtain nice uniqueness results for model (1): the functions
ui define interval scales with a common unit.
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In the finite case the axiom system is hardly interpretable and testable. In
the infinite case, it is not always easy to separate the respective roles of the
(unnecessary) structural assumptions from the (necessary) cancellation con-
ditions as forcefully argued by Krantz et al. (1971, Chapter 9) and Furkhen
and Richter (1991). One possible way out of this difficulty is to study more
general models replacing additivity by a mere decomposability requirement.
Krantz et al. (1971, Chapter 7) introduced the following decomposable model:

x % y ⇔ F (u1(x1), u2(x2), . . . , un(xn)) ≥ F (u1(y1), u2(y2), . . . , un(yn)) (2)

where F is increasing in all its arguments.
When X is denumerable (i.e. finite or countably infinite), necessary and

sufficient conditions for (2) consist in a transitivity and completeness require-
ment together with a single cancellation condition requiring that the prefer-
ence between objects differing on a single attribute is independent from their
common level on the remaining n − 1 attributes. In the general case these
conditions turn out to have identical implication when supplemented with
the obviously necessary requirement that a numerical representation exists
for %. Though (2) may appear as exceedingly general when compared to (1),
it allows us to deal with the finite and the infinite case in a unified way using
a simple axiom system while imposing nontrivial restrictions on %. The price
to pay is that uniqueness results for model (2) are much less powerful than
what they are for model (1), see Krantz et al. (1971, Chapter 7). It should
be finally observed that proofs for model (2) are considerably simpler than
they are for model (1). A wide variety of models “in between” (1) and (2)
are studied in Luce, Krantz, Suppes, and Tversky (1990).

Both (1) and (2) imply that % is complete and transitive. Among many
others, May (1954) and Tversky (1969) (see however the interpretation of
Tversky’s results in Iverson and Falmagne (1985)) have argued that the tran-
sitivity hypothesis is unlikely to hold when subjects are asked to compare
objects evaluated on several attributes; more recently, Fishburn (1991a) has
forcefully shown the need for models encompassing intransitivities (it should
be noted that intransitive preferences have even attracted the attention of
some economists, see e.g. Chipman (1971) or Kim and Richter (1986)). Tver-
sky (1969) was one of the first to propose such a model generalizing (1),
known as the additive difference model, in which:

x % y ⇔
n∑

i=1

Φi(ui(xi)− ui(yi)) ≥ 0 (3)
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where Φi are increasing and odd functions.
It is clear that (3) allows for intransitive % but implies its completeness.

When attention is restricted to the comparison of objects that only differ on
one attribute, (3), as well as (2) and (1), implies that the preference between
these objects is independent from their common level on the remaining n−1
attributes. This allows us to unambiguously define a preference relation on
each attribute; it is clearly complete. Although model (3) can accommo-
date intransitive %, a consequence of the increasingness of the Φi is that the
preference relations defined on each attribute are transitive. This, in partic-
ular, excludes the possibility of any perception threshold on each attribute
which would lead to an intransitive indifference relation on each attribute
(on preference models with thresholds, allowing for intransitive indifference
relations, we refer to Fishburn (1985), Pirlot and Vincke (1997), or Suppes,
Krantz, Luce, and Tversky (1989)). Imposing that Φi are nondecreasing in-
stead of being increasing allows for such a possibility. This gives rise to what
Bouyssou (1986) called the “weak additive difference model”.

As suggested by Bouyssou (1986), Fishburn (1990b, 1990a, 1991b) and
Vind (1991), the subtractivity requirement in (3) can be relaxed. This leads
to nontransitive additive conjoint measurement models in which:

x % y ⇔
n∑

i=1

pi(xi, yi) ≥ 0 (4)

where the pi are real-valued functions on X2
i and may have several additional

properties (e.g. pi(xi, xi) = 0, for all i ∈ {1, 2, . . . , n} and all xi ∈ Xi).
This model is an obvious generalization of the (weak) additive difference

model. It allows for intransitive and incomplete preference relations % as
well as for intransitive and incomplete “partial preferences”. An interesting
specialization of (4) obtains when pi are required to be skew symmetric i.e.
such that pi(xi, yi) = −pi(yi, xi). This skew symmetric nontransitive additive
conjoint measurement model implies the completeness of % and that the
preference between objects only differing on some attributes is independent
from their common level on the remaining attributes.

Fishburn (1991a) gives an excellent overview of these nontransitive mod-
els. Several axiom systems have been proposed to characterize them. Fish-
burn (1990b, 1991b) gives axioms for the skew symmetric version of (4) both
in the finite and the infinite case. Necessary and sufficient conditions for a
nonstandard version of (4) are presented in Fishburn (1992b). Vind (1991)
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gives axioms for (4) with pi(xi, xi) = 0 when n ≥ 4. Bouyssou (1986) gives
necessary and sufficient conditions for (4) with and without skew symmetry
in the denumerable case when n = 2.

The additive difference model (3) was axiomatized in Fishburn (1992a)
in the infinite case when n ≥ 3 and Bouyssou (1986) gives necessary and
sufficient conditions for the weak additive difference model in the finite case
when n = 2. Related studies of nontransitive models include Croon (1984),
Fishburn (1980), Luce (1978) and Nakamura (1997). The implications of
these models for decision-making under uncertainty were explored in Fish-
burn (1990c) (for a different path to nontransitive models for decision making
under risk and/or uncertainty see Fishburn (1982, 1988)).

It should be noticed that even the weakest form of these models, i.e.
(4) without skew symmetry, involves an addition operation. Therefore it is
unsurprising that the difficulties that we mentioned concerning the axiomatic
analysis of traditional models are still present here. Except in the special
case in which n = 2, this case relating more to ordinal than to conjoint
measurement, the various axiom systems that have been proposed involve
either:

• a denumerable set of cancellation conditions in the finite case or

• a finite number of cancellation conditions together with unnecessary
structural assumptions in the general case (these structural assump-
tions generally allow us to obtain nice uniqueness results for (4): the
functions pi are unique up to the multiplication by a common positive
constant).

The nontransitive decomposable models that we study in this paper may be
seen both as a generalization of (2) dropping transitivity and completeness
and as a generalization of (4) dropping additivity. In their most general form
they are of the type:

x % y ⇔ F (p1(x1, y1), p2(x2, y2), . . . , pn(xn, yn)) ≥ 0 (5)

where F and pi may have several additional properties, e.g. pi(xi, xi) = 0 or
F nondecreasing or increasing in all its arguments.

This type of nontransitive decomposable conjoint models has been in-
troduced by Goldstein (1991). They may be seen as exceedingly general.
However we shall see that this model and its extensions:
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• imply substantive requirements on %,

• may be axiomatized in a simple way avoiding the use of a denumerable
number of conditions in the finite case and of unnecessary structural
assumptions in the general case,

• permit to study the pure consequences of cancellation conditions in the
absence of transitivity, completeness and structural requirements on X,

• are sufficiently general to include as particular cases many aggregation
models that have been proposed in the literature.

Our project was to investigate how far it was possible to go in terms of
numerical representations using a limited number of cancellation conditions
without imposing any transitivity requirement on the preference relation and
any structural assumptions on the set of objects. Rather surprisingly, as we
shall see, such a poor framework allows us to go rather far.

It should be clear that, in models of type (5), numerical representations
are quite unlikely to possess any “nice” uniqueness properties. This is all the
more true that we will refrain in this paper from using unnecessary structural
assumptions on the set of objects. Numerical representations are not studied
here for their own sake; our results are not intended to provide clues on how
to build them. We use them as a framework allowing us to understand the
consequences of a number of requirements on %.

The paper is organized as follows. We introduce our main definitions in
section 2. We present the decomposable nontransitive conjoint measurement
models to be studied in this paper and analyze some of their properties in
section 3. We present our main results in section 4. A final section discusses
our results and presents directions for future research.

2 Definitions and Notation

A binary relation S on a set A is a subset of A×A; we write aSb instead of
(a, b) ∈ S. A binary relation S on A is said to be:

• reflexive if [aSa],

• irreflexive if [Not(aSa)],

• complete if [aSb or bSa],
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• symmetric if [aSb]⇒ [bSa],

• asymmetric if [aSb]⇒ [Not(bSa)],

• transitive if [aSb and bSc]⇒ [aSc],

for all a, b, c ∈ A.
A weak order (resp. an equivalence) is a complete and transitive (resp.

reflexive, symmetric and transitive) binary relation. If S is an equivalence
on A, A/S will denote the set of equivalence classes of S on A.

In this paper % will always denote a binary relation on a set X =
∏n

i=1 Xi

with n ≥ 2. Elements of X will be interpreted as alternatives evaluated on
a set N = {1, 2, . . . , n} of attributes and % as a “large preference relation”
(x % y being read as “x is at least as good as y”) between these alternatives.
We note � (resp. ∼) the asymmetric (resp. symmetric) part of %. A similar
convention holds when % is starred, superscripted and/or subscripted.

For any nonempty subset J of the set of attributes N , we denote by
XJ (resp. X−J) the set

∏
i∈J Xi (resp.

∏
i/∈J Xi). With customary abuse of

notation, (xJ , y−J) will denote the element w ∈ X such that wi = xi if i ∈ J
and wi = yi otherwise. When J = {i} we shall simply write X−i and (xi, y−i).

Let J be a nonempty set of attributes. We define the following binary
relations on XJ :

xJ %J yJ iff (xJ , z−J) % (yJ , z−J), for all z−J ∈ X−J ,

xJ %◦
J yJ iff (xJ , z−J) % (yJ , z−J), for some z−J ∈ X−J ,

where xJ , yJ ∈ XJ . When J = {i} we write %i instead of %{i}.
If, for all xJ , yJ ∈ XJ , xJ %◦

J yJ implies xJ %J yJ , we say that % is
independent for J . If % is independent for all nonempty subsets of attributes
we say that % is independent. It is not difficult to see that a binary relation is
independent if and only if it is independent for N \{i}, for all i ∈ N (Wakker,
1989). A relation is said to be weakly independent if it is independent for
all subsets containing a single attribute; while independence implies weak
independence, it is clear that the converse is not true (Wakker, 1989).
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3 Nontransitive Decomposable Models

In view of the discussion in section 1, the most general model we envisage
here is such that:

x % y ⇔ F (p1(x1, y1), p2(x2, y2), . . . , pn(xn, yn)) ≥ 0 (M)

where pi are real-valued functions on X2
i and F is a real-valued function on∏n

i=1 pi(X
2
i ), i.e. the Cartesian product of the codomains of the functions pi.

As already noted by Goldstein (1991) all binary relations satisfy model
(M) when X is finite or countably infinite (see section 4). In particular, it
should be noticed that model (M) does not even imply the reflexivity of %
which seems a hardly disputable property of any large preference relation.
Requiring (M) together with reflexivity leads to a model that is not much
constrained however.

In order to further specify model (M), it is useful to consider the additive
nontransitive model (4). Like model (M), it does not imply the reflexiv-
ity of % unless some additional constraints are imposed on the functions
pi. A simple way to obtain the reflexivity of % in model (4) is to impose
that pi(xi, xi) = 0 (Vind, 1991). This also entails that % is independent.
Mimicking this additional condition in model (M) leads to model (M0) in
which:

x % y ⇔ F (p1(x1, y1), p2(x2, y2), . . . , pn(xn, yn)) ≥ 0 (M0)

with pi(xi, xi) = 0, for all xi ∈ Xi and all i ∈ N , and F (0) ≥ 0, abusing
notations in an obvious way.

Keeping in mind the additive nontransitive model (4), it is natural to
add to model (M0) the additional requirement that F is nondecreasing 1 or
increasing in all its arguments. This respectively leads to models (M1) and
(M1 ′)

Except when xi = yi, models (M1) and (M1 ′) do not tie together the
values of pi(xi, yi) and pi(yi, xi). Following what has often been done with
model (4) (Fishburn, 1990b, 1991b), a simple way to establish such a link is
to impose the skew symmetry of each function pi, i.e. pi(xi, yi) = −pi(yi, xi),
for all xi, yi ∈ Xi. Adding this condition to (M1) and (M1 ′) leads to (M2)

1Let f be a real-valued function on K ⊆ Rk. We say that f is nondecreasing (resp.
increasing) in its jth argument if, for all x ∈ K and all yj ∈ Xj such that (yj , x−j) ∈
K, [yj > xj ] ⇒ [f(yj , x−j) ≥ f(x)] (resp. >). Furthermore, when K is such that x ∈ K
⇒ −x ∈ K, we say that f is odd if, for all x ∈ K, f(x) = −f(−x).
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Table 1: Definition of the various models studied

(M) x % y ⇔ F (p1(x1, y1), p2(x2, y2), . . . , pn(xn, yn)) ≥ 0
(M0) (M) with pi(xi, xi) = 0 and F (0) ≥ 0
(M1) (M0) with F nondecreasing in all its arguments
(M1 ′) (M0) with F increasing in all its arguments
(M2) (M1) with pi skew symmetric
(M2 ′) (M1 ′) with pi skew symmetric
(M3) (M2) with F odd
(M3 ′) (M2 ′) with F odd

and (M2 ′). Finally, in order to bring F even closer to an addition operation,
we may add to models (M2) and (M2 ′) the requirement that F should be
odd; this defines models (M3) and (M3 ′).

These various models combine in different ways the increasingness of F ,
its oddness and the skew symmetry of the functions pi; some of them will turn
out to be equivalent. The definition of these various models is summarized
in table 1.

It should be noticed that we do not study here all possible combinations
of the various properties added to (M), e.g. we do not consider a model in
which F would be odd but the pi would not necessarily be skew symmetric.
Similarly, other restrictions on F and pi could be considered (e.g. pi(xi, yi)×
pi(yi, xi) ≤ 0). Most of the models that have been left aside are either easily
analyzed using our conditions or trivial.

All the models presented in table 1 involve some form of “inter-attribute
decomposability” that we shall study in section 4. Models (M1) and (M1 ′)
were introduced by Goldstein (1991) under the name “decomposable thresh-
olds models”. It is clear that:

• (M3 ′) ⇒ (M3), (M2 ′) ⇒ (M2), (M1 ′) ⇒ (M1),

• (M3 ′) ⇒ (M2 ′) ⇒ (M1 ′),

• (M3) ⇒ (M2) ⇒ (M1).

The nontransitivity and/or noncompleteness of % may obscure some fea-
tures of our models. We sum up a few useful observations in the following
proposition.
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Proposition 1 Let % be a binary relation on X =
∏n

i=1 Xi and J ⊆ N .

1. If % satisfies model (M0) then it is reflexive and independent.

2. If % satisfies model (M1) or (M1 ′) then: [xi �i yi for all i ∈ J ⊆ N ]⇒
Not[(yJ %J xJ)].

3. If % satisfies model (M2) or (M2 ′) then:

• %i is complete,

• [xi �i yi for all i ∈ J ⊆ N ]⇒ [xJ �J yJ ].

4. If % satisfies model (M3) then it is complete.

5. If % satisfies model (M3 ′) then:

• [xi %i yi for all i ∈ J ⊆ N ]⇒ [xJ %J yJ ],

• [xi %i yi for all i ∈ J ⊆ N, xj �j yj, for some j ∈ J ] ⇒ [xJ �J

yJ ].

Proof of Proposition 1
1) Obvious since pi(xi, xi) = 0 and F (0) ≥ 0.
2) Using obvious notations, xi �i yi implies Not[yi %i xi] so that F (pi(yi,

xi), 0) < 0. Since F (0) ≥ 0 we know that pi(yi, xi) < 0 using the nondecreas-
ingness of F . Suppose now that yJ %J xJ so that F ((pi(yi, xi)i∈J),0) ≥ 0.
Since pi(yi, xi) < 0 for all i ∈ J and F is nondecreasing, this leads to
F (pj(yj, xj),0) ≥ 0 for any j ∈ J , a contradiction.

3) Not[xi %i yi] and Not[yi %i xi] imply F (pi(xi, yi), 0) < 0 and F (pi(yi,
xi), 0) < 0. Since F (0) ≥ 0 and F is nondecreasing, we have pi(xi, yi) < 0
and pi(yi, xi) < 0, which contradicts the skew symmetry of pi. Hence %i is
complete. Observe that xi �i yi is equivalent to F (pi(xi, yi), 0) ≥ 0 and
F (pi(yi, xi), 0) < 0. Since F (0) ≥ 0 we know that pi(yi, xi) < 0 using the
nondecreasingness of F . The skew symmetry of pi implies pi(xi, yi) > 0 >
pi(yi, xi) and the desired property easily follows using the nondecreasingness
of F .

4) Obvious from the skew symmetry of pi and the oddness of F .
5) Since F is increasing and odd, we have xi %i yi ⇔ pi(xi, yi) ≥ 0. The

desired properties easily follow from the increasingness of F and F (0) = 0.
2
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Except for (M3 ′), the monotonicity properties of our models linking %
and %i may seem disappointing. Such properties should however be analyzed
keeping in mind that we are dealing with possibly nontransitive and/or non-
complete preferences. In such a framework, some “obvious properties” may
not always be desirable. For example, when the relations ∼i are not transi-
tive, it may not be reasonable to impose that:

[xi ∼i yi for all i ∈ J ]⇒ [xJ ∼J yJ ]

which would forbid any interaction between separately non-noticeable dif-
ferences on each attribute (on this point see Gilboa and Lapson (1995) or
Pirlot and Vincke (1997)). Furthermore, as we shall see in section 4, nice
monotonicity properties obtain when “preference differences” are adequately
modelled on each attribute (see lemma 3).

4 Results

4.1 Axioms

This section studies the variety of nontransitive decomposable models intro-
duced in section 3. The intuition behind these models is that the functions
pi “measure” preference differences between elements of Xi, these differences
being aggregated using F .

Wakker (1988, 1989) has powerfully shown how the consideration of in-
duced relations comparing “preference differences” on each attribute may
illuminate the analysis of conjoint measurement models. We follow the same
path. Notice however that, although we use similar notation, our definitions
of relations comparing preference difference differ from his because of the
absence of structural assumptions on X.

Given a binary relation % on X, we define the binary relation %∗
i on X2

i

letting, for all xi, yi, zi, wi ∈ Xi,

(xi, yi) %∗
i (zi, wi) iff

[for all a−i, b−i ∈ X−i, (zi, a−i) % (wi, b−i)⇒ (xi, a−i) % (yi, b−i)].

Intuitively, if (xi, yi) %∗
i (zi, wi), it seems reasonable to conclude that the

preference difference between xi and yi is not smaller that the preference
difference between zi and wi. Notice that, by construction, %∗

i is transitive.
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Contrary to our intuition concerning preference differences, the definition
of %∗

i does not imply that the two “opposite” differences (xi, yi) and (yi, xi)
are linked. Henceforth we introduce the binary relation %∗∗

i on X2
i letting,

for all xi, yi, zi, wi ∈ Xi,

(xi, yi) %∗∗
i (zi, wi) iff [(xi, yi) %∗

i (zi, wi) and (wi, zi) %∗
i (yi, xi)].

It is easy to see that %∗∗
i is transitive and reversible, i.e. (xi, yi) %∗∗

i (zi, wi)⇔
(wi, zi) %∗∗

i (yi, xi).
The relations %∗

i and %∗∗
i both appear to capture the idea of comparison

of preference differences between elements of Xi induced by the relation %.
Hence, they are good candidates to serve as the basis of the definition of the
functions pi. They will not serve well this purpose however unless they are
complete. Hence, the introduction of the following two conditions.

Let % be a binary relation on a set X =
∏n

i=1 Xi. For i ∈ N , this relation
is said to satisfy:

RC1i if

(xi, a−i) % (yi, b−i)
and

(zi, c−i) % (wi, d−i)

⇒


(xi, c−i) % (yi, d−i)
or
(zi, a−i) % (wi, b−i),

RC2i if

(xi, a−i) % (yi, b−i)
and

(yi, c−i) % (xi, d−i)

⇒


(zi, a−i) % (wi, b−i)
or
(wi, c−i) % (zi, d−i),

for all xi, yi, zi, wi ∈ Xi and all a−i, b−i, c−i, d−i ∈ X−i. We say that % satisfies
RC1 (resp. RC2) if it satisfies RC1i (resp. RC2i) for all i ∈ N .

Condition RC1i implies that any two ordered pairs (xi, yi) and (zi, wi) of
elements of Xi are comparable in terms of the relation %∗

i . Indeed, it is easy
to see that supposing Not[(xi, yi) %∗

i (zi, wi)] and Not[(zi, wi) %∗
i (xi, yi)]

leads to a violation of RC1i. Similarly, RC2i implies that the two opposite
differences (xi, yi) and (yi, xi) are linked. In terms of the relation %∗

i , it says
that if the preference difference between xi and yi is not at least as large
as the preference difference between zi and wi then the preference difference
between yi and xi should be at least as large as the preference difference
between wi and zi.

We summarize these observations in the following lemma; we omit its
straightforward proof.
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Lemma 1 We have:

1. [%∗
i is complete]⇔ RC1i,

2. RC2i ⇔
[for all xi, yi, zi, wi ∈ Xi, Not[(xi, yi) %∗

i (zi, wi)]⇒ (yi, xi) %∗
i (wi, zi)],

3. [%∗∗
i is complete] ⇔ [RC1i and RC2i].

Condition RC1 was introduced in Bouyssou (1986) under the name “weak
cancellation”. Technically RC1i amounts to defining a biorder, in the sense of
Ducamp and Falmagne (1969) and Doignon, Ducamp, and Falmagne (1984),
between the sets X2

i and X2
−i. The extension of condition RC1 to subsets of

attributes is central to the analysis of (4) with pi(xi, xi) = 0 by Vind (1991)
where this condition is called independence. Condition RC2 seems to be
new.

We say that % satisfies:
TCi if

(xi, a−i) % (yi, b−i)
and

(zi, b−i) % (wi, a−i)
and

(wi, c−i) % (zi, d−i)

⇒ (xi, c−i) % (yi, d−i),

for all xi, yi, zi, wi ∈ Xi and all a−i, b−i, c−i, d−i ∈ X−i. We say that % satisfies
TC if it satisfies TCi for all i ∈ N .

Condition TCi (Triple Cancellation) is a classical cancellation condition
that has been often used in the analysis of model (1) (Krantz et al., 1971;
Wakker, 1989). As shown below, it implies both RC1 and RC2 when % is
complete. We refer to Wakker (1988, 1989) for a detailed analysis of TC
including its interpretation in terms of difference of preference.

The following lemma (that omits the implications directly resulting from
the links between our various models) shows that RC1, RC2 and TC are
implied by various versions of our nontransitive decomposable models and
states some links between these conditions.

Lemma 2 We have:

1. Model (M1) implies RC1,

2. Model (M2) implies RC2,
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3. Model (M3 ′) implies TC,

4. If % is complete, TCi implies RC1i and RC2i,

5. If % satisfies RC2 then it is independent and either reflexive or irreflex-
ive,

6. Reflexivity, independence and RC1 are independent conditions,

7. In the class of complete relations, RC1 and RC2 are independent con-
ditions.

Proof of Lemma 2
1) Suppose that (xi, a−i) % (yi, b−i) and (zi, c−i) % (wi, d−i). Using model

(M1) we have:
F (pi(xi, yi), (pj(aj, bj))j 6=i) ≥ 0

and
F (pi(zi, wi), (pj(cj, dj))j 6=i) ≥ 0,

abusing notations in an obvious way.
If pi(xi, yi) ≥ pi(zi, wi) then using the nondecreasingness of F , we have

F (pi(xi, yi), (pj(cj, dj))j 6=i) ≥ 0 so that (xi, c−i) % (yi, d−i). If pi(zi, wi) >
pi(xi, yi) we have F (pi(zi, wi), (pj(aj, bj))j 6=i) ≥ 0 so that (zi, a−i) % (wi, b−i).

2) Suppose that (xi, a−i) % (yi, b−i) and (yi, c−i) % (xi, d−i). We thus
have:

F (pi(xi, yi), (pj(aj, bj))j 6=i) ≥ 0

and
F (pi(yi, xi), (pj(cj, dj))j 6=i) ≥ 0.

If pi(xi, yi) ≥ pi(zi, wi), the skew symmetry of pi implies pi(wi, zi) ≥ pi(yi, xi)
so that (wi, c−i) % (zi, d−i) using the nondecreasingness of F . Similarly, if
pi(zi, wi) > pi(xi, yi) we have, using the nondecreasingness of F , (zi, a−i) %
(wi, b−i).

3) Suppose that (xi, a−i) % (yi, b−i), (zi, b−i) % (wi, a−i), (wi, c−i) % (zi,
d−i) and Not[(xi, c−i) % (yi, d−i)]. Using (M3 ′) we know that:

F (pi(xi, yi), (pj(aj, bj))j 6=i) ≥ 0

F (pi(zi, wi), (pj(bj, aj))j 6=i) ≥ 0
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F (pi(wi, zi), (pj(cj, dj))j 6=i) ≥ 0

and
F (pi(xi, yi), (pj(cj, dj))j 6=i) < 0.

Using the oddness of F , its increasingness and the skew symmetry of the
pi’s, the first two inequalities imply pi(xi, yi) ≥ pi(wi, zi) whereas the last
two imply that pi(xi, yi) < pi(wi, zi), a contradiction.

4) In contradiction with RC1i suppose that (xi, a−i) % (yi, b−i), (zi, c−i) %
(wi, d−i), Not[(zi, a−i) % (wi, b−i)] and Not[(xi, c−i) % (yi, d−i)]. Since % is
complete, we have (wi, b−i) � (zi, a−i). Using TCi, (xi, a−i) % (yi, b−i),
(wi, b−i) � (zi, a−i) and (zi, c−i) % (wi, d−i) imply (xi, c−i) % (yi, d−i), a
contradiction.

Similarly suppose, in contradiction with RC2i that (xi, a−i) % (yi, b−i),
(yi, c−i) % (xi, d−i), Not[(zi, a−i) % (wi, b−i)] and Not[(wi, c−i) % (zi, d−i)].
Since % is complete, we know that (wi, b−i) � (zi, a−i). Using TCi, (wi, b−i)
� (zi, a−i), (xi, a−i) % (yi, b−i) and (yi, c−i) % (xi, d−i) imply (wi, c−i) %
(zi, d−i), a contradiction.

5) If (xi, a−i) % (xi, b−i), RC2i implies (yi, a−i) % (yi, b−i) for all yi ∈ Xi

so that % is independent. It is clear that an independent relation is either
reflexive or irreflexive.

6) In order to show that these three properties are completely inde-
pendent, we need 23 = 8 examples. It is easy to build a relation % that
does not satisfy RC1 and is neither reflexive nor independent (e.g. take
X = {a, b} × {z, w} and let % be an empty relation on X except that
(a, z) % (b, z) and (b, w) % (a, w)). Any relation % satisfying the additive
utility model (1) satisfies the three properties. We provide here the six re-
maining examples.

1. Let X = {a, b}×{z, w} and consider % on X defined by: for all (α, β),
(γ, δ) ∈ X, (α, β) % (γ, δ) ⇔ f(α, γ)+ g(β, δ) ≥ 0, where f and g are
such that: f(a, a) = −1, f(a, b) = 0.5, f(b, a) = −0.5, f(b, b) = 1,
g(z, z) = g(w, w) = g(w, z) = 1, g(z, w) = 0

It is easy to see that % is reflexive. It satisfies RC1 by construction
(see remark 5 in section 4.4). It is not independent since (b, z) % (b, w)
and Not[(a, z) % (a, w)].

2. In example 1, taking f(a, a) = −2 leads to relation % that verifies RC1
but is neither independent nor reflexive (since Not[(a, z) % (a, z)]).
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3. Let X = {a, b} × {z, w} and consider % on X defined by: for all
(α, β), (γ, δ) ∈ X, (α, β) % (γ, δ) ⇔ f(α, γ)+ g(β, δ) ≥ 0, where f
and g are such that: f(a, a) = f(b, b) = f(b, a) = −1, f(a, b) = 1,
g(z, z) = g(w, w) = 0, g(z, w) = 1, g(w, z) = −1

It is easy to see that % is not reflexive (it is in fact irreflexive). It
satisfies RC1 by construction (see remark 5 in section 4.4). Since
f(a, a) = f(b, b) and g(z, z) = g(w, w), % is clearly independent.

4. Let X = {a, b, c} × {z, w} and consider % on X that is a clique (with
all loops) except that Not[(a, z) % (c, w)] and Not[(a, w) % (b, z)].

It is clear that % is reflexive. It can easily be checked that % is inde-
pendent. It does not satisfy RC1 since: (a, z) % (b, w), (a, w) % (c, z),
Not[(a, z) % (c, w)] and Not[(a, w) % (b, z)].

5. Modifying example 4 in order to have % irreflexive gives an example of
relation that is independent but violates RC1 and reflexivity.

6. Modifying example 4 in order to have Not[(b, z) % (b, w)] leads to
relation % that is reflexive but violates independence and RC1.

7) Any relation % satisfying the additive utility model (1) is complete and
satisfies both RC1 and RC2. We provide here the three remaining examples.

1. Let X = {a, b, c}×{z, w, k} and consider % on X that is a clique (with
all loops) except that Not[(a, z) % (c, w)], Not[(a, k) % (b, z)] and
Not[(c, z) % (a, w)]. It is clear that % is complete. Since (a, z) % (b, w),
(c, k) % (a, z), Not[(a, k) % (b, z)] and Not[(c, z) % (a, w)], % violates
RC1. Since (a, z) % (b, w), (b, z) % (a, w), Not[(a, z) % (c, w)] and
Not[(c, z) % (a, w)], % violates RC2.

2. Modify example 1 adding the relation (a, z) % (c, w). It is clear that %
is complete and violates RC1. Using lemma 1.(2), it is not difficult to
see that it satisfies RC2.

3. Let X = {a, b}×{z, w} and consider % on X defined by: for all (α, β),
(γ, δ) ∈ X, (α, β) % (γ, δ) ⇔ f(α, γ)+ g(β, δ) ≥ 0, where f and g
are such that: f(a, a) = −1, f(a, b) = f(b, a) = f(b, b) = 1, g(z, w) =
0, g(z, z) = g(w,w) = g(w, z) = 1.
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It is easy to see that % is complete. It satisfies RC1 by construction
(see remark 5 in section 4.4). It is not independent since (b, z) % (b, w)
and Not[(a, z) % (a, w)]. In view of part 5 of this lemma, this shows
that RC2 is violated. 2

For the sake of easy reference, we note a few useful connections between
%∗

i , %∗∗
i and % in the following lemma.

Lemma 3 For all x, y ∈ X and all zi, wi ∈ Xi,

1. [x % y and (zi, wi) %∗
i (xi, yi)]⇒ (zi, x−i) % (wi, y−i),

2. [(zi, wi) ∼∗
i (xi, yi) for all i ∈ N ]⇒ [x % y ⇔ z % w],

3. [x � y and (zi, wi) %∗∗
i (xi, yi)]⇒ (zi, x−i) � (wi, y−i),

4. [(zi, wi) ∼∗∗
i (xi, yi) for all i ∈ N ] ⇒ ([x % y ⇔ z % w] and [x � y ⇔

z � w]),

5. If TCi holds and % is complete, [x % y and (zi, wi) �∗∗
i (xi, yi)] ⇒

(zi, x−i) � (wi, y−i).

Proof of Lemma 3
1) Obvious from the definition of %∗

i .
By induction, 2) is immediate from 1).
3) Given 1), we know that (zi, x−i) % (wi, y−i). Suppose that (wi, y−i)

% (zi, x−i). Since (zi, wi) %∗∗
i (xi, yi) implies (yi, xi) %∗

i (wi, zi), 1) implies
y % x, a contradiction.

4) Immediate from 2) and 3).
5) Notice that 1) implies (zi, x−i) % (wi, y−i). Suppose that (wi, y−i) %

(zi, x−i). From lemmas 2.(4) and 1.(3), we know that %∗∗
i is complete. We

thus have (zi, wi) �∗∗
i (xi, yi) ⇔ Not[(xi, yi) %∗∗

i (zi, wi)] ⇔ [Not[(xi, yi) %∗
i

(zi, wi)] or Not[(wi, zi) %∗
i (yi, xi)]]. In the first case we know that Not[(xi,

c−i) % (yi, d−i)] and (zi, c−i) % (wi, d−i) for some c−i, d−i ∈ X−i. Using
TCi we know that x % y, (wi, y−i) % (zi, x−i) and (zi, c−i) % (wi, d−i) imply
(xi, c−i) % (yi, d−i), a contradiction. The other case is similar. 2
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4.2 The denumerable case

Our first result says that for finite or countably infinite sets X conditions
RC1, RC2 and TC combined with reflexivity, independence and/or com-
pleteness allow us to characterize our various models.

Theorem 1 Let % be a binary relation on a finite or countably infinite set
X =

∏n
i=1 Xi. Then:

1. % satisfies model (M),

2. % satisfies model (M0) iff it is reflexive and independent,

3. % satisfies model (M1 ′) iff it is reflexive, independent and satisfies
RC1,

4. % satisfies model (M2 ′) iff it is reflexive and satisfies RC1 and RC2,

5. % satisfies model (M3) iff it is complete and satisfies RC1 and RC2,

6. % satisfies model (M3 ′) iff it is complete and satisfies TC.

Proof of Theorem 1
1) Following Goldstein (1991), define on each X2

i a binary relation ∼∗
i

letting, for all xi, yi, zi, wi ∈ Xi: (xi, yi) ∼∗
i (zi, wi) iff [for all a−i, b−i ∈

X−i, (zi, a−i) % (wi, b−i) ⇔ (xi, a−i) % (yi, b−i)]. It is easily seen that ∼∗
i is

an equivalence. Since X is finite or countably infinite, there is a real-valued
function pi on X2

i such that, for all xi, yi, zi, wi ∈ Xi: (xi, yi) ∼∗
i (zi, wi) iff

pi(xi, yi) = pi(zi, wi). Define F on
∏n

i=1 pi(X
2
i ) letting:

F (p1(x1, y1), p2(x2, y2), . . . , pn(xn, yn)) =

{
1 if x % y,
−1 otherwise.

Using the definition of ∼∗
i , it is easy to show that F is well-defined.

Necessity of parts 2 to 6 results from proposition 1.(1) and 1.(4), lemma
2.(1), 2.(2) and 2.(3) and the implications between the various models. We
establish sufficiency below.

2) It is clear that: [% is independent] ⇔ [for all i ∈ N , % is independent
for N \ {i}] ⇔ [(xi, xi) ∼∗

i (yi, yi), for all i ∈ N and all xi, yi ∈ Xi].
Since % is independent, we know that all the elements of the diagonal

of X2
i belong to the same equivalence class of ∼∗

i . Define the functions
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pi as in 1). They can always be chosen so that, for all i ∈ N and all
xi ∈ Xi, pi(xi, xi) = 0. Using such functions, define F as in 1). The well-
definedness of F results from the definition of ∼∗

i . Since % is reflexive, we
have F (0) = 1 ≥ 0, as required by model (M0).

3) Since RC1i holds, we know from lemma 1.(1) that %∗
i is complete

and, thus, is a weak order. Since X is finite or countably infinite, there is a
real-valued function pi on X2

i such that, for all xi, yi, zi, wi ∈ Xi, (xi, yi) %∗
i

(zi, wi) ⇔ pi(xi, yi) ≥ pi(zi, wi). Since % is independent we proceed as in 2)
and choose the functions pi so that pi(xi, xi) = 0. Given such a particular
numerical representation pi of %∗

i for i = 1, 2, . . . , n, we define F as follows:

F (p1(x1, y1), p2(x2, y2), . . . , pn(xn, yn)) ={
f(g(p1(x1, y1), p2(x2, y2), . . . , pn(xn, yn))) if x % y,
−f(−g(p1(x1, y1), p2(x2, y2), . . . , pn(xn, yn))) otherwise,

(6)

where g is any function from Rn to R increasing in all its arguments (e.g.
Σ) and f is any increasing function from R into (0, +∞) (e.g. exp(·) or
arctan(·) + π

2
).

Let us show that F is well-defined and increasing in all its arguments.
The well-definedness of F follows from lemma 3.(2) and the definition of
the pi’s. To show that F is increasing, suppose that pi(zi, wi) > pi(xi, yi),
i.e. that (zi, wi) �∗

i (xi, yi). If x % y, we know from lemma 3.(1) that
(zi, x−i) % (wi, y−i) and the conclusion follows from the definition of F . If
Not[x % y] we have either Not[(zi, x−i) % (wi, y−i)] or (zi, x−i) % (wi, y−i).
In either case, the conclusion follows from the definition of F . Since % is
reflexive, we have F (0) ≥ 0, as required.

4) Since RC1i and RC2i hold, we know from lemma 1.(3) that %∗∗
i is

complete so that it is a weak order. This implies that %∗
i is a weak order

and, since X is finite or countably infinite, there is a real-valued function qi

on X2
i such that, for all xi, yi, zi, wi ∈ Xi, (xi, yi) %∗

i (zi, wi) ⇔ qi(xi, yi) ≥
qi(zi, wi). Given a particular numerical representation qi of %∗

i , let pi(xi, yi) =
qi(xi, yi) − qi(yi, xi). It is obvious that pi is skew symmetric and represents
%∗∗

i . Define F as in 3). Its well-definedness and increasingness is proved as
in 3). Since % is reflexive, we have F (0) ≥ 0, as required.

5) Define pi as in 4) and F as:

F (p1(x1, y1), p2(x2, y2), . . . , pn(xn, yn)) =
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f(g(p1(x1, y1), p2(x2, y2), . . . , pn(xn, yn))) if x � y,
0 if x ∼ y,
−f(−g(p1(x1, y1), p2(x2, y2), . . . , pn(xn, yn))) otherwise.

where g is any function from Rn to R, odd and increasing in all its arguments
and f is any increasing function from R into (0, +∞). That F is well defined
follows from lemma 3.(4). It is odd by construction. The nondecreasingness
of F follows from lemma 3.(1) and 3.(3).

6) Define pi and F as in 5). The increasingness of F follows from lemma
3.(5).

2

4.3 The general case

In order to attain a generalization of theorem 1 to sets of arbitrary cardinality
it should be observed that:

• the weak orders %∗
i may not have a numerical representation and

• a binary relation may have a representation in (M1) with functions pi

failing to satisfy:

(xi, yi) %∗
i (zi, wi)⇔ pi(xi, yi) ≥ pi(zi, wi), (7)

i.e. pi is not necessarily a representation of the weak order %∗
i .

The first point should be no surprise. In order to deal with the second point,
suppose that the binary relation % satisfies model (M1). The nondecreas-
ingness property of F clearly implies that:

(xi, yi) �∗
i (zi, wi)⇒ pi(xi, yi) > pi(zi, wi).

Using this relation, it is not difficult to show that it is always possible to
modify a given numerical representation so that it satisfies (7) in (M1). If
(7) is violated, pick a particular element from each equivalence class of ∼∗

i

and modify the function pi so that it is constant (and equal to the value
of pi for the element picked) on each equivalence class (this is the idea of
“regularization” of a scale used in Roberts (1979)). This defines the func-
tion qi on X2

i . Using (M1), it is easily proved that [(xi, yi) ∼∗
i (zi, wi) and

pi(xi, yi) > pi(ki, `i) > pi(zi, wi)] imply (xi, yi) ∼∗
i (ki, `i) so that the function
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qi satisfies (7). The function G obtained by restricting the original func-
tion F to

∏n
i=1 qi(X

2
i ) obviously inherits the nondecreasingness property of

F . Using G together with the functions qi leads to an alternative numerical
representation satisfying model (M1) together with (7). A similar reasoning
is easily seen to be true for model (M1 ′).

A similar technique can be applied with model (M2). Indeed, if % has
a representation in (M2) it has a representation in (M1). Consider this
representation in (M1) and modify it as above so that (7) is satisfied. Letting
ri(xi, yi) = qi(xi, yi)− qi(yi, xi) we easily obtain that:

(xi, yi) %∗∗
i (zi, wi)⇔ ri(xi, yi) ≥ ri(zi, wi) (8)

Using these functions ri, defining the function F as in the proof of theorem
1.(5) leads to a representation in model (M2) in which (8) is satisfied. A
similar technique can be applied with (M2 ′), (M3) and (M3 ′).

Similarly, there may exist representations in models (M) and (M0) in
which the functions pi do not represent the equivalence relations ∼∗

i . It is
easy to see that it is always possible to modify a given representation in
models (M) and (M0) so that this is the case.

The preceding observations prove the following lemma which defines what
could be called regular representations of our models.

Lemma 4 We have:

1. If % satisfies model (M) (resp. (M0)), it has a representation in model
(M) (resp. (M0)) such that (xi, yi) ∼∗

i (zi, wi)⇔ pi(xi, yi) = pi(zi, wi).

2. If % satisfies model (M1) (resp. (M1 ′)), it has a representation in
model (M1) (resp. (M1 ′)) such that (xi, yi) %∗

i (zi, wi) ⇔ pi(xi, yi) ≥
pi(zi, wi).

3. If % satisfies model (M2) (resp. (M2 ′), (M3), (M3 ′)), it has a represen-
tation in model (M2) (resp. (M2 ′), (M3), (M3 ′)), such that (xi, yi) %∗∗

i

(zi, wi)⇔ pi(xi, yi) ≥ pi(zi, wi).

In view of the preceding lemma, the generalization of theorem 1 to sets
of arbitrary cardinality for models (M) and (M0) (resp. models (M1 ′) and
(M2 ′), (M3), (M3 ′)) is at hand if we impose conditions guaranteeing that
the relations ∼∗

i (resp. %∗
i and %∗∗

i ) have a numerical representation.
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We first deal with models (M) and (M0). We say that % satisfies condition
C∗

i if there is a one-to-one correspondence between X2
i / ∼∗

i and some subset
of R. Condition C∗ is said to hold when C∗

i holds for all i ∈ N . It is obvious
that C∗

i is a necessary and sufficient condition for the equivalence ∼∗
i to have

a numerical representation. Thus, C∗ is a necessary condition for models
(M) and (M0). In view of the proof of part 1 of theorem 1, it is clear that
C∗ (resp. C∗, reflexivity and independence) is also sufficient for model (M)
(resp. (M0)). It is worth noting that C∗ is trivially satisfied when, for all
i ∈ N , there exists a one-to-one mapping between Xi and some subset of R,
which is hardly restrictive if, as is usual, Xi is interpreted as a set of levels
on the ith attribute.

Let S be a binary relation on a set A and let B ⊆ A. Following e.g.
Krantz et al. (1971, Chapter 2), we say that B is dense in A for S if, for all
a, b ∈ A, [aSb and Not[bSa]]⇒ [aSc and cSb, for some c ∈ B]. The existence
of a finite or countably infinite set B dense in A for S is a necessary condition
for the existence of a real-valued function f on A such that, for all a, b ∈ A,
aSb⇔ f(a) ≥ f(b). Together with the fact that S is a weak order on A, it is
also sufficient for the existence of such a representation (see Fishburn (1970)
or Krantz et al. (1971)).

We say that % satisfies OD∗
i if there is a finite or countably infinite set

Ai ⊆ X2
i that is dense in X2

i for %∗
i . Condition OD∗ is said to hold if

condition OD∗
i holds for all i ∈ N . This condition is trivially satisfied when

Xi is finite or countably infinite. In view of lemma 4, it is necessary for
(M1 ′). Together with the fact that all relations %∗

i are weak orders, it is also
clearly sufficient for (M1 ′). The following example shows that OD∗

i may not
imply OD∗

j for j 6= i.

Example
Let X = X1 ×X2 with X1 = R2 and X2 = R. Define % letting:

x % y ⇔ ((x1,1, x1,2), x2) % ((y1,1, y1,2), y2)⇔
(x1,1 − y1,1) + (x2 − y2) > 0
or

(x1,1 − y1,1) + (x2 − y2) = 0
and

(x1,2 − y1,2) + (x2 − y2) ≥ 0.

It is easily shown that %∗
1 is complete and such that:
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((x1,1, x1,2), (y1,1, y1,2)) %∗
1 ((z1,1, z1,2), (z1,1, z1,2)) ⇔

x1,1 − y1,1 > z1,1 − w1,1

or
x1,1 − y1,1 = z1,1 − w1,1

and
x1,2 − y1,2 ≥ z1,2 − w1,2,

so that OD∗
1 is violated (see e.g. Fishburn (1970)) while we have (x2, y2) %∗

2

(z2, w2) ⇔ [x2 − y2 ≥ z2 − w2] so that OD∗
2 clearly holds.

We now turn to the case of models (M2 ′), (M3) and (M3 ′). Suppose that
%∗∗

i has a (skew symmetric) numerical representation so that there is a finite
or countably infinite set Ai ⊆ X2

i that is dense in X2
i for %∗∗

i . Suppose that
(xi, yi) �∗

i (zi, wi). Since %∗∗
i is complete, we have (xi, yi) �∗∗

i (zi, wi). This
implies (xi, yi) %∗∗

i (ki, `i) and (ki, `i) %∗∗
i (zi, wi) for some (ki, `i) ∈ Ai. This

in turn implies (xi, yi) %∗
i (ki, `i) and (ki, `i) %∗

i (zi, wi) so that Ai is dense in
X2

i for %∗
i and OD∗

i holds. Hence, in view of lemma 4, OD∗ is a necessary
condition for models (M2 ′), (M3) and (M3 ′). It is not difficult to see that it
is also sufficient when supplemented with the appropriate conditions used in
theorem 1. Indeed, if the weak order %∗

i has a numerical representation pi,
the function qi defined letting qi(xi, yi) = pi(xi, yi)− pi(yi, xi) is a numerical
representation of %∗∗

i .
We omit the cumbersome and apparently uninformative reformulation

of C∗ and OD∗ in terms of %. Theorem 1, lemma 4 and the preceding
observations prove the central result in this paper:

Theorem 2 Let % be a binary relation on a set X =
∏n

i=1 Xi. Then:

1. % satisfies model (M) iff it satisfies C∗,

2. % satisfies model (M0) iff it is reflexive, independent and satisfies C∗,

3. % satisfies model (M1 ′) iff it is reflexive, independent and satisfies RC1
and OD∗,

4. % satisfies model (M2 ′) iff it is reflexive and satisfies RC1, RC2 and
OD∗,

5. % satisfies model (M3) iff it is complete and satisfies RC1, RC2 and
OD∗,
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6. % satisfies model (M3 ′) iff it is complete and satisfies TC and OD∗.

In view of lemmas 2 and 4, we obtain the following:

Corollary 1 We have:

1. Models (M1) and (M1 ′) are equivalent,

2. Models (M2) and (M2 ′) are equivalent.

4.4 Remarks

The previous results prompt a number of remarks.

1. Parts 1, 2 and 3 of theorem 2 and the equivalence between (M1) and
(M1 ′) were already noted by Goldstein (1991), under a slightly different
form. He also studies some variants of these models that are not dealt
with here.

2. Lemma 2 combined with theorem 2 shows that all the models char-
acterized are indeed different. We provide examples of each type of
models in appendix.

3. It is not difficult to show that, when % is complete, [RC1, RC2 and
(x ∼ y and (zi, wi) �∗∗

i (xi, yi) ⇒ (zi, x−i) � (wi, y−i))] ⇔ TC. This
offers an additional interpretation of TC and shows that the only dif-
ference between (M3) and (M3 ′) is the possible failure in (M3) of
“strict monotonicity” with respect to �∗∗

i for pairs such that x ∼ y
(see lemma 2). Furthermore, it is worth noting that (M3 ′) is the only
of our models for which there are close connections between partial
preference relations and relations comparing preference differences on
each attribute. Indeed, we have xi %i yi ⇔ pi(xi, yi) ≥ 0 so that
xi %i yi ⇔ (xi, yi) %∗∗

i (yi, yi). This explains why (M3 ′) was found
in proposition 1 to be the only of our models for which there are nice
monotonicity properties linking % and %i.

4. A word on the uniqueness of the numerical representations in theorem
2 is in order. As should be expected, the uniqueness of our repre-
sentations is very weak; it is even weaker than the uniqueness of the
representations of the transitive decomposable model (2) (Krantz et al.,
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1971, Chapter 7). Indeed, it should be obvious from the proof of the-
orem 1 that there is much freedom in the choice of F and pi when a
representation exists. We take the example of model (M1 ′). It is clear
that, in equation (6), the combination of:

• any representation pi of %∗
i ,

• any function g from Rn to R increasing in all its arguments and

• any increasing function f from R into (0, +∞),

leads to an acceptable representation. The situation is even worse
remembering that in (M1 ′) it is not necessarily true that:

pi(xi, yi) ≥ pi(zi, wi)⇔ (xi, yi) %∗
i (zi, wi).

Therefore we will not try to explicitly formulate what would be the,
obviously very awkward, conditions relating one representation to an-
other in each of our models (thus, keeping in line with the idea that
these numerical representations are not studied for their own sake and
are only used in order to understand the pure consequences of our can-
cellation conditions).

Uniqueness results may however be obtained if the ordered set on which
the numerical representations are sought is restricted from R to a much
poorer subset. Consider the particular case of model (M1). Let 〈F, pi〉
be a representation of % in (M1). Let φ be a nondecreasing function
on R mapping (−∞, 0) to α < 0 and [0, +∞) to β ≥ 0. It is clear that
〈φ ◦ F, pi〉 is another representation in (M1). We henceforth restrict
our attention to representations in (M1) such that the codomain of F
is {α, β} for some α < 0 and β ≥ 0. We furthermore impose that these
representations are regular, i.e. such that each pi is a numerical repre-
sentation of %∗

i . Given these additional restrictions, it is not difficult
to devise a uniqueness result. Consider two representations 〈F, pi〉 and
〈G, qi〉 of % in (M1) satisfying our additional assumptions. It is clear
that for all i ∈ N there is an increasing function ϕi on R such that
ϕ(0) = 0 for which pi = ϕi(qi). Furthermore, F can be deduced from
G letting F (p1, p2, . . . , pn) = G(ϕ−1

1 (p1), ϕ
−1
2 (p2) . . . , ϕ−1

n (pn)).

A similar analysis can easily be conducted with (M2) and (M3): in
(M2), it suffices to consider %∗∗

i in lieu of %∗
i and increasing odd func-

tions ϕi; in (M3), it suffices to consider representations in which the
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codomain of F is {−β, 0, β} for some β 6= 0. The situation is more
complex with (M3 ′).

5. It should be observed that RC1 and OD∗ are necessary and sufficient
conditions to obtain a model in which:

x % y ⇔ F (p1(x1, y1), p2(x2, y2), . . . , pn(xn, yn)) ≥ 0 (9)

where F is increasing in all its arguments. This is easily shown observ-
ing that, in the proof of part 3 of theorem 2, independence of % is only
used to obtain that pi(xi, xi) = 0, reflexivity implying that F (0) ≥ 0.
Since model (9) encompasses relations % that are neither reflexive nor
irreflexive, its interpretation is however subject to caution. This model
seems more interesting when applied to an asymmetric binary relation
interpreted as a strict preference relation. We do not explore this point
here (see Bouyssou and Pirlot (2002)).

6. We already noticed that RC1i amounts to defining a biorder between
the sets X2

i and X2
−i. Therefore RC1i on its own implies, when X is

finite or countably infinite, the existence of two real-valued functions pi

and P−i respectively on X2
i and X2

−i such that, for all x, y ∈ X, x % y iff
pi(xi, yi) + P−i(x−i, y−i) ≥ 0 (Ducamp & Falmagne, 1969, Proposition
3). When supplemented with an appropriate density condition, RC1i

implies a similar result for sets of arbitrary cardinality (Doignon et al.,
1984, Proposition 8). Therefore nontransitive additive conjoint models
closely relate to ordinal measurement when n = 2.

7. In a similar vein, Bouyssou (1986, Theorem 1) noted an interesting
implication of TCi on its own. When X is finite or countably infinite
TCi implies the existence of two real-valued skew symmetric functions
pi and P−i respectively on X2

i and X2
−i such that, for all x, y ∈ X,

x % y ⇔ pi(xi, yi) + P−i(x−i, y−i) ≥ 0. As in remark 6, this result can
easily be extended to sets of arbitrary cardinality. When n = 2 this
offers an alternative to Fishburn (1991a, theorem B).

8. We already mentioned that the extension of RC1 to subsets of at-
tributes is the main necessary condition used by Vind (1991) together
with topological assumptions on X to axiomatize model (4) with pi(xi,
xi) = 0. This prompts two remarks. First observe that imposing the
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generalization of RC1 to all subsets of attributes does not imply in-
dependence. In Vind’s result independence obtains from a complex
synergy between the necessary conditions and his, unnecessary, struc-
tural assumptions (and, in particular, his condition A). Secondly, it
may be interesting to observe the parallel between the axiomatization
of (1) and (2) on the one side and (4) with pi(xi, xi) = 0 and (9) on the
other. Additivity obtains in (1) when independence is combined with
transitivity, completeness and structural assumptions. Decomposabil-
ity in (2) results by keeping completeness and transitivity, dropping
structural assumptions and restricting independence to weak indepen-
dence, i.e. a condition similar to independence but only applied one
attribute at a time. In the process of going from (1) to (2) the nice
uniqueness result obtained with (1) was lost, whereas the proofs were
much simpler. A surprisingly similar process is at work when going
from (4) to (9). In the first case RC1 is generalized to subsets of at-
tributes together with structural assumptions; the resulting functions
pi are unique up to the multiplication by a common positive constant.
Dropping structural assumptions and using RC1 results in a decom-
posable model without nice associated uniqueness result.

Similar remarks apply with skew symmetric and odd models when com-
paring part 6 of theorem 2 with Fishburn (1991b, Theorem C) or Fish-
burn (1990b, Theorem 1). The latter two results use a condition im-
plying the generalization of TC to subsets of attributes and impose
structural assumptions on X. This leads to the skew symmetric ver-
sion of (4) together with functions pi unique up to the multiplication
by a common positive constant. We use TC and drop all structural
assumptions to obtain model (M3 ′) for which there is no remarkable
uniqueness property.

9. The various models studied in this paper allow us to draw the following
picture of conjoint measurement models.

Additive Transitive ←→ Transitive Decomposable
Model (1) Model (2)
l l

Additive Nontransitive ←→ Decomposable Nontransitive
Models (4) Models (Mx)

We analyze below how the various models in this diagram are related.
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• The connections between models (1) and (2) are elucidated in
Krantz et al. (1971, Chapters 6 and 7). When n ≥ 3, going from
model (1) to model (2) amounts to replacing independence by
weak independence and replacing the archimedean and solvability
assumptions (or continuity and topological assumptions) by the
requirement that the weak order % has a numerical representation.

• The connections between model (1) and the various models going
under (4) (depending on the properties of the functions pi) have
been well studied in Fishburn (1990b, 1991b, 1992a) and Vind
(1991). We take here the example of the skew symmetric version
of (4) in which % is complete.

When n = 2 model (4) is significantly different from model (1)
since it relates more to ordinal than to conjoint measurement.

When n ≥ 3, in the finite case, results for (1) and (4) are re-
markably similar both using a denumerable set of necessary and
sufficient conditions. The only, but essential, difference being that
only cancellation conditions unrelated with transitivity are used
in the characterization of model (4) (compare e.g. Fishburn (1970,
Theorem 4.1.C) with Fishburn (1991b, Theorem A)).

In the general case with n ≥ 3, the characterization of both
models appeals to unnecessary structural assumptions. Although
the structural assumptions needed for models of type (4) may be
slightly different from the assumptions needed for model (1) (be-
ing generally stronger), Fishburn (1990b, 1991b) show that adding
transitivity to the other conditions used in these results precipi-
tates model (1). When proper structural assumptions are used,
nice uniqueness results obtain in both models (with pi unique up
to the multiplication by a common positive constant in (4) and ui

defining interval scales with a common unit in (1)).

• When investigating the links between model (2) and the models
of type (M), it should be observed that (2) does not imply any of
RC1, RC2 and TC (examples are easily built using a polynomial
representation of the type (x+y)×z in (2)). It thus seems that the
easiest way to connect both types of models is to start with the,
almost, trivial model (M) and add to it completeness, transitivity
and weak independence.

• As mentioned in remark 8 above, the connections between models
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of type (4) and models of type (M) are easily established. For
instance going from (M3 ′) to the skew symmetric version of (4)
mainly amounts to imposing a condition implying the generaliza-
tion of TC to subsets of attributes and adding adequate structural
assumptions (compare Fishburn (1991b, Theorem C) with part 6
of theorem 2). For clear reasons, in the n = 2 case both type of
models are equivalent. The same is true comparing model (M1 ′)
with the version of (4) with pi(xi, yi) = 0 studied in Vind (1991),
although in this last result the interactions between necessary con-
ditions (the generalization of RC1 to subsets of attributes) and
the structural assumptions stated in topological terms seem very
strong (implying independence).

10. When n ≥ 3 most results on model (1) appeal to independence rather
than TC (Debreu, 1960; Krantz et al., 1971). Although it is true that
independence is a simpler condition that may be easier to test than TC,
our results suggest to reconsider the role of independence as the “central
condition” in conjoint measurement models. Indeed, theorem 2 shows
that some cancellation conditions has much more “power” on their
own (i.e. when analyzed without supposing any particular structure
on X and any other property for %) than others (note that this is
related to the comments of Furkhen and Richter (1991) concerning the
difficulty to separate, in classical theorems analyzing (1), the respective
roles of necessary structural conditions and the unnecessary structural
assumptions). Although TC, in presence of reflexivity, is stronger than
independence, its use leads:

• to avoid the asymmetry between the n = 2 and the n ≥ 3 cases
in the analysis of model (1) (Wakker, 1989, Th.III.6.6.(iii)) and

• together with completeness, to the already rather well-structured
model (M3 ′) on sets having no particular structure.

11. A different line of specialization of (M) and its extensions involves
“intra-attribute decomposability”, i.e. the specification of a particu-
lar functional form for the functions pi. Let us notice that model (M)
may equivalently, for finite or countably infinite X, be written as:

x % y ⇔ F (φ1(u1(x1), v1(y1)), . . . , φn(un(xn), vn(yn))) ≥ 0 (10)
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where ui and vi are real-valued functions on Xi and φi is a real-valued
function on ui(Xi) × vi(Xi). To show how this is possible, define the
binary relations ER

i and EL
i on Xi letting for all xi, yi ∈ Xi:

xiE
R
i yi ⇔ (xi, zi) ∼∗

i (yi, zi), for all zi ∈ Xi,

xiE
L
i yi ⇔ (zi, yi) ∼∗

i (zi, xi), for all zi ∈ Xi.

It is clear that ER
i and EL

i are equivalence relations. Since X has been
supposed to be denumerable, there are real-valued functions ui and vi

on Xi so that, for all xi, yi ∈ Xi:

[xiE
R
i yi ⇔ ui(xi) = ui(yi)] and

[xiE
L
i yi ⇔ vi(xi) = vi(yi)].

Given a particular representation of % in model (M), define φi on
ui(Xi) × vi(Xi) letting, for all xi, yi ∈ Xi, φi(u(xi), v(yi)) = pi(xi, yi).
The well-definedness of φi easily follows from the definitions of ∼∗

i , E
R
i

and EL
i .

Imposing additional properties on the functions φi (e.g. requiring that
ui ≡ vi or that φi is nondecreasing in its first argument and nonincreas-
ing in its second argument) leads to nontrivial models that are studied
in Bouyssou and Pirlot (2001). These additional conditions may be
combined with the variety of models studied in this paper. This large
variety of models will bring us closer to the additive difference model
(3) while not invoking the full force “inter-attribute additivity” and
“intra-attribute subtractivity”. This gives rise to models that are “in
between” (2) and (M) much like the additive difference model (3) is
“in between” models (1) and (4). The intuition behind these intra-
decomposable models is that the “weight of the difference” between
elements of Xi (i.e. pi(xi, yi)) may be understood via linear arrange-
ments on these elements (through the functions ui and vi).

5 Discussion

We hope, in the preceding section, to have convinced the reader that there
may be a formal interest in studying “unconventional” representations of
nontransitive relations. Apart from this formal interest, let us mention that:
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• The various cancellation conditions used in theorem 2 appear to be
easily subjected to empirical tests. In view of our results we are inclined
to consider that RC1, RC2 and TC qualify as central conditions for
conjoint measurement models whether or not they are transitive or
complete. This calls for empirical future research.

• The various models studied in this paper were shown in Greco, Ma-
tarazzo, and S lowiński (1999a, 1999b) to have close connections with
preference models representable by “if . . . then . . . ” rules that fre-
quently arise in Artificial Intelligence.

• As already discussed in Goldstein (1991), our models are flexible enough
to encompass many aggregation rules that have been proposed in the
literature, e.g. additive utility, additive differences, (weighted) major-
ity or greatest attractiveness difference (Russo & Dosher, 1983; Huber,
1979; Dahlstrand & Montgomery, 1984; Montgomery & Svenson, 1976;
Svenson, 1979; Payne, Bettman, & Johnson, 1988; Ball, 1997; Aschen-
brenner, 1981; Aschenbrenner, Albert, & Schalhofer, 1984).

• Our framework is sufficiently general to encompass “compensatory” as
well as “noncompensatory” preference relations, e.g. a preference based
on a weighted sum and a preference based on a lexicographic rule. As
shown in Bouyssou and Pirlot (2002), this leads to a characterization
of noncompensatory preferences avoiding the use of highly specific con-
ditions as done in Fishburn (1976) and Bouyssou and Vansnick (1986)
and gives clues on how to define the “degree of compensatoriness” of a
preference relation.

Future research on the topics discussed in this paper will include:

• the study of various “intra-decomposable” versions of our models (Bou-
yssou & Pirlot, 2001) exploring particular functional forms for the pi,

• the generalization of our results to aggregation methods leading to val-
ued preference relations (Bouyssou & Pirlot, 1999; Bouyssou, Pirlot, &
Vincke, 1997; Pirlot & Vincke, 1997),

• the specialization of our results to the case in which X is an homo-
geneous Cartesian product (Xi = Xj,∀i, j ∈ N) which includes the
important case of decision under uncertainty (Bouyssou, Perny, & Pir-
lot, 2000),
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• the study of additional conditions making possible to specify a precise
functional form for F (e.g. min or max).

Appendix: Examples

We provide below simple examples showing that models (M0), (M1 ′), (M2 ′),
(M3) and (M3 ′) are indeed different.

Example 1

Let X = R2 and, for all x, y ∈ X, x % y ⇔ F (p1(x1, y1), p2(x2, y2)) ≥ 0,
with pi(xi, yi) = xi − yi and F (p1, p2) = p1 × p2.

By construction, % has a representation in model (M0). It is easy to see
that % violates RC1 and, thus, cannot be represented in (M1 ′).

Example 2

Let X = R2 and, for all x, y ∈ X, x % y ⇔ F (p1(x1, y1), p2(x2, y2)) ≥ 0,

with p2(x2, y2) = x2 − y2, p1(x1, y1) =

{
x1 − y1 if x1 ≥ y1,
|x1|(x1 − y1) otherwise,

and F (p1, p2) = p1 + p2.
By construction, % has a representation in model (M1 ′).
Observe that %∗∗

1 is not complete since neither (3; 1) %∗∗
1 (11; 10) nor

(11; 10) %∗∗
1 (3; 1). Indeed there are (x2, y2) such that [(1, x2) % (3, y2)]

and Not[(10, x2) % (11, y2)], which implies Not[(3; 1) %∗
1 (11; 10)] so that

Not[(3; 1) %∗∗
1 (11; 10)]. Similarly, there are (x2, y2) such that [(3, x2) %

(1, y2)] and Not[(11, x2) % (10, y2)], which implies Not[(11; 10) %∗
1 (3; 1)] so

that Not[(11; 10) %∗∗
1 (3; 1)]. Hence % violates RC2 and cannot be repre-

sented in (M2 ′).

Example 3

Let X = R2 and, for all x, y ∈ X, x % y ⇔ F (p1(x1, y1), p2(x2, y2)) ≥ 0,
with pi(xi, yi) = 2

Π
arctan (xi − yi) and F (p1, p2) = p1 + p2 + p1p2.

It is easily checked that % satisfies model (M2 ′) since all functions pi are
skew symmetric and F is increasing in all its arguments. The relation % is
not complete (taking (x, y) such that p1(x1, y1) = 1/4 and p2(x2, y2) = −1/4,
we have neither (x1, x2) % (y1, y2) nor (y1, y2) % (x1, x2)). Hence % cannot
be represented in model (M3).
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Example 4

Let X = R2 and, for all x, y ∈ X, x % y ⇔ F (p1(x1, y1), p2(x2, y2)) ≥ 0,

with pi(xi, yi) = xi − yi and F (p1, p2) =

{
p1 + p2 if |p1 + p2| ≥ 1,
0 otherwise.

By construction, % has a representation in (M3). Simple examples show
that % violates TC so that it cannot be represented in (M3 ′).
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