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Belgium). The warm hospitality of the Service de Mathématique de la Gestion,
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1 Introduction

Conjoint measurement (Krantz, Luce, Suppes, and Tversky, 1971; Wakker,
1989) studies binary relations defined on product sets. There are many situ-
ations in which such binary relations are of central interest. Among them let
us mention:

• Multiple criteria decision making using a preference relation comparing al-
ternatives evaluated on several attributes (see Belton and Stewart, 2001;
Keeney and Raiffa, 1976; Roy, 1996; von Winterfeldt and Edwards, 1986),

• Decision under uncertainty using a preference relation comparing alterna-
tives evaluated on several states of nature (see Anscombe and Aumann,
1963; Fishburn, 1970b, 1988; Gul, 1992; Savage, 1954; Shapiro, 1979; Wakker,
1984, 1989),

• Consumer theory manipulating preference relations for bundles of several
goods (see Debreu, 1959),

• Intertemporal decision making using a preference relation between alterna-
tives evaluated at several moments in time (see Keeney and Raiffa, 1976;
Koopmans, 1960, 1972),

• Inequality measurement comparing distributions of wealth across several
individuals (see Atkinson, 1970; Ben-Porath and Gilboa, 1994; Ben-Porath,
Gilboa, and Schmeidler, 1997; Weymark, 1981)

Given a binary relation % on a set X = X1 × X2 × · · · × Xn, the theory of
conjoint measurement consists in finding conditions under which it is possible
to build a convenient numerical representation of % and to study the unique-
ness of this representation. Manipulating numbers is clearly much easier than
manipulating binary relations. Furthermore, in most cases, the proofs show-
ing the existence of a numerical representation gives very useful hints on how
to build this representation and, thus, assess preferences. Finally, the condi-
tions on % guaranteeing the existence of a numerical representation can be
subjected to empirical tests (Krantz et al., 1971). This explains why conjoint
measurement has attracted much attention in many different fields of research.

In traditional models of conjoint measurement the binary relation studied is
most often supposed to be complete and transitive and the numerical repre-
sentation is sought to be additive. The central model is the additive utility
model such that:

x % y ⇔
n
∑

i=1

ui(xi) ≥
n
∑

i=1

ui(yi) (1.1)
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where ui are real-valued functions on the sets Xi and it is understood that
x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn).

The axiomatic analysis of this model is now quite firmly established (see De-
breu, 1960; Krantz et al., 1971; Wakker, 1989) and additive utilities form
the basis of many decision analysis techniques (see French, 1993; Keeney and
Raiffa, 1976; von Winterfeldt and Edwards, 1986; Wakker, 1989). For recent
advances on this model we refer the reader to Fishburn (1992b); Gonzales
(1996, 2000, 2003); Karni and Safra (1998); Köbberling (2003); Nakamura
(2002).

This central model raises two types of difficulties. First it excludes all rela-
tions that would not be complete or transitive whereas the reasonableness of
this hypothesis has been challenged by many authors (see May, 1954; Roy,
1996; Tversky, 1969). Second, its axiomatic analysis raises subtle technical
difficulties. When X is finite (but of arbitrary cardinality), it is well-known
(see Scott, 1964) that its characterization implies using a system of axioms
involving a denumerable number of cancellation conditions guaranteeing the
existence of solutions to a system of (finitely many) linear inequalities (Jaffray,
1974, extends this approach to sets of arbitray cardinality). Such an axiom
system is hardly interpretable and testable. When X is infinite the picture
changes provided that conditions are imposed in order to guarantee that the
structure of X is “close” to the structure of R and that % behaves consistently
in this continuum. This allows to consider only a limited number of cancel-
lation conditions on %. These necessary conditions however interact with the
non-necessary structural assumptions imposed on X (e.g. solvability used in
Krantz et al. (1971, Chapter 6)), which may obscure their interpretation and
test (see Krantz et al. (1971, Chapter 9), Furkhen and Richter (1991)). Fur-
thermore, the analysis of the n = 2 case has then to be separated from that
of the n ≥ 3 case.

Several authors have forcefully argued in favor of studying conjoint measure-
ment models that would tolerate intransitive and incomplete binary relations
(see Bouyssou and Pirlot, 2002d; Fishburn, 1990a, 1991a,b; May, 1954; Roy,
1996; Roy and Bouyssou, 1993; Tversky, 1969). The ones that we propose
here will allow us to capture nontransitive and/or incomplete binary relations
while being rather simple to analyze from an axiomatic point of view. In order
to get a feeling for these various models, it is useful to envisage the various
strategies that are likely to be implemented when comparing objects differing
on several dimensions (see Dahlstrand and Montgomery, 1984; Montgomery,
1977; Montgomery and Svenson, 1976; Russo and Dosher, 1983; Svenson, 1979;
Tversky, 1969).

Consider two alternatives x and y evaluated on a family of n attributes so
that x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn). A first strategy that can

3



be used in order to decide whether or not it can be said that “x is at least
as good as y” consists in trying to measure the “worth” of each alternative on
each attribute and then to combine these evaluations adequately. Abandoning
all idea of transitivity and completeness, this suggests a model in which:

x % y ⇔ F (u1(x1), u2(x2), . . . , un(xn), u1(y1), u2(y2), . . . , un(yn)) ≥ 0 (1.2)

where ui are real-valued functions on the Xi and F is a real-valued function
on

∏n
i=1 ui(Xi)

2. Additional properties on F , e.g. its nondecreasingness (resp.
nonincreasingness) in its first (resp. last) n arguments, will give rise to a variety
of models implementing this first strategy.

A second strategy relies on the idea of measuring “preference differences” sep-
arately on each attribute and then combining these (positive or negative)
differences in order to know whether the aggregation of these differences leads
to an advantage for x over y. More formally, this suggests a model in which:

x % y ⇔ G(p1(x1, y1), p2(x2, y2), . . . , pn(xn, yn)) ≥ 0 (1.3)

where pi are real-valued functions on X2
i and G is a real-valued function on

∏n
i=1 pi(X

2
i ). Additional properties on G (e.g. its oddness or its nondecreas-

ingness in each of its arguments) or on pi (e.g. pi(xi, xi) = 0 or pi(xi, yi) =
−pi(yi, xi)) will give rise to a variety of models in line with the above strategy.

Of course these two strategies are not incompatible and one may well envisage
to use the “worth”of each alternative on each attribute to measure “preference
differences”. This suggests a model in which:

x % y ⇔ H(φ1(u1(x1), u1(y1)), φ2(u2(x2), u2(y2)), . . . , φn(un(xn), un(yn))) ≥ 0
(1.4)

where ui are real-valued functions on Xi, φi are real-valued functions on
ui(Xi)

2 and H is a real-valued function on
∏n

i=1 φi(ui(Xi)
2).

This paper is devoted to the analysis of several variants of (1.2), (1.3) and
(1.4). We shall provide a fairly complete axiomatic analysis of these models
and use them as a general framework allowing to understand the characteristics
and differences between several aggregation models.

It should be noted that the introduction of intransitivities in conjoint mea-
surement models is not new. A. Tversky (1969) was one of the first to propose
such a model generalizing (1.1), known as the additive difference model, in
which:

x % y ⇔
n
∑

i=1

Φi(ui(xi) − ui(yi)) ≥ 0 (1.5)

where Φi are increasing and odd functions. This model was axiomatized in
Fishburn (1992a). More recently, additive nontransitive models were proposed

4



in Bouyssou (1986); Fishburn (1990a,b, 1991a, 1992c) and Vind (1991). They
are of the following general type:

x % y ⇔
n
∑

i=1

pi(xi, yi) ≥ 0 (1.6)

where the pi are real-valued functions on X2
i and may have several additional

properties (e.g. pi(xi, xi) = 0, for all i ∈ {1, 2, . . . , n} and all xi ∈ Xi).

Comparing (1.2), (1.3) and (1.4) with (1.5) or (1.6) shows that the main
particularity of our models lies in the use of a general class of functions instead
of just addition and subtraction. This is quite reminiscent of the extension
of (1.1) introduced in Krantz et al. (1971, Ch. 7), known as the decomposable
transitive model, in which:

x % y ⇔ F (u1(x1), u2(x2), . . . , un(xn)) ≥ F (u1(y1), u2(y2), . . . , un(yn)), (1.7)

where F is increasing in all its arguments.

The use of very general functional forms, instead of additive ones, will greatly
facilitate the axiomatic analysis of our models. It mainly relies on the study
of various kinds of traces induced by the preference relation on coordinates
and does not require a detailed analysis of tradeoffs between attributes.

The price to pay for such an extension of the scope of conjoint measurement
is that the number of parameters that would be needed to assess such models
is quite high. Furthermore, none of them is likely to possess any remarkable
uniqueness properties. Therefore, although proofs are constructive, these re-
sults will not give direct hints on how to devise assessment procedures. The
general idea is to use numerical representations as guidelines to understand
the consequences of a limited number of cancellation conditions, without im-
posing any transitivity or completeness requirement on the preference relation
and any structural assumptions on the set of objects. They are not studied
for their own sake and our results are not intended to provide clues on how to
build them.

With few exceptions, this paper does not contain new results but synthe-
sizes results scattered in Bouyssou and Pirlot (1999) and Bouyssou and Pirlot
(2002a,d,f); Bouyssou et al. (1997). The presentation of the results is however
new, emphasizing the underlying strategy and framework.

We shall suppose throughout the paper that binary relations are defined on
countable (i.e. finite or countably infinite) sets, referring the reader to the orig-
inal papers for the study of the general case. Contrary to what happens with
conjoint measurement models involving an addition operation, this restrictive
hypothesis will allow us to skip many technical details while maintaining the
spirit of the results in the general case.
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This paper is organized as follows. Section 2 presents some background mate-
rial: we introduce our vocabulary concerning binary relations and recall some
well-known facts on traces. Section 3 studies binary relations defined on prod-
uct sets and introduces various kinds of traces on coordinates. In section 4
we investigate models of type (1.2), using marginal traces on levels. Section
5 studies models of type (1.3) using marginal traces on differences. Section
6 combines these two aspects with the study of models of type (1.4). A final
section discusses the results. Examples and technical details are relegated in
appendix.

In order to make this paper self-contained, we only omit proofs that are ele-
mentary. Therefore, given the variety of models studied, this paper is some-
what long. The reader willing to get a feeling of the results may skip all proofs
and remarks without loss of continuity.

2 Background

2.1 Binary relations

A binary relation % on a set A is a subset of A× A. We write a % b instead
of (a, b) ∈ %. A binary relation % on A is said to be:

• reflexive if [a % a],
• complete if [a % b or b % a],
• symmetric if [a % b] ⇒ [b % a],
• asymmetric if [a % b] ⇒ Not[ b % a ],
• transitive if [a % b and b % c] ⇒ [a % c],
• Ferrers if

a % b
and
c % d











⇒











a % d
or

c % b,

• semi-transitive if
a % b
and
b % c











⇒











a % d
or

d % c,

for all a, b, c, d ∈ A.

The asymmetric (resp. symmetric) part of % is the binary relation ≻ (resp.
∼) on A defined letting, for all a, b ∈ A, a ≻ b ⇔ [a % b and Not[ b % a ]]
(resp. a ∼ b ⇔ [a % b and b % a]). A similar convention will hold when % is
subscripted and/or superscripted.
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A weak order (resp. an equivalence relation) is a complete and transitive (resp.
reflexive, symmetric and transitive) binary relation. An interval order is a
complete and Ferrers binary relation; a semiorder is a semi-transitive interval
order. If % is an equivalence on A, A/% will denote the set of equivalence
classes of % on A.

2.2 Traces of binary relations

The idea that any binary relation generates various reflexive and transitive
binary relations called traces dates back at least to the pioneering work of
Luce (1956). The use of traces have proved especially useful in the study of
preference structures tolerating intransitive indifference such as semiorders or
interval orders (see Aleskerov and Monjardet, 2002; Fishburn, 1985; Pirlot and
Vincke, 1997).

Definition 2.1 (Traces of binary relations). Let % be a binary relation on a
set A. We associate to % three binary relations on A, called traces, letting,
for all a, b ∈ A:

Left Trace a %+ b ⇔ [b % c ⇒ a % c],
Right Trace a %− b ⇔ [c % a ⇒ c % b],
Trace a %± b ⇔ [a %+ b and a %− b].

Following our conventions, ∼+ and ≻+ will denote the symmetric and asym-
metric parts of %+, the same holding for %− and %±. Useful connections
between % and its traces are summarized below for the ease of future refer-
ence. All of them are straightforward consequences of the preceding definition.

Proposition 2.2 (Properties of traces).

(1) ∼+, ∼− and ∼± are equivalence relations (reflexive, symmetric and tran-
sitive).

(2) %+, %− and %± are reflexive and transitive binary relations.
(3) For all a, b, c, d ∈ A:

[a % b, b %− c] ⇒ a % c, (2.1)

[a % b, c %+ a] ⇒ c % b, (2.2)

[d %± a, b %± c] ⇒















a % b ⇒ d % c,

and

a ≻ b ⇒ d % c,

(2.3)

[d ∼± a, b ∼± c] ⇒











a % b ⇔ d % c,
and
a ≻ b ⇔ d ≻ c.

(2.4)
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The following proposition summarizes a number of well-known facts about
traces (see Fishburn, 1985; Monjardet, 1978; Pirlot and Vincke, 1997; Roubens
and Vincke, 1985).

Proposition 2.3 (Completeness of global traces).

(1) %+ is complete ⇔ %− is complete ⇔ % is Ferrers.
(2) %± is complete ⇔ % is Ferrers and semi-transitive.

For a detailed analysis of the rôle of traces in various domains of preference
modelling we refer to Aleskerov and Monjardet (2002); Doignon, Monjardet,
Roubens, and Vincke (1988); Laslier (1997); Monjardet (1978); Pirlot and
Vincke (1997); Roubens and Vincke (1985).

2.3 General numerical representations

We present here very general numerical representations of binary relations that
will serve later as guidelines. Although the “results” in this section are part of
the folklore of binary relations (see Ebert, 1985), we outline their proof, the
logic of which being useful in the sequel.

Let % be a binary relation on a countable (i.e. finite or countably infinite) set
A. It is clearly always possible to build a, trivial, numerical representation of
% such that:

a % b ⇔ T (a, b) ≥ 0, (T )

where T is a real-valued function on A2 defined letting, for all a, b ∈ A:

T (a, b) =

{

+1 if a % b,
−1 otherwise.

It is possible to even further specify the trivial numerical representation (T )
as shown below.

Proposition 2.4 (Trivial numerical representation). Let % be a binary re-
lation on a countable set A. There is a real-valued function u on A and a
real-valued function F on u(A)2 such that, for all a, b ∈ A:

a % b ⇔ F(u(a), u(b)) ≥ 0, (F0)

PROOF. The relation ∼± is an equivalence. Since A is countable (in fact,
as soon as the cardinality of A/∼± is not “too large”), there is a real-valued
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function u on A such that, for all a, b ∈ A:

a ∼± b ⇔ u(a) = u(b). (2.5)

Take any function u satisfying (2.5) and define F letting, for all a, b ∈ A:

F(u(a), u(b)) =

{

+1 if a % b,
−1 otherwise.

(2.6)

We have to show that F is well-defined, i.e. that [u(a) = u(c) and u(b) = u(d)]
implies [a % b ⇔ c % d]. This follows from (2.4).

Remark 2.5 (Uniqueness). The reader will have noticed that the above proof
shows a little more than the mere statement of proposition 2.4. We have in
fact shown that there always exists a representation in model (F0) in which
u represents ∼±. This is by no means necessary however. In fact, since A
is countable there is a one-to-one function v between A and some countable
subset of R. Any such one-to-one function v may clearly be used instead of a
function u representing ∼±. Since in that case [v(a) = v(c) and v(b) = v(d)]
implies [a = c and b = d], using (2.6) always leads to a well-defined function F .
This trivial representation is therefore defiantly irregular (see Roberts, 1979,
ch. 2). Observe finally that any function G assigning arbitrary nonnegative
values to ordered pairs (u(a), u(b)) such that a % b and arbitrary negative
values otherwise may be used instead of F .

It is not difficult to extend the above trivial representation to the general
uncountable case. All that is required is that the cardinal of A should not be
“too large”, i.e., there should be enough real numbers to distinguish elements
of A that have to be distinguished. This will be the case as soon as there is a
one-to-one correspondence between A/∼± and some subset of R.

We now consider nontrivial numerical representations obtained imposing ad-
ditional constraints on the trivial model (F0).

Proposition 2.6 (General models). The function F in model (F0) can be
chosen so that, for all x, y ∈ X,

(1) F(u(x), u(x)) ≥ 0 iff % is reflexive, (model (F1)).
(2) F(u(x), u(y)) = −F(u(y), u(x)) iff % is complete (model (F2)).
(3) F is increasing in its first argument and decreasing in its second argument

iff % is Ferrers and semi-transitive (model (F3)).
(4) F(u(x), u(y)) = −F(u(y), u(x)) and F is nondecreasing in its first ar-

gument and nonincreasing in its second argument iff % is a semiorder
(model (F4)).

(5) F(u(x), u(y)) = −F(u(y), u(x)) and F is increasing in its first argument
and decreasing in its second argument iff % is a weak order (model (F5)).
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In this case, it is always possible to take F(α, β) = α− β (model (U0)).

PROOF. Part 1 is obvious in view of proposition 2.4.

Part 2. The necessity of completeness is clear. In order to show sufficiency,
take any function u satisfying (2.5) and define F letting, for all a, b ∈ A:

F(u(a), u(b)) =











+1 if a ≻ b,
0 if a ∼ b,

−1 otherwise.
(2.7)

Using the completeness of % and (2.4), it is easy to see that F is well-defined
and skew symmetric.

Part 3. The necessity of Ferrers and semi-transitivity is easily established
using the properties of F . Let us, for instance, show that % is semi-transitive.
Suppose that a % b and b % c. Hence F(u(a), u(b)) ≥ 0 and F(u(b), u(c)) ≥
0. If u(b) ≥ u(d) then F(u(a), u(d)) ≥ F(u(a), u(b)) ≥ 0 so that a % d.
Otherwise we have u(d) > u(b), which implies F(u(d), u(c)) > F(u(b), u(c)) ≥
0 so that d % c.

In order to show sufficiency, remember from part 2 of proposition 2.3 that,
when % is Ferrers and semi-transitive, %± is a weak order. Since A is count-
able, there is a real-valued function u such that, for all a, b ∈ A:

a %± b ⇔ u(a) ≥ u(b). (2.8)

Using any function u satisfying (2.8), define F letting, for all a, b ∈ A,

F(u(a), u(b)) =

{

+ exp(u(a) − u(b)) if a % b,
− exp(u(b) − u(a)) otherwise.

(2.9)

That F is well-defined follows from (2.4). Its monotonicity properties follow
from (2.3) and its definition.

Part 4. The necessity of completeness, Ferrers and semi-transitivity is easily
established. We show sufficiency. Since % is Ferrers and semi-transitive and A
is countable, there is a function u satisfying (2.8). Using any such function u,
define F as in (2.7). That F is well-defined and skew symmetric follows from
(2.4), since ∼± is the symmetric part of %±. The monotonicity properties of
F follow from (2.3).

Part 5. Necessity. Suppose that a % b and b % c. Hence F(u(a), u(b)) ≥ 0 and
F(u(b), u(c)) ≥ 0. Since F is skew symmetric, we know that F(u(c), u(b)) ≤ 0.
Using the increasingness of F , F(u(a), u(b)) ≥ 0 and F(u(c), u(b)) ≤ 0 imply
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u(a) ≥ u(c). Since F(u(a), u(a)) = 0, because F is skew symmetric, we have
F(u(a), u(c)) ≥ 0 so that a % c. Hence, % is transitive.

Sufficiency. Since % is a weak order and A is countable, there is a function u
such that, for all a, b ∈ A:

a % b ⇔ u(a) ≥ u(b).

Using any such function u, define F letting, for all a, b ∈ A, F(u(a), u(b)) =
u(a) − u(b). The well-definedness of F easily follows from the fact that % is
a weak order.

Remark 2.7 (Uniqueness). A word on the uniqueness of the representations
in proposition 2.6 is in order. Observe that in parts 1 and 2, any one-to-one
function v between A and some countable subset of R may be used instead
of u representing ∼±. The only difference between the two parts being in the
flexibility for the choice of F .

For parts 3 and 4, we have shown that u may always be chosen so as to
represent %±. Again, this is by no means necessary. Any real-valued function
v on A such that, for all, a, b ∈ A,

a ≻± b ⇒ v(a) > v(b), (2.10)

may also clearly be used with the same function F as in the above proof.

For part 5, the uniqueness depends on whether one wishes a representation in
model (F5) or in model (U0). The uniqueness properties of u in model (U0)
are well-known. Clearly, model (F5) offers much more flexibility. Observe that
(2.10) is a necessary condition for u to be used in such a representation. It is no
more sufficient however since it might happen that a ∼± b and a ∼ c. In such
a situation, we must guarantee that u(a) = u(b) otherwise the increasingness
of F would lead to c ≻ b or b ≻ c (depending on whether u(b) < u(a) or
u(b) > u(a)) whereas a ∼± b and a ∼ c imply, using (2.4), b ∼ c.

In all parts, the possible degrees of freedom in the choice of F are obvious.

Again, the extension to the general uncountable case should be clear. For
parts 1 and 2, it suffices to require that there is a one-to-one correspondence
between A/∼± and some subset of R. For all other parts, it is necessary and
sufficient to require that the weak order %± has a numerical representation
(i.e., A must have a countable order dense subset w.r.t. %±) since the weak
order induced by u refines %±.

The numerical representations envisaged so far are summarized in table 1.
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Table 1
General numerical representations

Models Definition Conditions

(T ) a % b ⇔ T (a, b) ≥ 0
m ∅

(F0) a % b ⇔ F(u(a), u(b)) ≥ 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(F1) (F0) with F(α,α) ≥ 0 refl.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(F2) (F0) with F(α, β) = −F(β, α) cpl.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(F3) (F0) with F(րր,ցց)
Ferrers and

semi-transitivity
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(F4) (F2) with F(ր,ց) semiorder
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(F5) (F2) with F(րր,ցց)
m weak order

(U0) a % b ⇔ u(a) ≥ u(b)

ր means nondecreasing, ց means nonincreasing
րր means increasing, ցց means decreasing

refl. means reflexive, cpl. means complete

3 Binary relations on product sets

In the rest of this paper, we consider a countable set X =
∏n

i=1Xi with n ≥ 2.
Elements x, y, z, . . . of X will be interpreted as alternatives evaluated on a
set N = {1, 2, . . . , n} of attributes. A typical binary relation of X is still
denoted as % with ∼ and ≻ as symmetric and asymmetric parts. Again, a
similar convention holds when % is superscripted and/or subscripted. It is
useful to interpret % as an “at least as good as” preference relation between
multi-attributed alternatives.

For any nonempty subset J of the set of attributes N , we denote by XJ (resp.
X−J) the set

∏

i∈J Xi (resp.
∏

i/∈J Xi ). With customary abuse of notation,
(xJ , y−J) will denote the element w ∈ X such that wi = xi if i ∈ J and
wi = yi otherwise. When J = {i} we shall simply write X−i and (xi, y−i). We
say that % is marginally complete for i ∈ N if (xi, a−i) % (yi, a−i) or (yi, a−i) %
(xi, a−i), for all xi, yi ∈ Xi and all a−i ∈ X−i, i.e. if no incomparability occurs
when comparing alternatives differing only on attribute i ∈ N .
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3.1 Independence and marginal preferences

In conjoint measurement, one starts with a preference relation % on X . It is
then important to investigate how this information enables to define preference
relations on attributes or subsets of attributes. Let J ⊆ N be a nonempty set
of attributes. We define the marginal relation %J induced on XJ by % letting,
for all xJ , yJ ∈ XJ :

xJ %J yJ ⇔ (xJ , z−J) % (yJ , z−J), for all z−J ∈ X−J ,

with asymmetric (resp. symmetric) part ≻J (resp. ∼J ). Note that if % is
reflexive (resp. transitive), the same will be true for %J . This is clearly not
true for completeness however.

We define two other binary relations induced by % on XJ , letting for all
xJ , yJ ∈ XJ ,

xJ SJ yJ ⇔ (xJ , z−J) % (yJ , z−J), for some z−J ∈ X−J ,

and
xJ PJ yJ ⇔ (xJ , z−J) ≻ (yJ , z−J), for some z−J ∈ X−J .

Definition 3.1 (Independence and separability). Consider a binary relation
% on a set X =

∏n
i=1Xi and let J ⊆ N be a nonempty subset of attributes.

We say that % is:

(1) independent for J if SJ ⊆ %J ,
(2) separable for J if PJ is asymmetric.

If % is independent (resp. separable) for all nonempty subsets of N , we say that
% is independent (resp. separable). If % is independent (resp. separable) for
all subsets containing a single attribute, we say that % is weakly independent
(resp. weakly separable).

Independence is a classical notion in conjoint measurement. It states that
common evaluations on some attributes do not influence preference. Whereas
independence implies weak independence, it is well-know that the converse is
not true (see Wakker, 1989).

Independence implies separability but not vice versa. Separability is a weak-
ening of independence that can be motivated considering aggregation models
based on “Max”or “Min”. It forbids strict reversals of preference when varying
common evaluations on some attribute.

Remark 3.2 (Completeness of %i). Let us observe that when % is complete
and independent for i ∈ N then %i is clearly complete. It is not difficult to
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see that %i is complete if and only if % is marginally complete and weakly
separable for i ∈ N . The marginal preference relation %i reflects the compar-
ison of xi and yi when they are adjoined with the same evaluations on X−i.
This does not exploit all the information contained in %. The marginal traces
on levels will do so.

Remark 3.3 (Terminology). Weak independence is called “weak separability”
in Wakker (1989). Other authors (see Blackorby, Primont, and Russell, 1978;
Färe and Primont, 1981; Mak, 1984) use“separability” instead of independence
and “weak separability” instead of separability.

3.2 Marginal traces on levels

The definitions and results from section 2.2 clearly apply when % is a binary
relation on a product set X =

∏n
i=1Xi. Hence, the binary relation % has a

left trace (resp. right trace and trace) %+ (resp. %− and %±) that is reflexive
and transitive.

Consider an attribute i ∈ N . Sticking to the notation introduced above, %+
i

(resp. %−
i and %±

i ) will denote the marginal preference relation induced on Xi

by %+ (resp. %− and %±), i.e.

xi %
+
i yi ⇔ [(xi, z−i) %

+ (yi, z−i), for all z−i ∈ X−i],

xi %
−
i yi ⇔ [(xi, z−i) %

− (yi, z−i), for all z−i ∈ X−i],

xi %
±
i yi ⇔ [(xi, z−i) %

± (yi, z−i), for all z−i ∈ X−i].

Since, by construction, %+, %− and %± are reflexive and transitive, the same
is true for %+

i , %−
i and %±

i . As shown in the following lemma, %+
i (resp. %−

i

and %±
i ), the marginal relation induced on Xi, i ∈ N, by the global trace %+

(resp. %−
i and %±

i ) can also be usefully interpreted as a marginal trace on
levels on attribute i ∈ N .

Lemma 3.4 (Marginal traces on levels induced by traces). For all i ∈ N , all
xi, yi ∈ Xi, all a−i ∈ X−i and all z ∈ X:

(1) xi %
+
i yi ⇔ [(yi, a−i) % z ⇒ (xi, a−i) % z],

(2) xi %
−
i yi ⇔ [z % (xi, a−i) ⇒ z % (yi, a−i)],

(3) xi %
±
i yi ⇔











(yi, a−i) % z ⇒ (xi, a−i) % z,
and
z % (xi, a−i) ⇒ z % (yi, a−i).

PROOF. We give the proof of part 1, the proof of the other parts being
similar. By definition we have: xi %+

i yi ⇔ [(xi, a−i) %+ (yi, a−i), for all
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a−i ∈ X−i] ⇔ [(yi, a−i) % z ⇒ (xi, a−i) % z, for all a−i ∈ X−i and all
z ∈ X ].

Remark 3.5 (Marginal traces on levels and marginal preferences). The above
result should clarify the similarities and differences between the marginal
traces on levels %±

i and the marginal preferences %i. They are both defined
on Xi. However marginal traces use all information contained in % in order to
compare xi with yi including how they compare, when adjoined with the same
evaluations on X−i, with every other alternatives. On the contrary the defi-
nition of %i only relies on the comparison between xi with yi when adjoined
with the same evaluations on X−i. No other alternative is involved here.

As before, the symmetric and asymmetric parts of %+
i are respectively denoted

∼+
i and ≻+

i , the same convention applying to %−
i and %±

i (although it is
clearly possible to define marginal traces on a subset of attributes other than
singletons, we do not envisage this possibility in this paper).

As in proposition 2.2, there are many interesting connections between marginal
traces and %. We list some of them in the following lemma, leaving its easy
proof as an exercise for the reader.

Lemma 3.6 (Properties of marginal traces on levels). For all i ∈ N and
x, y, z, w ∈ X:

[x % y, zi %
+
i xi] ⇒ (zi, x−i) % y, (3.1)

[x % y, yi %
−
i wi] ⇒ x % (wi, y−i), (3.2)

[zi %
±
i xi, yi %

±
i wi] ⇒















x % y ⇒ (zi, x−i) % (wi, y−i),

and

x ≻ y ⇒ (zi, x−i) ≻ (wi, y−i),

(3.3)

[zi ∼
±
i xi, yi ∼

±
i wi, for all i ∈ N ] ⇒











x % y ⇔ z % w,
and
x ≻ y ⇔ z ≻ w.

(3.4)

It is clear that the marginal traces %+
i , %−

i and %±
i need not be complete.

Interesting consequences will arise when this is the case. This is explored in
section 4.

3.3 Marginal traces on differences

Wakker (1988, 1989) has powerfully shown how the consideration of induced
relations comparing “preference differences” on each attribute may illuminate
the analysis of conjoint measurement models. We follow the same path in this
section.
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Given a binary relation % on X , we define the binary relation %∗
i on X2

i letting,
for all xi, yi, zi, wi ∈ Xi,

(xi, yi) %
∗
i (zi, wi) iff

[for all a−i, b−i ∈ X−i, (zi, a−i) % (wi, b−i) ⇒ (xi, a−i) % (yi, b−i)].

Intuitively, if (xi, yi) %∗
i (zi, wi), it seems reasonable to conclude that the

preference difference between xi and yi is not smaller than the preference
difference between zi and wi. Notice that, by construction, %∗

i is reflexive and
transitive.

Contrary to our intuition concerning preference differences, the definition of
%∗

i does not imply that the two “opposite” differences (xi, yi) and (yi, xi) are
linked. Henceforth we introduce the binary relation %∗∗

i on X2
i letting, for all

xi, yi, zi, wi ∈ Xi,

(xi, yi) %
∗∗
i (zi, wi) iff [(xi, yi) %

∗
i (zi, wi) and (wi, zi) %

∗
i (yi, xi)].

It is easy to see that %∗∗
i is reflexive, transitive and reversible, i.e. (xi, yi) %

∗∗
i

(zi, wi) ⇔ (wi, zi) %
∗∗
i (yi, xi).

The relations %∗
i and %∗∗

i both appear to capture the idea of comparison of
preference differences between elements of Xi induced by the relation %. For
the sake of easy reference, we note a few useful connections between %∗

i , %
∗∗
i

and % in the following lemma.

Lemma 3.7 (Properties of marginal traces on differences). For all x, y ∈ X
and all zi, wi ∈ Xi,

% is independent iff (xi, xi) ∼
∗
i (yi, yi) for all i ∈ N, (3.5)

[x % y and (zi, wi) %
∗
i (xi, yi)] ⇒ (zi, x−i) % (wi, y−i), (3.6)

[(zi, wi) ∼
∗
i (xi, yi) for all i ∈ N ] ⇒ [x % y ⇔ z % w], (3.7)

[x ≻ y and (zi, wi) %
∗∗
i (xi, yi)] ⇒ (zi, x−i) ≻ (wi, y−i), (3.8)

[(zi, wi) ∼
∗∗
i (xi, yi) for all i ∈ N ] ⇒















[x % y ⇔ z % w]

and

[x ≻ y ⇔ z ≻ w].

(3.9)

PROOF. (3.5). It is clear that [% is independent] ⇔ [% is independent for
N \ {i}, for all i ∈ N ]. Observe that [% is independent for N \ {i}, for all
i ∈ N ] ⇔ [(xi, a−i) % (xi, b−i) ⇔ (yi, a−i) % (yi, b−i), for all xi, yi ∈ Xi and all
a−i, b−i ∈ X−i] ⇔ [(xi, xi) ∼∗

i (yi, yi) for all xi, yi ∈ Xi].

(3.6) is obvious from the definition of %∗
i . By induction, (3.7) is immediate.
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(3.8). Using (3.6), we know that (zi, x−i) % (wi, y−i). Suppose that (wi, y−i)
% (zi, x−i). Since (zi, wi) %∗∗

i (xi, yi) implies (yi, xi) %∗
i (wi, zi), (3.6) implies

y % x, a contradiction. (3.9) is immediate from (3.8).

It is clear that the marginal traces on differences %∗
i and %∗∗

i need not be
complete. Interesting consequences will arise when this is the case. This is
explored in section 5.

3.4 Relations between traces on levels and traces on differences

All the marginal traces envisaged up to this point (%+
i , %−

i , %±
i , %∗

i and %∗∗
i )

are induced by the same relation %. Clearly they are not unrelated. The
following lemma shows that they relate exactly as could be expected.

Lemma 3.8 (Relations between marginal traces). For all i ∈ N and all
xi, yi ∈ Xi,

(1) xi %
+
i yi ⇔ [(xi, wi) %

∗
i (yi, wi), for all wi ∈ Xi],

(2) xi %
−
i yi ⇔ [(wi, yi) %

∗
i (wi, xi), for all wi ∈ Xi],

(3) xi %
±
i yi ⇔ [(xi, wi) %

∗∗
i (yi, wi), for all wi ∈ Xi],

(4) [ℓi %
+
i xi and (xi, yi) %

∗
i (zi, wi)] ⇒ (ℓi, yi) %

∗
i (zi, wi),

(5) [yi %
−
i ℓi and (xi, yi) %

∗
i (zi, wi)] ⇒ (xi, ℓi) %

∗
i (zi, wi),

(6) [zi %
+
i ℓi and (xi, yi) %

∗
i (zi, wi)] ⇒ (xi, yi) %

∗
i (ℓi, wi),

(7) [ℓi %
−
i wi and (xi, yi) %

∗
i (zi, wi)] ⇒ (xi, yi) %

∗
i (zi, ℓi),

(8) [xi ∼
+
i zi and yi ∼

−
i wi] ⇒ (xi, yi) ∼∗

i (zi, wi),
(9) [xi ∼

±
i zi and yi ∼

±
i wi] ⇒ (xi, yi) ∼∗∗

i (zi, wi),

PROOF. Part 1. By definition, [xi %
+
i yi] ⇔ [(yi, a−i) % z ⇒ (xi, a−i) % z]

⇔ [(xi, zi) %∗
i (yi, zi), for all zi ∈ Xi]. The proof of part 2 is similar. Part 3

easily follows from parts 1 and 2.

Part 4. By definition, (xi, yi) %
∗
i (zi, wi) iff [(zi, a−i) % (wi, b−i) ⇒ (xi, a−i) %

(yi, b−i)]. Since ℓi %
+
i xi, (xi, a−i) % (yi, b−i) ⇒ (ℓi, a−i) % (yi, b−i). Therefore

(ℓi, yi) %∗
i (zi, wi). The proof of parts 5, 6 and 7 is similar. Part 8 easily

follows from parts 4, 5, 6, 7 since %∗
i is reflexive. Part 9 is immediate from

part 8.
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3.5 Trivial numerical representations on product sets

Arbitrary binary relations on product sets have trivial numerical representa-
tions of many different kinds (see Bouyssou and Pirlot, 2002a,d,f). We present
three of them below that will be easily compared with the general representa-
tions introduced above. We often abuse notation in the sequel, writing [ui(xi)]
instead of (u1(x1), u2(x2), . . . , un(xn)). This should not cause confusion.

Proposition 3.9 (Trivial representations on product sets). Let % be a binary
relation on a countable set X =

∏n
i=1Xi.

(1) There are real-valued functions ui on Xi and a real valued function F on
[
∏n

i=1 ui(Xi)]
2 such that, for all x, y ∈ X,

x % y ⇔ F ([ui(xi)]; [ui(yi)]) ≥ 0. (L0)

(2) There are real-valued functions pi on X2
i and a real valued function G on

∏n
i=1 pi(X

2
i ) such that, for all x, y ∈ X,

x % y ⇔ G([pi(xi, yi)]) ≥ 0 (D0)

(3) There is a real-valued function ui on Xi, a real-valued function φi on
ui(Xi)

2 and a real-valued function H on
∏n

i=1 φi(ui(Xi)
2) such that, for

all x, y ∈ X,

x % y ⇔ H([φi(ui(xi), ui(yi))]) ≥ 0, (L0D0)

PROOF. Part 1. Let i ∈ N . By construction, ∼±
i is an equivalence being a

reflexive, symmetric and transitive binary relation. Since Xi is countable, we
know that there is a real-valued function ui on Xi such that, for all xi, yi ∈ Xi:

xi ∼
±
i yi ⇔ u(xi) = ui(yi). (3.10)

On each i ∈ N , take any function ui satisfying (3.10). Define F on [
∏n

i=1 ui(Xi)]
2

letting:

F ([ui(xi)]; [ui(yi)]) =

{

+1 if x % y,
−1 otherwise.

(3.11)

The well-definedness of F follows from (3.4).

Part 2. Let i ∈ N . By construction, ∼∗∗
i is an equivalence being a reflexive,

symmetric and transitive binary relation. Since Xi is countable, we know that
there is a real-valued function pi on X2

i such that, for all xi, yi, zi, wi ∈ Xi:

(xi, yi) ∼
∗∗
i (zi, wi) ⇔ pi(xi, yi) = pi(zi, wi). (3.12)
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On each i ∈ N , take any function pi satisfying (3.12). Define G on
∏n

i=1 pi(X
2
i )

letting:

G([pi(xi, yi)]) =

{

+1 if x % y,
−1 otherwise.

(3.13)

Using (3.9), it is easy to show that G is well-defined.

Part 3. Take any function ui satisfying (3.10) and any function pi satisfying
(3.12). Define φi on ui(Xi)

2 letting, for all xi, yi ∈ Xi,

φi(ui(xi), ui(yi)) = pi(xi, yi). (3.14)

Let us show that φi is well-defined i.e. that ui(xi) = ui(zi) and ui(yi) = ui(wi)
imply pi(xi, yi) = pi(zi, wi). By construction, we have xi ∼

±
i zi and yi ∼

±
i wi

so that, by part 9 of lemma 3.8, (xi, yi) ∼∗∗
i (zi, wi). Therefore we have

pi(xi, yi) = pi(zi, wi), as required.

Define H on
∏n

i=1 φi(ui(Xi), ui(Xi)) letting:

H([φi(ui(xi), ui(yi))]) =

{

+1 if x % y,
−1 otherwise.

(3.15)

Using (3.7), it is easy to show that H is well-defined.

Remark 3.10 (Uniqueness). As was the case in section 2.3, these various
trivial representations are defiantly irregular. A word on uniqueness may
clarify things and avoid misunderstandings.

Consider first model (L0). Since Xi is countable, consider any one-to-one
correspondence vi between Xi and some countable subset of R. Any such
correspondence on each attribute may be used instead of the functions ui

representing ∼±
i used in the above proof. Clearly any F assigning arbitrary

nonnegative values to 2n-tuples ([ui(xi)]; [ui(yi)]) such that x % y and arbi-
trary negative values otherwise is an acceptable choice.

In model (D0) any one-to-one function qi between X2
i and some countable

subset of R may clearly be used instead of the functions pi representing ∼∗∗
i

used in the above proof. Notice that, in the particular case in which, for all
i ∈ N and all xi, yi ∈ Xi, (xi, xi) ∼∗∗

i (yi, yi), it is always possible to use a
skew symmetric function qi (i.e. qi(xi, yi) = −qi(yi, xi), for all xi, yi ∈ Xi) on
each attribute. Clearly any function G assigning arbitrary nonnegative values
to n-tuples [pi(xi, yi)] such that x % y and arbitrary negative values otherwise,
is an acceptable choice.

If possible, the representation is even more irregular in model (L0D0). Any
one-to-one correspondence vi between Xi and some countable subset of R may
be used instead of ui representing ∼±

i used in the above proof. Furthermore
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any one-to-one correspondence ϕi between vi(Xi)
2 and some countable subset

of R may be used instead of φi representing ∼∗∗
i as done in the above proof.

Note, in particular, that it is always possible to choose ϕi in such a way that
it is increasing in its first argument and decreasing in its second argument.
Furthermore, as above, if, for all i ∈ N and all xi, yi ∈ Xi, (xi, xi) ∼∗∗

i

(yi, yi) it is always possible to choose a skew symmetric representation ϕi

(i.e. ϕi(ui(xi), ui(yi)) = −ϕi(ui(yi), ui(xi)). Again, any function H assigning
arbitrary nonnegative values to n-tuples [φi(ui(xi), ui(yi))] such that x % y
and arbitrary negative values otherwise, is an acceptable choice.

Remark 3.11 (Extension to the general case). The above results easily extend
to the general uncountable case. In each case, it suffices to require that there
are enough real numbers to distinguish the elements that have to be distin-
guished. This amounts to requiring for model (D0) that there is a one-to-one
correspondence between X2

i /∼
∗∗
i and some subset of R. For the other two

models, the, stronger, requirement that there is a one-to-one correspondence
between Xi/∼

±
i and some subset of R is clearly necessary and sufficient.

We summarize the various trivial models envisaged to this point in table 2.

Table 2
Trivial numerical representations on product sets

Models Definition

(L0) x % y ⇔ F ([ui(xi)]; [ui(yi)]) ≥ 0
m

(D0) x % y ⇔ G([pi(xi, yi)]) ≥ 0
m

(L0D0) x % y ⇔ H([φi(ui(xi), ui(yi))]) ≥ 0

Our strategy in the sequel is quite similar to the one used in section 2.3. We
shall start with each one of the three trivial models (L0), (D0) or (L0D0) and
study the consequences of imposing additional constraints on these models.
We start with model (L0).

4 Models using marginal traces on levels 3

4.1 Complete marginal traces on levels

As was the case with the Ferrers and semi-transitivity conditions when study-
ing traces, we envisage here conditions that will guarantee that marginal traces
on levels are complete and, hence, weak orders. As with interval orders and

3 This section is based on Bouyssou and Pirlot (2002f)
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semiorders, these conditions will prove useful to analyze the underlying struc-
tures and to build numerical representations.

Definition 4.1 (Conditions AC1, AC2 and AC3). Let % be a binary relation
on a set X =

∏n
i=1Xi. For i ∈ N , this relation is said to satisfy:

AC1i if
x % y
and

z % w











⇒











(zi, x−i) % y
or

(xi, z−i) % w,

AC2i if
x % y
and

z % w











⇒











x % (wi, y−i)
or
z % (yi, w−i),

AC3i if
z % (xi, a−i)

and
(xi, b−i) % y











⇒











z % (wi, a−i)
or
(wi, b−i) % y,

for all x, y, z, w ∈ X , all a−i, b−i ∈ X−i and all xi, wi ∈ Xi.

We say that % satisfies AC1 (resp. AC2, AC3) if it satisfies AC1i (resp. AC2i,
AC3i) for all i ∈ N . We sometimes write AC123 as shorthand for AC1, AC2
and AC3.

These three conditions are transparent variations on the theme of the Ferrers
(AC1 and AC2) and semi-transitivity (AC3) conditions that are made possible
by the product structure of X . The rationale for the name “AC” is that these
conditions are “intrA-attribute Cancellation” conditions.

Condition AC1i suggests that the elements of Xi (instead of the elements of X
had the original Ferrers condition been invoked) can be linearly ordered con-
sidering “upward dominance”: if xi “upward dominates” zi then (zi, c−i) % w
entails (xi, c−i) % w. Condition AC2i has a similar interpretation consid-
ering now “downward dominance”. Condition AC3i ensures that the linear
arrangements of the elements of Xi obtained considering upward and down-
ward dominance are not incompatible.

Conditions AC1, AC2 and AC3 were first introduced in Bouyssou and Pirlot
(1999); Bouyssou et al. (1997) and later used in Greco, Matarazzo, and S low-
iński (2002). The strong links between AC1, AC2, AC3 and marginal traces
are noted in the following:

Lemma 4.2 (Completeness of marginal traces on levels). We have:

(1) %+
i is complete iff AC1i holds,
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(2) %−
i is complete iff AC2i holds,

(3) [Not[ xi %
+
i yi ] ⇒ yi %

−
i xi] iff AC3i holds,

(4) %±
i is complete iff AC1i, AC2i and AC3i hold,

(5) For a binary relation % on X =
∏n

i=1Xi, completeness, AC1i, AC2i and
AC3i are independent conditions.

PROOF. Part 1 is proved observing that the negation of AC1i is equivalent
to the negation of the completeness of %+

i . The proof of part 2 is similar.

Part 3. Suppose that Not[ xi %+
i yi ] so that z % (xi, a−i) and Not[ z %

(yi, a−i) ], for some z ∈ X and some a−i ∈ X−i. If (xi, b−i) % w then AC3i

implies (yi, b−i) % w or z % (yi, a−i). Since, by hypothesis, Not[ z % (yi, a−i) ],
we must have (yi, b−i) % w, so that yi %−

i xi. The reverse implication is
proved observing that the negation of AC3i is equivalent to Not[ yi %

+
i xi ]

and Not[ xi %
−
i yi ] for some xi, yi ∈ Xi. Part 4 immediately results from parts

1, 2 and 3.

Part 5: see examples A.1 to A.3 in appendix A.1.

Comparing lemma 4.2 with proposition 2.3 shows an important difference be-
tween traces and marginal traces on levels: in the latter case, the right trace
may be complete without implying the completeness of the left trace. Hence,
the use of three conditions (AC1, AC2 and AC3) when studying marginal
traces on levels instead of the two classical conditions (Ferrers and semi-
transitivity) used when studying traces.

The combination of our three conditions (AC1, AC2 and AC3) implies that
the marginal traces on levels induced by % are weak orders. Unsurprisingly,
this implies that marginal relations %i do have special properties even when
they differ from marginal traces (which is the general case). We summarize
them in the following:

Proposition 4.3 (Properties of marginal preferences).

(1) If % is reflexive and either AC1i or AC2i holds then % is marginally
complete and weakly separable for i ∈ N .

(2) If % is reflexive and either AC1i or AC2i holds then %i is an interval
order.

(3) If, in addition, % satisfies AC3i then %i is a semiorder.

PROOF. Part 1. We give the proof using AC1i, the proof using AC2i being
similar. Using the reflexivity of %, we know that (xi, a−i) % (xi, a−i) and
(yi, a−i) % (yi, a−i). Since AC1i holds, %+

i is complete so that xi %
+
i yi or
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yi %
+
i xi. If xi %

+
i yi then, using (3.1), we have (xi, a−i) % (yi, a−i). Similarly

if yi %+
i xi then (yi, a−i) % (xi, a−i). Hence, % is marginally complete for

i ∈ N .

Suppose now that % is not weakly separable for i ∈ N . Then we have
(xi, a−i) ≻ (yi, a−i) and (yi, b−i) ≻ (xi, b−i), for some xi, yi ∈ Xi and some
a−i, b−i ∈ X−i. Since % is reflexive, we have (yi, a−i) % (yi, a−i) and (xi, b−i) %
(xi, b−i). This would imply Not[ xi %

+
i yi ] and Not[ yi %

+
i xi ], violating AC1i.

Hence, % is weakly separable for i ∈ N .

Part 2. We know from part 1 that % is marginally complete and weakly
separable for i ∈ N . Hence, %i is complete. It remains to prove that %i is
Ferrers. Suppose that xi %i yi and zi %i wi. Since AC1i holds, we know that
either xi %

+
i zi or zi %

+
i xi. If xi %

+
i zi, zi %i wi implies, using the definition

of %i and part 1 of lemma 3.4, xi %i wi. Similarly if zi %
+
i xi, xi %i yi implies

zi %i yi. Hence, %i is Ferrers. The proof using AC2i is similar.

Part 3. In view of part 2 above, all we have to show is that %i is semi-
transitive. Suppose that xi %i yi and yi %i zi. Using AC1i, we know that
either wi %

+
i yi or yi ≻

+
i wi. If wi %

+
i yi, yi %i zi implies, using the definition

of %i and part 1 of lemma 3.4, yi %i zi. Suppose now that yi ≻
+
i wi. Using

AC3i and part 3 of lemma 4.2, we know that wi %
−
i yi. Using the definition

of %i and part 2 of lemma 3.4, xi %i yi and wi %
−
i yi imply xi %i wi. Hence,

%i is semi-transitive. The proof using AC2i is similar.

4.2 Strict responsiveness to traces on levels

Keeping in mind the classical constant threshold numerical representation for
finite semiorders (see Pirlot and Vincke, 1997; Scott and Suppes, 1958), it is
clear that, in general, in a semiorder we may have x % y, y ≻± z and x ∼ z.
Hence, % may not be strictly responsive to ≻± even when % and %± are
complete. Indeed, it is easy to see that a semiorder for which

[x % y and y ≻± z] ⇒ x ≻ z, (4.1)

must be a weak order.

Considering marginal traces on levels, it is now possible to envisage binary
relations that are strictly responsive to each of their marginal traces without
implying that they are (semi-)transitive or Ferrers.

Definition 4.4 (Conditions TAC1, TAC2). We say that % satisfies:
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TAC1i if
(xi, a−i) % y

and
y % (zi, a−i)

and
(zi, b−i) % w































⇒ (xi, b−i) % w,

TAC2i if
(xi, a−i) % y

and
y % (z−i, a−i)

and
w % (xi, b−i)































⇒ w % (zi, b−i),

for all xi, zi ∈ Xi, all a−i, b−i ∈ X−i and all y, w ∈ X .

We say that % satisfies TAC1 (resp. TAC2) if it satisfies TAC1i (resp. TAC2i)
for all i ∈ N . We sometimes write TAC12 instead of TAC1 and TAC2.

The first two conditions in the premise of TAC1i and TAC2i (the rationale
for the names being that TAC1 and TAC2 are “intrA-attribute Cancellation”
involving Three conditions in their premise) suggest that the level xi is not
worse than the level zi. TAC1i (resp. TAC2i) then implies than xi should
upward dominate (resp. downward dominate) zi.

Lemma 4.5 (Strict responsiveness to marginal traces on levels). If % is a
complete binary relation on X =

∏n
i=1Xi then:

(1) TAC1i ⇒ [AC1i and AC3i]
(2) TAC2i ⇒ [AC2i and AC3i]
(3) TAC1i is equivalent to the completeness of %+

i and the following condi-
tion:

[x % y and zi ≻
+
i xi] ⇒ (zi, x−i) ≻ y. (4.2)

(4) TAC2i is equivalent to the completeness of %−
i and the following condi-

tion:
[x % y and yi ≻

−
i wi] ⇒ x ≻ (wi, y−i). (4.3)

(5) If TAC1i or TAC2i hold then % is independent for {i} and %i is a weak-
order. Furthermore when TAC12i holds then %i = %±

i .
(6) In the class of complete relations, TAC1 and TAC2 are independent con-

ditions.
(7) There are weakly independent semiorders verifying TAC1 and TAC2 that

are not weak orders.

PROOF. Part 1. Let us first show that when % is complete, TAC1i ⇒
AC1i. Suppose that AC1i is violated so that (xi, a−i) % y, (zi, b−i) % w,
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Not[ (zi, a−i) % y ] and Not[ (xi, b−i) % w ]. Since % is complete, we know that
y % (zi, a−i). Using TAC1i, (xi, a−i) % y, y % (zi, a−i) and (zi, b−i) % w imply
(xi, b−i) % w, a contradiction. Hence AC1i holds and %+

i is complete.

Similarly suppose that AC3i is violated so that z % (xi, a−i) , (xi, b−i) % y,
Not[ z % (wi, a−i) ] and Not[ (wi, b−i) % y ]. Since % is complete, we know
that (wi, a−i) % z. Using TAC1i, (wi, a−i) % z, z % (xi, a−i) and (xi, b−i) % y
imply (wi, b−i) % y, a contradiction. The proof of part 2 is similar.

Part 3. [⇒]. We know from part 1 that AC1i holds so that %+
i is complete.

Suppose now, in contradiction with (4.2) that x % y, zi ≻+
i xi and y %

(zi, x−i). We know that Not[ xi %
+
i zi ], so that (zi, a−i) % w and w ≻ (xi, a−i),

for some w ∈ X and some a−i ∈ X−i. Using TAC1i, x % y, y % (zi, x−i) and
(zi, a−i) % w imply (xi, a−i) % w, a contradiction.

[⇐]. Suppose that TAC1i is violated so that (xi, a−i) % y, y % (zi, a−i)
(zi, b−i) % w and w ≻ (xi, b−i). This implies Not[ xi %+

i zi ]. Since %+
i is

complete, we have zi ≻
+
i xi. Using (4.2), (xi, a−i) % y and zi ≻

+
i xi would

imply (zi, a−i) ≻ y, a contradiction.

The proof of part 4 is similar.

Part 5. We give the proof using TAC1i, the proof using TAC2i being simi-
lar. Suppose that (xi, a−i) % (yi, a−i) and Not[ (xi, b−i) % (yi, b−i) ], for some
xi, yi ∈ Xi and some a−i, b−i ∈ X−i. Since % is complete, we know that
(yi, b−i) % (yi, b−i). Thus, since we know from part 1 that %+

i is complete,
we have yi ≻

+
i xi. Using (4.2), yi ≻

+
i xi and (xi, a−i) % (yi, a−i) would imply

(yi, a−i) ≻ (yi, a−i), a contradiction. Hence, % is independent for {i}.

Using the reflexivity of %, and (3.1), we have: xi %
+
i yi ⇒ xi %i yi. Let us

show that xi ≻+
i yi ⇒ xi ≻i yi, which will complete the proof since %+

i is
complete. Suppose that xi ≻

+
i yi. Since % is reflexive, we have (yi, a−i) %

(yi, a−i), for all a−i ∈ X−i. Using (4.2), we obtain (xi, a−i) ≻ (yi, a−i), for all
a−i ∈ X−i. We thus have xi ≻i yi. Note that when both TAC1i and TAC2i

hold, the above reasoning shows that %±
i = %i.

Parts 6 and 7: see examples A.4 and A.5 in appendix A.1.

As soon as % is complete, the conjunction of TAC1i and TAC2i is therefore
exactly what is needed to ensure the strict responsiveness of % with respect to
≻±

i . It also implies that % is independent for {i} and that %i is a weak order
that is identical to %±

i . It does not imply however that % is (semi-)transitive
or Ferrers. Using (4.2) and (4.3) will facilitate the test of TAC1i and TAC2i.
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4.3 Marginal traces on levels and numerical representations

4.3.1 Marginal traces and numerical representations

In model (L0), the rôle of ui is merely to attach a number to each equivalence
class of Xi/∼

±
i while F passively recodes as +1’s and −1’s the presence or

absence of % for every possible combination of elements of Xi/∼
±
i . Clearly,

as was the case in section 2.3, the situation changes as soon as additional
properties are imposed on F .

Starting from the trivial model (L0) in which:

x % y ⇔ F ([ui(xi)]; [ui(yi)]) ≥ 0,

we envisage:

• (L1) adding to (L0) the fact that F ([ui(xi)]; [ui(xi)]) ≥ 0,
• (L2) adding to (L1) the fact that F ([ui(xi)]; [ui(yi)]) = −F ([ui(yi)]; [ui(xi)]).

Furthermore, in each of (L0), (L1) and (L2), we envisage here the conse-
quences of supposing that F is nondecreasing (resp. increasing) in its first n
arguments and nonincreasing (resp. decreasing) in its last n arguments. These
eight models are defined in table 3.

Table 3
Models involving traces on levels

(L0) x % y ⇔ F ([ui(xi)]; [ui(yi)]) ≥ 0
(L1) (L0) with F ([ui(xi)]; [ui(xi)]) ≥ 0
(L2) (L0) with F ([ui(xi)]; [ui(yi)]) = −F ([ui(yi)]; [ui(xi)])

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(L3) (L0) with F nondecreasing, nonincreasing,
(L4) (L0) with F increasing, decreasing,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(L5) (L1) with F nondecreasing, nonincreasing,
(L6) (L1) with F increasing, decreasing,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(L7) (L2) with F nondecreasing, nonincreasing,
(L8) (L2) with F increasing, decreasing,

The implications between these various models are clear from their definitions.
They are summarized in figure 1.

Lemma 4.6 (Necessary conditions).

(1) Model (L1) implies that % is reflexive,
(2) Model (L2) implies that % is complete,
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Figure 1. Implication between models involving traces on levels

(L8) ⇒ (L6) ⇒ (L4) (րր,ցց)
⇓ ⇓ ⇓

(L7) ⇒ (L5) ⇒ (L3) (ր,ց)
⇓ ⇓ ⇓

(L2) ⇒ (L1) ⇒ (L0) ∅

F (α, β) = F (α,α) ≥ 0 ∅

−F (β, α)

(րր,ցց): increasing (resp. decreasing) in first (resp. last) n arguments
(ր,ց): nondecreasing (resp. nonincreasing) in first (resp. last) n arguments

(3) Model (L3) implies AC1, AC2, AC3,
(4) Model (L8) implies TAC1 and TAC2.

PROOF. Parts 1 and 2 are obvious.

Part 3. The fact that AC1, AC2 and AC3 hold is easily shown using the
properties of F . We take the case of AC3. Suppose that (xi, a−i) % y and
w % (xi, b−i) so that, abusing notation, F ([ui(xi), (uj(aj))j 6=i]; [ui(yi)]) ≥ 0
and F ([ui(wi)]; [ui(xi), (uj(bj)j 6=i)]) ≥ 0.

If ui(zi) > ui(xi) then F ([ui(zi), (uj(aj)j 6=i)]; [ui(yi)]) ≥ 0 so that (zi, a−i) % y.
Otherwise ui(xi) ≥ ui(zi) leads to F ([ui(wi)]; [ui(zi), (uj(bj)j 6=i)]) ≥ 0 so that
w % (zi, b−i).

Part 4. Suppose that (xi, a−i) % y, y % (zi, a−i), (zi, b−i) % w and Not[ (xi, b−i) %
w ]. Using the increasingness of F in its first n arguments, the last two con-
ditions imply that ui(zi) > ui(xi). But (xi, a−i) % y and ui(zi) > ui(xi) imply
(zi, a−i) ≻ y, a contradiction. Hence the necessity of TAC1. The necessity is
TAC2 is proved similarly.

We are now in position to characterize all our models involving traces on levels.

Theorem 4.7 (Models using traces on levels). Let % be a binary relation on
a countable set X =

∏n
i=1Xi.

(1) Model (L1) holds iff % is reflexive.
(2) Model (L2) holds iff % is complete.
(3) Model (L4) holds iff % satisfies AC1, AC2 and AC3.
(4) Model (L6) holds iff % is reflexive and satisfies AC1, AC2 and AC3.
(5) Model (L7) holds iff % is complete and satisfies AC1, AC2 and AC3.
(6) Model (L8) holds iff % is complete and satisfies TAC1 and TAC2.
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PROOF. For all parts, necessity results from lemma 4.6 and the implications
between our models. We show sufficiency.

Part 1 is immediate from part 1 of proposition 3.9.

Part 2. Take, on each i ∈ N , a function ui satisfying (3.10) and define F on
[
∏n

i=1 ui(Xi)]
2 letting:

F ([ui(xi)]; [ui(yi)]) =











+1 if x ≻ y,
0 if x ∼ y,

−1 otherwise.
(4.4)

The well-definedness of F follows from (3.4).

Part 3. Since AC1, AC2 and AC3 hold, we know from part 4 of lemma 4.2
that %±

i is a weak order. Since Xi is countable, there is a real-valued function
ui on Xi such that, for all xi, yi ∈ Xi:

xi %
±
i yi ⇔ ui(xi) ≥ ui(yi). (4.5)

Take, on each i ∈ N , a function ui satisfying (4.5) and define F on [
∏n

i=1 ui(Xi)]
2

letting:

F ([ui(xi)]; [ui(yi)] =

{

+ exp(
∑n

i=1 (ui(xi) − ui(yi))) if x % y,
− exp(

∑n
i=1 (ui(yi) − ui(xi))) otherwise.

(4.6)

The well-definedness of F results from (3.4). The monotonicity properties of
F follow from (3.3) and its definition. The proof of part 4 is immediate from
part 3.

Part 5. Take, on each i ∈ N , a function ui satisfying (4.5) and define F on
[
∏n

i=1 ui(Xi)]
2 letting:

F ([ui(xi)]; [ui(yi)]) =











+ exp(
∑n

i=1 (ui(xi) − ui(yi))) if x ≻ y,
0 if x ∼ y,

− exp(
∑n

i=1 (ui(yi) − ui(xi))) otherwise.
(4.7)

The well-definedness of F results from (3.4). It is skew symmetric by con-
struction since % is complete. Let us show that F is nondecreasing in its
first n arguments. Suppose that ui(zi) > ui(xi) so that zi ≻

±
i xi. If x ≻ y,

we know, using (3.3), that (zi, x−i) ≻ y and the conclusion follows from the
definition of F . If x ∼ y, we have, using (3.3), (zi, x−i) % y and the conclusion
follows from the definition of F . If Not[ x % y ] we have either (zi, x−i) ≻ y,
(zi, x−i) ∼ y, or Not[ (zi, x−i) % y ]. In either case, the conclusion follows from
the definition of F . The proof that F is nonincreasing in its last n argument
is similar and is omitted.
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Part 6. In view of the proof of part 5 above, since TAC1 and TAC2 imply AC1,
AC2 and AC3 when % is complete, sufficiency follows from lemma 4.5.

Corollary 4.8 (Links between models).

(1) Models (L4) and (L3) are equivalent.
(2) Models (L6) and (L5) are equivalent.
(3) Model (L7) ⇒ Model (L6).

PROOF. All parts directly results from lemma 4.6 and theorem 4.7.

4.3.2 Remarks

Remark 4.9. A somewhat weaker form (using nondecreasingness and nonin-
creasingness) of part 4 of theorem 4.7 was noted in Greco et al. (2002) using
our conditions AC1, AC2 and AC3.

Remark 4.10 (Skew symmetry and the rôle of 0). It should be observed that
increasingness and nondecreasingness are equivalent in our models except in
the case of a“skew symmetric” function F (i.e., such that F ([ui(xi)]; [ui(yi)]) =
−F ([ui(yi)]; [ui(xi)])). When F is skew symmetric, the value“0”plays a special
rôle. This leads to distinguish the increasing case from the nondecreasing one,
as in proposition 2.6 with semiorders and weak orders. This will often be the
case below.

Remark 4.11 (Uniqueness). It should be clear that the numerical representa-
tions envisaged in this section (see theorem 4.7) do not possess any remarkable
uniqueness properties. It is not difficult however to analyze them. We take
the case of model (L4).

Our proof shows that it is always possible to use functions ui such that:

xi %
±
i yi ⇔ ui(xi) ≥ ui(yi). (4.8)

This defines what could be called a regular representation of (L4). From the
proof of theorem 4.7, it is clear that any ui satisfying (4.8) may be used, i.e.
we may apply, independently on each attribute, any increasing transformation
to the functions ui without altering the representation.

Other choices for ui are possible however. Let us show that any function ui

such that:

xi ≻
±
i yi ⇒ ui(xi) > ui(yi), (4.9)

can be used in a representation of model (L4).
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The necessity of (4.9) is clear since xi ≻
±
i yi implies either xi ≻

+
i yi or xi ≻

−
i yi.

In the first case, we know that (xi, a−i) % z and Not[ (yi, a−i) % z ], for some
z ∈ X and some a−i ∈ X−i. In the second case, we obtain w % (yi, b−i)
and Not[w % (xi, b−i) ], for some w ∈ X and some b−i ∈ X−i. Using the
increasingness of F , either case implies ui(xi) > ui(yi).

Conversely, it is clear that if ui satisfies (4.9) then

ui(xi) = ui(yi) ⇒ xi ∼
±
i yi, (4.10)

so that defining F using (4.6) as in the proof of theorem 4.7 leads to a well-
defined function being increasing in its first n arguments and decreasing in its
last n arguments.

It should be noted that any nonnegative (resp. negative) real-valued function
f (resp. g) on R

2n that is increasing in its first n arguments and decreas-
ing in its last n arguments when restricted to [

∏n
i=1 ui(Xi)]

2 may be used
to define F letting F ([ui(xi)]; [ui(yi)]) = f([ui(xi)]; [ui(yi)]) if x % y and
F ([ui(xi)]; [ui(yi)]) = g([ui(xi)]; [ui(yi)]) otherwise. It is not difficult to see
that only such functions may be used.

We have therefore described the set of all possible numerical representations
in model (L4). It is not difficult to adapt the above reasoning to cover all the
models envisaged in this section (see Bouyssou and Pirlot, 2002f, for details).

Remark 4.12 (Weak orders). When % is a weak order, marginal traces on
levels are confounded with marginal preferences. Hence, the above results can
be greatly simplified. It is easy to see that, in this case,

• [% is weakly separable] ⇔ [% satisfies AC1] ⇔ [% satisfies AC2] ⇔ [%
satisfies AC3],

• [% is weakly independent] ⇔ [% satisfies TAC12].

Using these observations, it is easy to show that, when % is a weak order on
a countable set X =

∏n
i=1Xi, it always has a representation such that:

x % y ⇔ U(u1(x1), . . . , un(xn)) ≥ U(u1(y1), . . . , un(yn)). (U1)

Furthermore, U can be chosen so that it is nondecreasing in all its arguments
(resp. increasing) if and only if % is weakly separable (resp. weakly indepen-
dent).

Whereas the increasing case is well-known Krantz et al. (1971, theorem 7.1),
the result in the nondecreasing case generalizes a result obtained in Blackorby
et al. (1978) in the case in which X ⊆ R

n.

Remark 4.13 (Extension to the general case). Most of our results are techni-
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cally simple. Their extension to the general case (i.e. removing the hypothesis
that X is countable) do not raise any serious difficulty beyond the well-known
one of guaranteeing that equivalences and/or weak orders have a numerical
representation (see Bouyssou and Pirlot, 2002f).

Remark 4.14 (Left and right traces on levels). For the sake of conciseness, we
do not investigate here all possible models involving marginal traces on levels.
Let us simply mention that the case in which AC1 and AC2 hold but not
AC3 is of particular interest. The similarity of this case with that of interval
orders (see Fishburn, 1970a, 1973, 1985) should be clear at this point. Most
of our results can easily be modified to cover this case using a representation
of the type:

x % y ⇔ F ([vi(xi)]; [wi(yi)]) ≥ 0,

leaving room for relations in which the marginal traces %+
i and %−

i may not
be compatible.

Remark 4.15 (Other extensions). We restricted our attention in this paper
to the analysis of conditions AC1i, AC2i, AC3i, TAC1i and TAC2i when
imposed on all i ∈ N . As observed in Greco et al. (2002), this might be overly
restrictive. It is not difficult however to study the, rather awkward, models
that obtain when these conditions are only imposed on some, but not all
attributes. They amount to supposing that F is increasing (resp. decreasing)
in some, but not necessarily all, of its n first (resp. last arguments).

Similarly, it is easy to generalize our conditions to subsets of attributes more
general than a singleton. The study of the resulting models certainly deserves
attention. In fact, when aggregating attributes, it might well happen that
attributes interact in such a way that weak separability is violated (remember
the famous example of the choice a dinner involving two attributes: the main
course and the wine). This would forbid the use of AC1 or AC2 as done here.
Imposing these conditions on the groups of “strongly interacting” attributes
might however lead to useful models. Such models would be in the spirit of
the process of “building criteria” by sub-aggregation as described in Bouyssou
(1990); Roy (1996).

The main results in this section are summarized in table 4 and figure 2.

5 Models using marginal traces on differences 4

This section follows the same path as in section 4 replacing marginal traces
on levels by marginal traces on differences.

4 This section is based on Bouyssou and Pirlot (2002d)
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Table 4
Main results using traces on levels

Models Definition Conditions

(L0) x % y ⇔ F ([ui(xi)], [ui(yi)]) ≥ 0 ∅

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(L1) (L0) with F ([ui(xi)], [ui(xi)]) = 0 refl.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(L2)
(L1) with

F ([ui(xi)]; [ui(yi)]) = −F ([ui(yi)]; [ui(xi)])
cpl.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(L3) ⇔ (L4) (L0) with F (րր,ցց) AC123

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(L5) ⇔ (L6) (L1) with F (րր,ցց) refl., AC123

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(L7) (L2) with F (ր,ց) cpl., AC123

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(L8) (L2) with F (րր,ցց) cpl., TAC12

ր means nondecreasing, ց means nonincreasing
րր means increasing, ցց means decreasing

refl. means reflexive, cpl. means complete

Figure 2. Implication between models resulting from theorem 4.7

(L8)
⇓

(L7) ⇒ (L2)
⇓ ⇓

(L6) ⇔ (L5) ⇒ (L1)
⇓

(L4) ⇔ (L3)

All models imply (L0)

5.1 Complete marginal traces on differences

Definition 5.1 (Conditions RC1 and RC2). Let % be a binary relation on a
set X =

∏n
i=1Xi. For i ∈ N , this relation is said to satisfy:

RC1i if

(xi, a−i) % (yi, b−i)
and

(zi, c−i) % (wi, d−i)











⇒











(xi, c−i) % (yi, d−i)
or
(zi, a−i) % (wi, b−i),
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RC2i if
(xi, a−i) % (yi, b−i)

and
(yi, c−i) % (xi, d−i)











⇒











(zi, a−i) % (wi, b−i)
or
(wi, c−i) % (zi, d−i),

for all xi, yi, zi, wi ∈ Xi and all a−i, b−i, c−i, d−i ∈ X−i. We say that % satisfies
RC1 (resp. RC2) if it satisfies RC1i (resp. RC2i) for all i ∈ N . We sometimes
write RC12 as shorthand for RC1 and RC2.

Condition RC1i suggests that either (xi, yi) is a larger preference difference
than (zi, wi) or vice versa. Indeed, it is easy to see that supposing Not[ (xi, yi) %

∗
i

(zi, wi) ] and Not[ (zi, wi) %∗
i (xi, yi) ] leads to a violation of RC1i. Hence,

RC1i is equivalent to supposing the completeness of %∗
i . Similarly, RC2i sug-

gests that the two opposite differences (xi, yi) and (yi, xi) are linked. In terms
of the relation %∗

i , it says that if the preference difference between xi and yi
is not at least as large as the preference difference between zi and wi then
the preference difference between yi and xi should be at least as large as the
preference difference between wi and zi. We summarize these observations in
the following lemma; we omit its straightforward proof.

Lemma 5.2 (Complete Traces on differences). We have:

(1) [%∗
i is complete] ⇔ RC1i,

(2) RC2i ⇔
[for all xi, yi, zi, wi ∈ Xi, Not[ (xi, yi) %

∗
i (zi, wi) ] ⇒ (yi, xi) %

∗
i (wi, zi)],

(3) [%∗∗
i is complete] ⇔ [RC1i and RC2i].

Condition RC1 was introduced in Bouyssou (1986) under the name “weak
cancellation”. Technically RC1i amounts to defining a biorder, in the sense of
Ducamp and Falmagne (1969) and Doignon, Ducamp, and Falmagne (1984),
between the sets X2

i and X2
−i. The extension of condition RC1 to subsets of

attributes is central in Vind (1991) where this condition is called “indepen-
dence”. Condition RC2 was first proposed in Bouyssou et al. (1997). We note
below a number of other important facts about RC1 and RC2.

Lemma 5.3 (Consequences of RC1 and RC2).

(1) If % satisfies RC1i then it is weakly separable for i ∈ N ,
(2) If % satisfies RC2 then it is independent and either reflexive or irreflexive,
(3) Reflexivity, independence and RC1 are independent conditions,
(4) In the class of complete relations, RC1 and RC2 are independent condi-

tions.

PROOF. Part 1. Suppose that (xi, a−i) ≻ (xi, b−i) and (yi, b−i) ≻ (yi, a−i).
This implies (xi, a−i) % (xi, b−i) and (yi, b−i) % (yi, a−i) so that RC1i implies
either (yi, a−i) % (yi, b−i) or (xi, b−i) % (xi, a−i), a contradiction.
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Part 2. If (xi, a−i) % (xi, b−i), RC2i implies (yi, a−i) % (yi, b−i) for all yi ∈ Xi

so that % is independent. It is clear that an independent relation is either
reflexive or irreflexive.

Part 3. In order to show that these three properties are completely in-
dependent, we need 23 = 8 examples. It is easy to build a relation %

that does not satisfy RC1 and is neither reflexive nor independent (e.g. take
X = {a, b} × {z, w} and let % be an empty relation on X except that
(a, z) % (b, z) and (b, w) % (a, w)). Any relation % satisfying the additive
utility model satisfies the three properties. The other six examples are pro-
vided in appendix A.2.

Part 4. Any relation % satisfying the additive utility model is complete and
satisfies both RC1 and RC2. We provide in appendix A.2 the three remaining
examples.

5.2 Strict responsiveness to traces on differences

Definition 5.4 (Condition TC). Let % be a binary relation on a set X =
∏n

i=1Xi. For i ∈ N , this relation is said to satisfy:

TCi if

(xi, a−i) % (yi, b−i)
and

(zi, b−i) % (wi, a−i)
and

(wi, c−i) % (zi, d−i)































⇒ (xi, c−i) % (yi, d−i),

for all xi, yi, zi, wi ∈ Xi and all a−i, b−i, c−i, d−i ∈ X−i. We say that % satisfies
TC if it satisfies TCi for all i ∈ N .

Condition TCi (Triple Cancellation) is a classical cancellation condition that
has been often used (see Krantz et al., 1971; Wakker, 1989) in the analysis of
the additive utility model (1.1). As shown below, it implies both RC1 and
RC2 when % is complete. We refer to Wakker (1988, 1989) for a detailed
analysis of TC including its interpretation in terms of difference of preference.

As soon as % is complete, the following lemma shows that TCi is exactly what
is needed to ensure the strict responsiveness of % w.r.t. %∗∗

i .

Lemma 5.5 (Strict responsiveness to marginal traces on differences).

(1) If % is complete, TCi implies RC1i and RC2i,
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(2) If TCi holds and % is complete, [x % y and (zi, wi) ≻∗∗
i (xi, yi)] ⇒

(zi, x−i) ≻ (wi, y−i).

PROOF. Part 1. In contradiction with RC1i, suppose that (xi, a−i) %

(yi, b−i), (zi, c−i) % (wi, d−i), Not[ (zi, a−i) % (wi, b−i) ] and Not[ (xi, c−i) %

(yi, d−i) ]. Since % is complete, we have (wi, b−i) ≻ (zi, a−i). Using TCi,
(xi, a−i) % (yi, b−i), (wi, b−i) ≻ (zi, a−i) and (zi, c−i) % (wi, d−i) imply (xi, c−i) %
(yi, d−i), a contradiction.

Similarly suppose, in contradiction with RC2i that (xi, a−i) % (yi, b−i), (yi, c−i)
% (xi, d−i), Not[ (zi, a−i) % (wi, b−i) ] and Not[ (wi, c−i) % (zi, d−i) ]. Since %

is complete, we know that (wi, b−i) ≻ (zi, a−i). Using TCi, (wi, b−i) ≻ (zi, a−i),
(xi, a−i) % (yi, b−i) and (yi, c−i) % (xi, d−i) imply (wi, c−i) % (zi, d−i), a con-
tradiction.

Part 2. Using (3.6), we get (zi, x−i) % (wi, y−i). Suppose that (wi, y−i) % (zi,
x−i). From part 1 and lemma 5.2, we know that %∗∗

i is complete. We thus have
(zi, wi) ≻∗∗

i (xi, yi) ⇔ Not[ (xi, yi) %∗∗
i (zi, wi) ] ⇔ [Not[ (xi, yi) %∗

i (zi, wi) ]
or Not[ (wi, zi) %∗

i (yi, xi) ]]. In the first case we have Not[ (xi, c−i) % (yi,
d−i) ] and (zi, c−i) % (wi, d−i), for some c−i, d−i ∈ X−i. Using TCi, x % y,
(wi, y−i) % (zi, x−i) and (zi, c−i) % (wi, d−i) imply (xi, c−i) % (yi, d−i), a
contradiction. The other case is similar.

5.3 Marginal traces on differences and numerical representations

Starting from the trivial model (D0), introduced in section 3.5, in which:

x % y ⇔ G([pi(xi, yi)]) ≥ 0,

we envisage:

• model (D1) adding to (D0) the fact that pi(xi, xi) = 0, for all i ∈ N and
all xi ∈ Xi,

• model (D2) adding to (D1) the skew symmetry of each pi, i.e. pi(xi, yi) =
−pi(yi, xi), for all i ∈ N and all xi, yi ∈ Xi,

• model (D3) adding to (D2) the oddness of G, i.e. G(x) = −G(−x), abusing
notation in an obvious way.

As before, we furthermore envisage the consequences of supposing that in each
of the above four models ((D0), (D1), (D2) and (D3)), G is nondecreasing
or increasing in each of its arguments. This leads to a total of 12 different
models, the definition of which being summarized in table 5.
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Table 5
Models involving traces on differences

(D0) x % y ⇔ G([pi(xi, yi)]) ≥ 0
(D1) (D0) with pi(xi, xi) = 0
(D2) (D1) with pi(xi, yi) = −pi(yi, xi)
(D3) (D2) with G odd

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(D4) (D0) with G nondecreasing
(D8) (D0) with G increasing

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(D5) (D1) with G nondecreasing
(D9) (D1) with G increasing

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(D6) (D2) with G nondecreasing
(D10) (D2) with G increasing

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(D7) (D3) with G nondecreasing
(D11) (D3) with G increasing

The implications between these various models are clear from their definitions.
They are summarized in figure 3. The following lemma takes note of the rela-

Figure 3. Implication between models involving traces on differences

(D11) ⇒ (D10) ⇒ (D9) ⇒ (D8) inc.
⇓ ⇓ ⇓ ⇓

(D7) ⇒ (D6) ⇒ (D5) ⇒ (D4) nondec.
⇓ ⇓ ⇓ ⇓

(D3) ⇒ (D2) ⇒ (D1) ⇒ (D0) ∅

G odd pi sk-sym. pi(xi, xi) = 0 ∅

pi sk-sym.

inc. means increasing in all arguments
nondec. means nondecreasing in all arguments

sk-sym. means skew symmetric

tions between these models and our conditions involving traces on differences.

Lemma 5.6 (Necessary conditions).

(1) Model (D1) implies that % is independent,
(2) Model (D3) implies that % is complete,
(3) Model (D4) implies RC1,
(4) Model (D6) implies RC2,
(5) Model (D11) implies TC,
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PROOF. Part 1. In model (D1), we have pi(xi, xi) = 0, so that (xi, a−i) %

(xi, b−i) ⇔ G(0, (pj(aj, bj))j 6=i) ≥ 0 ⇔ (yi, a−i) % (yi, b−i). Hence % is inde-
pendent.

Part 2. By definition of model (D3), Not[ x % y ] ⇔ G([pi(xi, yi)]) < 0 so that,
using the skew symmetry of the pi’s and the oddness of G, G([pi(yi, xi)]) > 0
which implies y % x. Hence % is complete.

Part 3. Suppose that (xi, a−i) % (yi, b−i) and (zi, c−i) % (wi, d−i). Using
model (D4) we have:

G(pi(xi, yi), (pj(aj , bj))j 6=i) ≥ 0 and

G(pi(zi, wi), (pj(cj , dj))j 6=i) ≥ 0.

If pi(xi, yi) ≥ pi(zi, wi), then using the nondecreasingness of G, we have
G(pi(xi, yi), (pj(cj , dj))j 6=i) ≥ 0 so that (xi, c−i) % (yi, d−i). If pi(zi, wi) >
pi(xi, yi), we have G(pi(zi, wi), (pj(aj, bj))j 6=i) ≥ 0 so that (zi, a−i) % (wi, b−i).
Therefore RC1 holds.

Part 4. Suppose that (xi, a−i) % (yi, b−i) and (yi, c−i) % (xi, d−i). Using model
(D6) we have:

G(pi(xi, yi), (pj(aj , bj))j 6=i) ≥ 0 and

G(pi(yi, xi), (pj(cj , dj))j 6=i) ≥ 0.

If pi(xi, yi) ≥ pi(zi, wi), the skew symmetry of pi implies pi(wi, zi) ≥ pi(yi, xi)
so that (wi, c−i) % (zi, d−i) using the nondecreasingness of G. Similarly, if
pi(zi, wi) > pi(xi, yi) we have, using the nondecreasingness of G, (zi, a−i) %

(wi, b−i). Therefore, RC2 holds.

Part 5. Suppose that (xi, a−i) % (yi, b−i), (zi, b−i) % (wi, a−i), (wi, c−i) % (zi,
d−i) and Not[ (xi, c−i) % (yi, d−i) ]. Using model (D11) we know that:

G(pi(xi, yi), (pj(aj , bj))j 6=i) ≥ 0,

G(pi(zi, wi), (pj(bj , aj))j 6=i) ≥ 0,

G(pi(wi, zi), (pj(cj , dj))j 6=i) ≥ 0 and

G(pi(xi, yi), (pj(cj , dj))j 6=i) < 0.

Using the oddness of G, its increasingness and the skew symmetry of the pi’s,
the first two inequalities imply pi(xi, yi) ≥ pi(wi, zi) whereas the last two imply
that pi(xi, yi) < pi(wi, zi), a contradiction.

We are now in position to characterize our models involving traces on differ-
ences.
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Theorem 5.7 (Models using traces on differences). Let % be a binary relation
on a countable set X =

∏n
i=1Xi.

(1) Model (D2) holds iff % is independent,
(2) Model (D3) holds iff % is complete and independent,
(3) Model (D8) holds iff % satisfies RC1,
(4) Model (D9) holds iff % is independent and satisfies RC1,
(5) Model (D10) holds iff % satisfies RC1 and RC2,
(6) Model (D7) holds iff % is complete and satisfies RC1 and RC2,
(7) Model (D11) holds iff % is complete and satisfies TC.

PROOF. Necessity of all parts results from lemma 5.6 and the implications
between our models. We show sufficiency.

Part 1. Since % is independent, we know that, for all i ∈ N and all xi, yi ∈ Xi,
(xi, xi) ∼

∗
i (yi, yi) and, thus, (xi, xi) ∼

∗∗
i (yi, yi). Since, Xi is countable, there

is a one-to-one correspondence pi between X2
i \ {(xi, xi) : xi ∈ Xi} and some

countable subset of R. It can always be chosen so that, for all xi, yi ∈ Xi,
pi(xi, yi) = −pi(yi, xi). Let pi(xi, xi) = 0, for all xi ∈ Xi. By construction, pi
is skew symmetric. Furthermore, we have:

pi(xi, yi) = pi(zi, wi) ⇔











xi = yi and zi = wi

or
xi = zi and yi = wi.

(5.1)

Consider, on all i ∈ N , a function pi satisfying (5.1) and define G on
∏n

i=1 pi(X
2
i )

letting:

G([pi(xi, yi)]) =

{

+1 if x % y,
−1 otherwise.

(5.2)

Since, by hypothesis, (xi, xi) ∼∗
i (yi, yi), it is easy to see that that G is well-

defined.

Part 2. Consider functions pi defined as in part 1 and define G on
∏n

i=1 pi(X
2
i )

letting:

G([pi(xi, yi)]) =











+1 if x ≻ y,
0 if x ∼ y,

−1 otherwise.
(5.3)

Since, by hypothesis, (xi, xi) ∼∗
i (yi, yi), it is easy to see that G is well-defined.

It is odd since % is complete.

Part 3. Since RC1 holds, we know that %∗
i is a weak order. Since Xi is

countable, there is a real-valued function pi on X2
i such that:

(xi, yi) %
∗
i (zi, wi) ⇔ pi(xi, yi) ≥ pi(zi, wi). (5.4)
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Given such a particular numerical representation pi of %∗
i for i = 1, 2, . . . , n,

define G on pi(X
2
i ) as follows:

G([pi(xi, yi)]) =







+ exp(
∑n

i=1 pi(xi, yi)) if x % y,

− exp(−
∑n

i=1 pi(xi, yi)) otherwise.
(5.5)

The well-definedness of G follows from (3.7) and the definition of the pi’s.
To show that G is increasing, suppose that pi(zi, wi) > pi(xi, yi), i.e. that
(zi, wi) ≻∗

i (xi, yi). If x % y, we know from (3.6) that (zi, x−i) % (wi, y−i)
and the conclusion follows from the definition of G. If Not[ x % y ] we have
either Not[ (zi, x−i) % (wi, y−i) ] or (zi, x−i) % (wi, y−i). In either case, the
conclusion follows from the definition of G.

Part 4 immediately follows from part 3. Indeed, when % is independent,
(xi, xi) ∼∗

i (yi, yi), for all i ∈ N and all xi, yi ∈ Xi. It is therefore always
possible to choose a function pi satisfying (5.4) so that pi(xi, xi) = 0.

Part 5. Since RC1i and RC2i hold, we know from lemma 5.3 that %∗∗
i is

complete so that it is a weak order. This implies that %∗
i is a weak order

and, since Xi is countable, there is a real-valued function qi on X2
i satisfying

(5.4). Given a particular numerical representation qi of %∗
i , let pi(xi, yi) =

qi(xi, yi) − qi(yi, xi). It is obvious that pi is skew symmetric and represents
%∗∗

i . Define G as in (5.5). Its well-definedness results from (3.9). To show that
G is increasing, suppose that pi(zi, wi) > pi(xi, yi), i.e. that (zi, wi) ≻∗∗

i (xi, yi).
By construction, this implies (zi, wi) %∗

i (xi, yi). The increasingness of G is
therefore proved as in part 3 using (3.6).

Part 6. Define the functions pi as in part 5 and define G letting

G([pi(xi, yi)]) =















+ exp(
∑n

i=1 pi(xi, yi)) if x ≻ y,

0 if x ∼ y,

− exp(−
∑n

i=1 pi(xi, yi)) otherwise,

(5.6)

Since % is complete, G is odd. It is well-defined in view of (3.9) and the
definition of the pi’s. Its nondecreasingness follows from (3.6) and (3.8).

Part 7. Since TC holds and % is complete, we know from part 1 of lemma 5.5
that RC1 and RC2 hold. Define pi and G as in part 6. The increasingness of
F follows from part 2 of lemma 5.5.

Corollary 5.8 (Links between models).

(1) Models (D1) and (D2) are equivalent.
(2) Models (D4) and (D8) are equivalent.
(3) Models (D5) and (D9) are equivalent.
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(4) Models (D6) and (D10) are equivalent.
(5) Model (D7) ⇒ Model (D10).

PROOF. All parts result directly from lemma 5.6 and theorem 5.7.

5.4 Remarks

Remark 5.9 (Goldstein (1991)). Models (D8) and (D4) were introduced by
Goldstein (1991) as particular cases of his “decomposable thresholds models”.
He already noted their equivalence.

Remark 5.10 (Equivalence between models). Some care must be exercised
when adding additional conditions to equivalent models. These additions may
turn equivalent models into distinct ones. An example of this situation oc-
curred in theorem 5.7. While models (D1) and (D2) are equivalent, this is no
more the case when it is required that G is nondecreasing in all its arguments.
Models (D5) and (D6) are indeed distinct.

Remark 5.11 (Marginal preferences). The nontransitivity and/or noncom-
pleteness of % combined with that of %i may obscure some features of models
involving traces on differences. For the sake of completeness, we sum up a few
useful observations in the following proposition.

Proposition 5.12 (Properties of models using differences). Let % be a binary
relation on X =

∏n
i=1Xi and J ⊆ N .

(1) If % satisfies model (D5) then: [xi ≻i yi for all i ∈ J ⊆ N ] ⇒ Not[ yJ %J

xJ ].
(2) If % satisfies model (D6) then:

• %i is complete,
• [xi ≻i yi for all i ∈ J ⊆ N ] ⇒ [xJ ≻J yJ ].

(3) If % satisfies model (D11) then:
• [xi %i yi for all i ∈ J ⊆ N ] ⇒ [xJ %J yJ ],
• [xi %i yi for all i ∈ J ⊆ N, xj ≻j yj, for some j ∈ J ] ⇒ [xJ ≻J yJ ].

PROOF. Part 1. Using obvious notation, xi ≻i yi implies Not[ yi %i xi ] so
that G(pi(yi, xi), 0) < 0. Since G(0) ≥ 0, we know that pi(yi, xi) < 0, using
the nondecreasingness of G. Select any j ∈ J . Starting from G(pj(yj, xj), 0)
< 0, using the nondecreasingness of G and the fact that pi(yi, xi) < 0, for all
i ∈ J , we obtain G((pj(yj, xj))i∈J , 0) < 0. This implies Not[ yJ %J xJ ].

Part 2. Not[ xi %i yi ] and Not[ yi %i xi ] imply G(pi(xi, yi), 0) < 0 and

40



G(pi(yi, xi), 0) < 0. Since G(0) ≥ 0 and G is nondecreasing, this implies
pi(xi, yi) < 0 and pi(yi, xi) < 0, which contradicts the skew symmetry of pi.
Hence %i is complete.

Observe that xi ≻i yi is equivalent to G(pi(xi, yi), 0) ≥ 0 and G(pi(yi, xi), 0)
< 0. Since G(0) ≥ 0, we know that pi(yi, xi) < 0, using the nondecreasingness
of G. The skew symmetry of pi implies pi(xi, yi) > 0 > pi(yi, xi) and the
desired property easily follows using the nondecreasingness of G.

Part 3. Since G is increasing and odd, we have xi %i yi ⇔ pi(xi, yi) ≥ 0. The
desired properties easily follow from the increasingness of G and G(0) = 0.

Except for model (D11), the monotonicity properties of our models linking
% and %i may seem disappointing. Such properties should however be ana-
lyzed keeping in mind that we are dealing with possibly nontransitive and/or
incomplete preferences. In such a framework, some “obvious properties” may
not always be desirable. For example, when the relations ∼i are not transitive,
it may not be reasonable to impose that:

[xi ∼i yi for all i ∈ J ] ⇒ [xJ ∼J yJ ],

which would forbid any interaction between separately non-noticeable differ-
ences on each attribute (on this point see Gilboa and Lapson (1995) or Pirlot
and Vincke (1997)). Clearly, if nice monotonicity properties are looked for,
one should use traces (see lemmas 3.7 and 5.5).

Remark 5.13 (Interpretation of TC). It is not difficult to show that, when
% is complete, [RC1, RC2 and (x ∼ y and (zi, wi) ≻∗∗

i (xi, yi) ⇒ (zi, x−i) ≻
(wi, y−i))] ⇔ TC. This offers an additional interpretation of TC and shows
that the only difference between (D11) and (D7) is the possible failure in (D7)
of “strict monotonicity” with respect to ≻∗∗

i for pairs such that x ∼ y.

Remark 5.14 (Uniqueness). As in section 4.3, the uniqueness properties of
the representations exhibited in theorem 5.7 are very weak. Again, numerical
representations are only used here as guidelines to investigate the consequences
of some particular conditions on % and not as a basis to derive assessment
procedures.

Let us analyze the uniqueness properties of model (D8). Our proof shows that
it is always possible to use functions pi such that:

(xi, yi) %
∗
i (zi, wi) ⇔ pi(xi, yi) ≥ pi(zi, wi). (5.7)

This could be called a regular representation of model (D8). From the proof
of theorem 5.7, it is clear that any pi satisfying (5.7) may be used, i.e. we may
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apply, independently on each attribute, any increasing transformation to the
functions pi without altering the representation.

Other choices for pi are possible however. Let us show that any function pi
such that:

(xi, yi) ≻
∗
i (zi, wi) ⇒ pi(xi, yi) > pi(zi, wi), (5.8)

can be used in a representation of model (D8).

The necessity of (5.8) is clear since (xi, yi) ≻∗
i (zi, wi) implies (xi, a−i) %

(yi, b−i) and Not[ (zi, a−i) % (wi, b−i) ], for some a−i, b−i ∈ X−i. Using the
increasingness of G in model (D8) this implies pi(xi, yi) > pi(zi, wi).

Conversely, it is clear that if pi satisfies (5.8) then

pi(xi, yi) = pi(zi, wi) ⇒ (xi, yi) ∼
∗
i (zi, wi), (5.9)

so that defining G using (5.5) as in the proof of theorem 5.7 leads to a well-
defined function being increasing in its arguments.

It should be noted that any function f (resp. g) from R
n into [0,+∞) (resp.

(−∞, 0)) that is increasing in all arguments when restricted to
∏n

i=1 pi(X
2
i )

may be used in order to define G letting:

G([pi(xi, yi)]) =







f([pi(xi, yi)]) if x % y,

g([pi(xi, yi)]) otherwise.
(5.10)

It is furthermore clear that only such functions may be used.

We have therefore described the set of all possible numerical representations in
model (D8). We shall need below the exact statement of the degrees of freedom
we have for choosing the functions pi in our models. This is summarized in
the next lemma.

Lemma 5.15 (Uniqueness of pi).

(1) Let % satisfy model (D8). A real-valued function pi on X2
i may be used

in the representation of % in model (D8) iff

(zi, wi) ≻
∗
i (xi, yi) ⇒ pi(zi, wi) > pi(xi, yi). (5.11)

(2) Let % satisfy model (D9). A real-valued function pi on X2
i may be used

in the representation of % in model (D9) iff

pi(xi, xi) = 0 and (5.12)

(zi, wi) ≻
∗∗
i (xi, yi) ⇒ pi(zi, wi) > pi(xi, yi). (5.13)
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(3) Let % satisfy model (D7) or (D10). A real-valued function pi on X2
i may

be used in the representation of % in model (D7) or (D10) iff

pi(xi, yi) = −pi(yi, xi) and (5.14)

(zi, wi) ≻
∗∗
i (xi, yi) ⇒ pi(zi, wi) > pi(xi, yi). (5.15)

(4) Let % satisfy model (D11). A real-valued function pi on X2
i may be used

in the representation of % in model (D11) iff

pi(xi, yi) = −pi(yi, xi), (5.16)

(zi, wi) ≻
∗∗
i (xi, yi) ⇒ pi(zi, wi) > pi(xi, yi) and (5.17)

(zi, wi) ∼
∗∗
i (xi, yi) and

∃ a−i, b−i ∈ X−i s.t. (xi, a−i) ∼ (yi, b−i)

}

⇒ pi(zi, wi) = pi(xi, yi).

(5.18)

PROOF. The observations preceding the statement of the lemma prove part 1.
The proof of parts 2 and 3 follows from that of part 1.

Part 4. The necessity of (5.16) and (5.17) is clear. Suppose that (5.18) is
violated. One would then have (zi, wi) ∼∗∗

i (xi, yi), (xi, a−i) ∼ (yi, b−i) for
some a−i, b−i ∈ X−i and pi(zi, wi) 6= pi(xi, yi). Since G is strictly increasing,
G(pi(zi, wi), (pj(aj , bj))j 6=i) 6= 0 while (zi, a−i) ∼ (wi, b−i), a contradiction.

Sufficiency. Consider, on each i ∈ N , any function pi satisfying (5.16), (5.17)
and (5.18) and define G as in (5.6). The well-definedness of G follows from
(5.16) and (3.9) since pi(zi, wi) = pi(xi, yi) ⇒ (zi, wi) ∼

∗∗
i (xi, yi). For proving

increasingness, suppose pi(zi, wi) > pi(xi, yi). This implies that (zi, wi) %∗∗
i

(xi, yi). If x ≻ y, (3.8) implies (zi, x−i) ≻ (wi, y−i) and the conclusion follows
from the definition of G. If x ∼ y we have G([pi(xi, yi)]) = 0. Consider two
cases. If (zi, wi) ≻∗∗

i (xi, yi), then part 2 of lemma 5.5 implies (zi, x−i) ≻
(wi, y−i) and the conclusion follows from the definition of G. If (zi, wi) ∼∗∗

i

(xi, yi) then, by (3.9) we obtain (zi, x−i) ∼ (wi, y−i), violating (5.18). Finally,
the case Not[ x % y ] is dealt with like as in the proof of theorem 5.7. This
completes the proof.

Remark 5.16 (n = 2 case). It is easy to see that RC1i amounts to defining
a biorder (see Doignon et al., 1984; Ducamp and Falmagne, 1969) between
the sets X2

i and X2
−i. Therefore RC1i on its own implies, when X is finite

or countably infinite, the existence of two real-valued functions pi and P−i

respectively on X2
i and X2

−i such that, for all x, y ∈ X , x % y iff pi(xi, yi) +
P−i(x−i, y−i) ≥ 0 (see Ducamp and Falmagne, 1969, Proposition 3).

Therefore models using traces on differences closely relate to ordinal measure-
ment when n = 2.
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In a similar vein, Bouyssou (1986, Theorem 1) noted an interesting implication
of TCi on its own. When X is countable, TCi implies the existence of two
real-valued skew symmetric functions pi and P−i respectively on X2

i and X2
−i

such that, for all x, y ∈ X , x % y ⇔ pi(xi, yi) + P−i(x−i, y−i) ≥ 0. This result
can easily be extended to sets of arbitrary cardinality (see remark 5.18). When
n = 2 this offers an alternative to Fishburn (1991a, theorem B).

Remark 5.17 (Extensions to subsets). The obvious extension of RC1 to
subsets of attributes is the main necessary condition used by Vind (1991)
together with topological assumptions on X to axiomatize a model such that:

x % y ⇔
n
∑

i=1

pi(xi, yi) ≥ 0 (5.19)

with pi(xi, xi) = 0.

Similarly, it is easy to see that the extension of TC to subsets of attributes
is necessary for a model of type (5.19) with all pi’s being skew symmetric.
A complete axiomatic treatment of this model may be found in Fishburn
(1990a,b, 1991a).

It should be noted that our use here of a function G instead of a sum al-
lows to considerably simplify our analysis. Clearly as soon as additivity is
required, axioms involve either a denumerable scheme of conditions guaran-
teeing the existence of solutions to a set of linear equations or a limited number
of conditions together with unnecessary structural assumptions on the set of
alternatives (e.g. solvability). We refer to Bouyssou and Pirlot (2002d) for
a thorough comparison between models involving traces on differences and
their additive specializations as well as an evaluation of the contribution of
theorem 5.7 to the general theory of conjoint measurement.

Remark 5.18 (The general case). The results in this section can easily be
extended to cover the general case. This requires the addition of, necessary,
conditions guaranteeing that the equivalences and weak orders encountered in
this section have a numerical representation.

The main results in this section are summarized in table 6 and figure 4.

6 Models using marginal traces on levels and on differences 5

This section studies models based on traces on differences in which the magni-
tude of differences may be modelled through traces on levels. We have already

5 This section is based on Bouyssou and Pirlot (2002a)
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Table 6
Main results using traces on differences

Models Definition Conditions

(D0) x % y ⇔ G([pi(xi, yi)]) ≥ 0 ∅

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(D1) (D0) with pi(xi, xi) = 0
m ind.

(D2) (D0) with pi skew symmetric
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(D3)
(D0) with pi skew symmetric

and G odd
cpl., ind.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(D8) ⇔ (D4) (D0) with G(րր) RC1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(D9) ⇔ (D5) (D1) with G(րր) RC1, ind.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(D10) ⇔ (D6) (D2) with G(րր) RC12

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(D7) (D3) with G(ր) cpl., RC12

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(D11) (D3) with G(րր) cpl., TC

ր means nondecreasing, րր means increasing
cpl. means completeness, ind. means independence

Figure 4. Implication between models resulting from theorem 5.7

(D11)
⇓

(D7) =⇒ (D3)
⇓

(D10) ⇔ (D6)
⇓

(D9) ⇔ (D5) =⇒ (D2) ⇔ (D1)
⇓

(D8) ⇔ (D4)

All models imply (D0)

encountered the trivial model (L0D0) in which:

x % y ⇔ H([φi(ui(xi), ui(yi))]) ≥ 0, (L0D0)

This model may be seen as a particular case of model (D0) in which the term
pi(xi, yi) is substituted with the term φi(ui(xi), ui(yi)). Alternatively it may
be seen as a generalization of the additive difference model (1.5) replacing
addition and subtraction by more general functions.

To each of the 12 models (D0) to (D11) studied in section 5 corresponds a
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model in which the term pi(xi, yi) is substituted with φi(ui(xi), ui(yi)). This
defines models (L0D0) to (L0D11).

In order to bring the functions φi “closer” to a subtraction, we envisage two
variants of each of these models. In the first one, we impose that φi are non-
decreasing in their first argument and nonincreasing in their second argument.
This defines models (L1D0) to (L1D11). In the other variant we impose that
φi are increasing in their first argument and decreasing in their second argu-
ment. This defines models (L2D0) to (L2D11). The definition of all these
models is summarized in table 7. We have thus defined a total of 3 × 12 = 36
models involving differences and levels. We study them in this section.

Table 7
Models involving traces on levels and on differences

(L0D0) x % y ⇔ H([φi(ui(xi), ui(yi))]) ≥ 0
(L0D1) (L0D0) with φi(u(xi), ui(xi)) = 0
(L0D2) (L0D1) with φi skew symmetric
(L0D3) (L0D2) with H odd

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(L0D4) (L0D0) with H nondecreasing
(L0D5) (L0D0) with H increasing

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(L0D6) (L0D1) with H nondecreasing
(L0D7) (L0D1) with H increasing

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(L0D8) (L0D2) with H nondecreasing
(L0D9) (L0D2) with H increasing

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(L0D10) (L0D3) with H nondecreasing
(L0D11) (L0D3) with H increasing

Models (L1Dx) correspond to models (L0Dx) with φi(ր,ց)
Models (L2Dx) correspond to models (L0Dx) with φi(րր,ցց)

6.1 Models (L0D1) to (L0D11)

These 12 models (L0D0) to (L0D11) correspond to models (D0) to (D11)
involving differences in which the term pi(xi, yi) is substituted with the term
φi(ui(xi), ui(yi)) with no monotonicity property required for the functions φi.
These models are easily analyzed using the following elementary observation.

Lemma 6.1 (Numerical representation of a weak order on pairs). Let %A be
a weak order on a countable set A2. Consider any real valued function f on
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A2 representing %A, i.e. such that, for all a, b, c, d ∈ A,

(a, b) %A (c, d) ⇔ f(a, b) ≥ f(c, d). (6.1)

There is a real-valued function u on A and a real-valued function g on u(A)×
u(A) such that, for all a, b ∈ A,

f(a, b) = g(u(a), u(b)). (6.2)

PROOF. Define the binary relation E on A letting, for all a, b ∈ A,

a E b ⇔ (a, c) ∼A (b, c), and (c, b) ∼A (c, a), for all c ∈ A, (6.3)

where ∼A denotes the symmetric part of %A. Since ∼A is an equivalence, it is
easy to show that E is an equivalence. Therefore, since A is countable, there
is a real-valued function u on A such that, for all a, b ∈ A,

a E b ⇔ u(a) = u(b). (6.4)

Take any function f such that (6.1) holds and define g on u(A)×u(A) letting,
for all a, b ∈ A, g(u(a), u(b)) = f(a, b). We have to show that g is well-defined,
i.e. that u(a) = u(c) and u(b) = u(d) imply f(a, b) = f(c, d). By construction,
we have a E c and b E d. This implies (a, ℓ) ∼A (c, ℓ) and (ℓ′, b) ∼A (ℓ′, d), for
all ℓ, ℓ′ ∈ A. Taking ℓ = b and ℓ′ = c implies (a, b) ∼A (c, b) and (c, b) ∼A (c, d).
Using the transitivity of ∼A we obtain (a, b) ∼A (c, d) so that f(a, b) = f(c, d),
as required.

Theorem 6.2 (Models (L0D0) to (L0D11)). Models (L0D0) to (L0D11) are
respectively equivalent to models (D0) to (D11).

PROOF. Consider any representation of models (D0) to (D11) and apply
lemma 6.1 to the weak order on X2

i induced by pi.

Models (L0D0) to (L0D11) are therefore nothing more than a different pre-
sentation of models (D0) to (D11). Clearly, the equivalences between models
(D0) to (D11) noted in corollary 5.8 carry over to models (L0D0) to (L0D11).
The relations between these models is therefore given by figure 4 replacing Dk
by L0Dk, for k = 0, 1, . . . , 11.

6.2 Models (L1D0)-(L1D3), (L2D0)-(L2D3)

We first take up the case of models (L1D0) to (L1D3) and (L2D0) to (L2D3)
in which H has no particular monotonicity properties. Substituting pi(xi, yi)
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with φi(ui(xi), ui(yi)), φi being nondecreasing in its first argument and nonin-
creasing in its second argument is likely to have little impact since the mono-
tonicity properties of φi can be “absorbed” by H . A similar reasoning applies
if φi is supposed to be increasing in its first argument and decreasing in its
second argument. As already mentioned in remark 3.10, this is indeed the
case.

Theorem 6.3 (Models (L1D0)–(L1D3) and (L2D0)–(L2D3)).

(1) (D0) ⇔ (L1D0) ⇔ (L2D0),
(2) (D1) ⇔ (L1D1) ⇔ (L2D1) ⇔ (D2) ⇔ (L1D2) ⇔ (L2D2),
(3) (D3) ⇔ (L1D3) ⇔ (L2D3).

PROOF. Part 1. By construction, (L2D0) ⇒ (L1D0) ⇒ (D0). We show
that (D0) ⇒ (L2D0).

Consider any one-to-one correspondence ui between Xi and a subset of the set
of integers ≥ 2. Define φi letting, for all xi, yi ∈ Xi,

φi(ui(xi), ui(yi)) = ui(xi) +
1

ui(yi)
. (6.5)

By construction, φi is increasing in its first argument and decreasing in its
second argument. Observe that

φi(ui(xi), ui(yi)) = φi(ui(zi), ui(wi)) ⇒ xi = zi and yi = wi (6.6)

Define H on
∏n

i=1 φi(ui(Xi), ui(Xi)) letting:

H([φi(ui(xi), ui(yi))]) =

{

+1 if x % y,
−1 otherwise.

(6.7)

We have to show that H is well-defined. This is obvious in view of (6.6).

Part 2. We know from corollary 5.8 that (D2) ⇔ (D1). By construction
(L2D2) ⇒ (L1D2) ⇒ (D2) and (L2D1) ⇒ (L1D1) ⇒ (D1). We show that
(D1) ⇒ (L2D2).

Consider on each Xi any function φi satisfying (6.5) and define ϕi letting, for
all xi, yi ∈ Xi,

ϕi(ui(xi), ui(yi)) = φi(ui(xi), ui(yi)) − φi(ui(yi), ui(xi)). (6.8)

By construction, ϕi is skew symmetric, increasing in its first argument and
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decreasing in its second argument. We clearly have:

ϕi(ui(xi), ui(yi)) = ϕi(ui(zi), ui(wi)) ⇒











xi = zi and yi = wi

or
xi = yi and zi = wi.

(6.9)

Define H on
∏n

i=1 ϕi(ui(Xi), ui(Xi)) letting:

H([ϕi(ui(xi), ui(yi))]) =

{

+1 if x % y,
−1 otherwise.

(6.10)

Since model (D1) holds, we know that % is independent so that (xi, xi) ∼∗
i

(yi, yi). In view of (6.9), it is then clear that H is well-defined.

Part 3. By construction, (L2D3) ⇒ (L1D3) ⇒ (D3). We show that (D3)
⇒ (L2D3). Define, on each i ∈ N , a function ϕi using (6.8). Define H on
∏n

i=1 ϕi(ui(Xi), ui(Xi)) letting:

H([ϕi(ui(xi), ui(yi))]) =











+1 if x ≻ y,
0 if x ∼ y,

−1 otherwise.
(6.11)

Since % is complete, H is odd. Its well-definedness is proved as in part 2.

6.3 Models (L1D4) to (L1D11)

These eight models are the counterparts of models (D4) to (D11) in which the
term pi(xi, yi) is substituted with the term φi(ui(xi), ui(yi)), φi being nonde-
creasing in its first argument and nonincreasing in its second argument. In all
models (D4) to (D11), the function G is nondecreasing in all its arguments.
Therefore, it is clear that imposing that φi is nondecreasing in its first argu-
ment and nonincreasing in its second argument is no more innocuous. The
conditions that were used to analyze models using traces on levels reappear
here. The least constrained of the models considered here, (L1D4), already
implies all of these conditions.

Lemma 6.4 (Necessity of AC1, AC2 and AC3). If % has a representation in
model (L1D4) then it satisfies AC1, AC2 and AC3.

PROOF. In model (L1D4), we have:

x % y ⇔ H([φi(ui(xi), ui(yi))]) ≥ 0,

with H being nondecreasing in all its arguments and all φi being nondecreasing
in their first argument and nonincreasing in their second argument. The proof
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that AC1, AC2 and AC3 hold easily follows from the numerical representation.
We show that AC1 holds. The premise of AC1i yields in terms of model
(L1D4):

H(φi(ui(xi), ui(yi)), (φj(uj(xj), uj(yj)))j 6=i) ≥ 0 and

H(φi(ui(zi), ui(wi)), (φj(uj(zj), uj(wj)))j 6=i) ≥ 0.

We have either ui(zi) ≥ ui(xi) or ui(xi) ≥ ui(zi). In the first case, the mono-
tonicity of H and φi, implies:

H(φi(ui(zi), ui(yi)), (φj(uj(xj), uj(yj)))j 6=i) ≥ 0.

In the second case, we have:

H(φi(ui(xi), ui(wi)), (φj(uj(zj), uj(wj)))j 6=i) ≥ 0.

Hence, AC1i holds. The proof for AC2i and AC3i is similar.

As was the case in section 6.1, a simple lemma on the numerical representation
of a weak order on ordered pairs will allow us to analyze all our models. This
will require some new vocabulary however.

Definition 6.5 (Strong linearity). Let %A be a binary relation on a set A2.
We say that:

(1) %A is right-linear iff [Not[ (b, c) %A (a, c) ] ⇒ (a, d) %A (b, d)],
(2) %A is left-linear iff [Not[ (c, a) %A (c, b) ] ⇒ (d, b) %A (d, a)],
(3) %A is strongly linear iff [Not[ (b, c) %A (a, c) ] or Not[ (c, a) %A (c, b) ]] ⇒

[(a, d) %A (b, d) and (d, b) %A (d, a)],

for all a, b, c, d ∈ A

Lemma 6.6 (Numerical representation of a weak order on pairs). Let %A be
a weak order on a countable set A2. Let f be any real-valued function on A2

such that, for all a, b, c, d ∈ A,

(a, b) %A (c, d) ⇔ f(a, b) ≥ f(c, d). (6.12)

There is a real-valued function u on A and a real-valued function g on u(A)×
u(A) nondecreasing in its first argument, nonincreasing in its second argu-
ment, such that for all a, b, c, d ∈ A,

f(a, b) = g(u(a), u(b)) (6.13)

iff %A is strongly linear.
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PROOF. Necessity of strong linearity is easily shown. Suppose that Not[ (b, c) %A

(a, c) ] or Not[ (c, a) %A (c, b) ]. This implies g(u(b), u(c)) < g(u(a), u(c)) or
g(u(c), u(a)) < g(u(c), u(b)). In either case, the monotonicity properties of g
imply u(a) > u(b). Starting now from g(u(b), u(d)) and using the nondecreas-
ingness of g in its first argument, we obtain g(u(a), u(d)) ≥ g(u(b), u(d)) and,
hence, (a, d) %A (b, d). The proof that (d, b) %A (d, a) holds is similar.

Sufficiency. Define the binary relation T on A letting:

a T b ⇔ [(a, c) % (b, c) and (c, b) % (c, a), for all c ∈ A].

It is clear that T is reflexive and transitive. An easy proof shows that it is
complete if and only if % is strongly linear.

Since A is countable and T is a weak order, there is a real-valued function u
on A such that, for all a, b ∈ A,

a T b ⇔ u(a) ≥ u(b). (6.14)

Let f be any real-valued function on A2 such that (6.12) holds. Define the
real-valued function g on u(A)2 letting, for all a, b, c, d ∈ A,

g(u(a), u(b)) = f(a, b).

Using the definition of T , it is routine to show that g is well-defined, nonde-
creasing in its first argument and nonincreasing in its second argument.

The following lemma interprets conditions AC1, AC2 and AC3 in terms of
linearity properties of %∗

i .

Lemma 6.7 (AC1i, AC2i, AC3i and strong linearity). Let % be a binary
relation on X =

∏n
i=1Xi.

(1) AC1i holds iff %∗
i is right linear,

(2) AC2i holds iff %∗
i is left linear,

(3) AC3i holds iff [Not[ (xi, zi) %∗
i (yi, zi) ], for some zi ∈ Xi] ⇒ (wi, xi) %∗

i

(wi, yi), for all wi ∈ Xi,
(4) AC1i, AC2i and AC3i hold iff %∗

i is strongly linear iff %∗∗
i is strongly

linear.

PROOF. Part 1. We show equivalently that Not[AC1i ] iff for some xi, yi, zi, wi ∈
Xi, Not[ (zi, yi) %

∗
i (xi, yi) ] and Not[ (xi, wi) %

∗
i (zi, wi) ]. This last statement
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means, by definition of %∗
i , that for some a−i, b−i, c−i, d−i ∈ X−i, we have

[(xi, a−i) % (yi, b−i)] and Not[ (zi, a−i) % (yi, b−i) ], and

[(zi, c−i) % (wi, d−i)] and Not[ (xi, c−i) % (wi, d−i) ],

which is exactly Not[AC1i ]. The proof of part 2 is similar.

Part 3. We show that Not[AC3i ] ⇔ [Not[ (xi, zi) %
∗
i (yi, zi) ] and Not[ (wi, xi) %

∗
i

(wi, yi) ]], for some zi, wi ∈ Xi. The last expression means that, for some
a−i, b−i, c−i, d−i ∈ X−i, we have

[(yi, a−i) % (zi, b−i)] and Not[ (xi, a−i) % (zi, b−i) ],

[(wi, c−i) % (yi, d−i)] and Not[ (wi, c−i) % (xi, d−i) ],

which is exactly Not[AC3i ].

Part 4. Combining the equivalences in parts 1, 2 and 3 leads to the equiv-
alence between AC1i, AC2i and AC3i with the strong linearity of %∗

i . By
construction this also shows that %∗∗

i is strongly linear.

We are now in position to characterize models (L1D4) to (L1D11)

Theorem 6.8. Let % be a binary relation on a countable set X =
∏n

i=1Xi.

(1) Model (L1D8) holds iff % satisfies RC1, AC1, AC2 and AC3.
(2) Model (L1D9) holds iff % is independent and satisfies RC1, AC1, AC2

and AC3.
(3) Model (L1D10) holds iff % satisfies RC1, RC2, AC1, AC2 and AC3.
(4) Model (L1D7) holds iff % is complete and satisfies RC1, RC2, AC1,

AC2 and AC3.
(5) Model (L1D11) holds iff % is complete and satisfies TC, AC1, AC2 and

AC3.

PROOF. The necessity of all parts follows from theorem 5.7 and lemma 6.4.

Observe that in the proof of parts 3 to 7 of theorem 5.7, we have exhibited a
regular representation, i.e. a representation in which pi represents %∗

i in models
(D8) and (D9) and %∗∗

i in models (D10), (D7) and (D11). The sufficiency of
each part therefore follows applying lemma 6.6 to the weak order induced on
X2

i by the function pi used in the proof of theorem 5.7.

Corollary 6.9 (Links between models).

(1) Model (L1D4) and (L1D8) are equivalent.
(2) Model (L1D5) and (L1D9) are equivalent.
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(3) Models (L1D6) and (L1D10) are equivalent.
(4) Model (L1D7) ⇒ Model (L1D10).

Remark 6.10 (Independence of axioms). We refer to Bouyssou and Pirlot
(2002a) for a complete analysis of the independence of the axioms used in the-
orem 6.8. It turns out that conditions implying the completeness of marginal
traces on levels (AC1, AC2 and AC3) are completely independent from the
conditions implying that marginal traces on differences are complete (RC1 and
RC2). In order not to multiply examples, we simply show in appendix A.3
that, in the class of complete relations, conditions TC, AC1, AC2 and AC3
are independent.

6.4 Models (L2D4) to (L2D11)

Except for the most constrained model (L2D11), it turns out that no addi-
tional constraint is brought into the picture supposing that φi increases in
its first arguments and decreases in its second argument. We summarize our
results below.

Theorem 6.11. Let % be a binary relation on a countable set X =
∏n

i=1Xi.

(1) Models (L2D8) and (L1D8) are equivalent.
(2) Models (L2D9) and (L1D9) are equivalent.
(3) Models (L2D10) and (L1D10) are equivalent.
(4) Models (L2D7) and (L1D7) are equivalent.
(5) Model (L2D11) holds iff % is complete and satisfies TC, TAC1 and

TAC2.

In the proof of theorem 6.8 the strategy was to consider the underlying models
involving differences and to factorize the function pi using lemma 6.6 using the
fact that it is always possible to build a regular representation. Hence in all
the representations used in theorem 6.8 the functions φi represent %∗

i or %∗∗
i

depending on the model. Our strategy here is rather different and amounts to
exploiting the fact, already stressed, that there is no need for the functions pi
in models involving differences to represent %∗

i or %∗∗
i . We use this degree of

freedom to modify nondecreasing/nonincreasing functions φi into increasing
and decreasing functions ϕi.

The following lemma states the conditions under which a function f that is
nondecreasing in its first argument and nonincreasing in its second argument,
can be appropriately transformed into a strictly monotonic function g.

Consider a function f : U × U → R, with U a countable subset of R and
suppose that f is nondecreasing in its first argument and nonincreasing in its
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second argument. There are two types of situations that may cause the lack
of strict monotonicity of f . We denote by S, the set of values r of f for which
either there are a, b, c ∈ U such that:

f(a, c) = f(b, c) = r with a > b, (6.15)

or there are a, c, d ∈ U such that:

f(a, c) = f(a, d) = r with c > d. (6.16)

Clearly, f is strictly monotonic iff S is empty.

Lemma 6.12 (Modifying a nondecreasing function). Let U be a countable
subset of the (0, 1) interval and f : U×U → R a function that is nondecreasing
in its first argument and nonincreasing in its second argument.

There exists a function g : U ×U → R that is increasing in its first argument
and decreasing in its second argument and such that, for all u, v, u′, v′ ∈ U ,

[f(u, v) > f(u′, v′)] ⇒ [g(u, v)) > g(u′, v′)], and (6.17)

[f(u, v) = f(u′, v′)] ⇒ [g(u, v)) = g(u′, v′)] iff f(u, v) 6∈ S. (6.18)

If, in addition, f vanishes on the diagonal (f(u, u) = 0, for all u ∈ U) (resp.
is skew symmetric) there exists a function g satisfying (6.17) and (6.18) that
vanishes on the diagonal (resp. is skew symmetric).

The proof of this lemma, being rather uninformative, is relegated in ap-
pendix B.

Proof of Theorem 6.11 Parts 1 to 4. We show that model (L2D8) holds if
and only if RC1 and AC123 hold.

The necessity of RC1 and AC123 for model (L2D8) is clear, using theorem 6.8.
We show sufficiency. Consider a representation of % in model (L1D8). From
the proof of theorem 6.8, we have:

(zi, wi) %
∗
i (xi, yi) ⇔ φi(ui(zi), ui(wi)) ≥ φi(ui(xi), ui(yi)). (6.19)

Without loss of generality, we may suppose that U = ui(Xi) is included in
(0, 1). We may then apply lemma 6.12 to obtain a function ϕi that is increasing
in its first argument and decreasing in its second argument. According to
(6.17), we have:

(zi, wi) ≻
∗
i (xi, yi) ⇒ ϕi(ui(zi), ui(wi)) > ϕi(ui(xi), ui(yi)). (6.20)

54



Hence, this function can be used as a basis of the definition of H in view of
lemma 5.15. This shows sufficiency.

Combining theorem 6.8 and lemmas 5.15 and 6.12, the proof for models
(L2D9), (L2D10) and (L2D7) is similar.

Part 5. Necessity. In view of theorem 6.8 we only have to show that TAC1 and
TAC2 are necessary. Suppose that % has a representation in model (L2D11).
The premise of TAC1i, interpreted in terms of the model, yields three inequal-
ities:

H(φi(ui(xi), ui(yi)), (φj(uj(aj), uj(yj))j 6=i) ≥ 0 (6.21)

H(φi(ui(yi), ui(zi)), (φj(uj(yj), uj(aj))j 6=i) ≥ 0 (6.22)

H(φi(ui(zi), ui(wi)), (φj(uj(bj), uj(wj))j 6=i) ≥ 0 (6.23)

Due to skew symmetry of φi and oddness of H , (6.22) may be rewritten as:

H(φi(ui(zi), ui(yi)), (φj(uj(aj), uj(yj))j 6=i) ≤ 0 (6.24)

Using the increasingness of H (resp. φi) in its ith (resp. first) argument, (6.21)
and (6.24) imply ui(xi) ≥ ui(zi). Substituting ui(zi) with ui(xi) in equation
(6.23) yields:

H(φi(ui(xi), ui(wi)), (φj(uj(bj)uj(wj))j 6=i) ≥ 0

which establishes TAC1i. The proof for TAC2i is similar.

Sufficiency. From the proof of theorem 6.8, we know that % has a representa-
tion in model (L1D11) such that

(xi, yi) %
∗∗
i (zi, wi) ⇔ φi(ui(xi), ui(yi)) ≥ φi(ui(zi), ui(wi)) and (6.25)

xi %
±
i yi ⇔ ui(xi) ≥ ui(yi) (6.26)

In view of lemmas 5.15 and 6.12, the proof will be complete if we show that
after transforming the functions φi into functions ϕi according to lemma 6.12,
it is still true that (5.18) holds, i.e. that:

(zi, wi) ∼∗∗
i (xi, yi) and

∃ a−i, b−i ∈ X−i s.t. (xi, a−i) ∼ (yi, b−i)

}

⇒

ϕi(ui(zi), ui(wi)) = ϕi(ui(xi), ui(yi)).

In view of (6.18), this will be true if, as soon as (zi, wi) ∼∗∗
i (xi, yi) and

∃ a−i, b−i ∈ X−i s.t. (xi, a−i) ∼ (yi, b−i), it is not true that φi(ui(xi), ui(yi)) ∈
S. This results from (4.2) and (4.3).

Remark 6.13 (Regular representations). For models (L1D8), (L1D7), (L1D9),
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(L1D10), (L1D7) and (L1D11), theorem 6.8 shows that it is always possible
to build a representation of these models in which:

• ui is a numerical representation of the weak order %±
i and

• φi is a numerical representation of the weak order %∗
i , in model (L1D8) and

of the weak order %∗∗
i in the more constrained models.

We call regular a representation in which this is the case (see Roberts (1979,
ch. 2) about regularization of a scale of measurement).

In theorem 6.11, the representations that we build start from the regular
representations provided by theorem 6.8 and we modify them, in accordance
with the restrictions of lemma 5.15, so as to make φi increasing in its first
argument and decreasing in its second argument. This modification is done,
on each i ∈ N , on a set Si containing all the values s such that:

s = φi(ui(xi), ui(zi)) = φi(ui(yi), ui(zi)), or

s = φi(ui(zi), ui(xi)) = φi(ui(zi), ui(yi)),

for some xi, yi, zi ∈ Xi such that xi ≻
±
i yi. It is not difficult to see that the

emptiness of the sets Si is a necessary and sufficient condition to obtain a
regular representation in the models envisaged in theorem 6.11 (see Bouyssou
and Pirlot, 2002a, for details).

Remark 6.14 (Extension to the general case). Because we have deliberately
used above representations that are not regular (i.e. φi does not necessarily
represent %∗

i or %∗∗
i ), the extension of the results in this section to the general

uncountable case is slightly more involved than for other models (see Bouyssou
and Pirlot, 2002a). This does not raise major difficulties however.

The main results in this section are summarized in tables 8 and 9 and figure 5.
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Table 8
Models (L1D0) to (L1D11)

Models Definition Conditions

(L1D0)
x % y ⇔ H([φi(ui(xi), ui(yi))]) ≥ 0

φi(ր,ց)
∅

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(L1D1) (L1D0) with φi(u(xi), ui(xi)) = 0

m ind.
(L1D2) (L1D1) with φi skew symmetric

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(L1D3) (L1D2) with H odd cpl., ind.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(L1D4) (L1D0) with H(ր)

m RC1, AC123
(L1D8) (L1D0) with H(րր)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(L1D5) (L1D1) with H(ր)

m RC1, ind., AC123
(L1D9) (L1D1) with H(րր)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(L1D6) (L1D2) with H(ր)

m RC12, AC123
(L1D10) (L1D2) with H(րր)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(L1D7) (L1D3) with H(ր) cpl., RC12, AC123

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(L1D11) (L1D3) with H(րր) cpl., TC, AC123

րր means increasing, ր means nondecreasing, ց means nonincreasing
cpl. means completeness, ind. means independence

Conditions for the first four rows are identical to those of table 6
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Table 9
Models (L2D0) to (L2D11)

Models Definition Conditions

(L2D0)
x % y ⇔ H([φi(ui(xi), ui(yi))]) ≥ 0

φi(րր,ցց)
∅

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(L2D1) (L1D0) with φi(u(xi), ui(xi)) = 0

m ind.
(L2D2) (L2D1) with φi skew symmetric

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(L2D3) (L2D2) with H odd cpl., ind.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(L2D4) (L2D0) with H(ր)

m RC1, AC123
(L2D8) (L2D0) with H(րր)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(L2D5) (L2D1) with H(ր)

m RC1, ind., AC123
(L2D9) (L2D1) with H(րր)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(L2D6) (L2D2) with H(ր)

m RC12, AC123
(L2D10) (L2D2) with H(րր)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(L2D7) (L2D3) with H(ր) cpl., RC12, AC123

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(L2D11) (L2D3) with H(րր) cpl., TC, TAC12

րր means increasing, ր means nondecreasing, ցց means decreasing
cpl. means completeness, ind. means independence

Conditions are identical to those of table 8 except for the last row
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Figure 5. Implication between models resulting from theorems 6.8 and 6.11

(L2D11)
⇓

(L1D11)
⇓

(L2D7) ⇔ (L1D7)
⇓

(L2D10) ⇔ (L1D10) ⇔ (L2D6) ⇔ (L1D6)
⇓

(L2D9) ⇔ (L1D9) ⇔ (L2D5) ⇔ (L1D5)
⇓

(L2D8) ⇔ (L1D8) ⇔ (L2D4) ⇔ (L1D4)
⇓

(L2D3) ⇔ (L1D3) ⇔ (L0D3)
⇓

(L2D2) ⇔ (L1D2) ⇔ (L0D2)
m

(L2D1) ⇔ (L1D1) ⇔ (L0D1)
⇓

(L2D0) ⇔ (L1D0) ⇔ (L0D0)
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7 Discussion

This paper has proposed a general approach of conjoint measurement models
tolerating intransitivity and/or incompleteness using simple tools based on
several kinds of marginal traces on coordinates induced by the binary relation
on the product set. We have provided, when X is supposed to be countable,
a fairly complete analysis of a large variety of models. Our project was to
investigate how far it was possible to go in terms of numerical representations
using a limited number of cancellation conditions without imposing any tran-
sitivity requirement on the preference relation and any structural assumptions
on the set of objects. Rather surprisingly, as we saw, such a poor framework
allows us to go rather far. Furthermore the cancellation conditions that we
used (RC1, RC2, Independence, TC, AC1, AC2, AC3, TAC1, TAC2) are
reasonably simple and have close relations with the conditions used in the
analysis of traditional conjoint measurement models.

Our framework and results have many possible applications. Among them let
us mention:

• the characterization of all relations compatible with a dominance relation,
using our models based on marginal traces on levels (see Bouyssou and
Pirlot, 2002f),

• the characterization of preference relations that can be obtained using an
“ordinal aggregation model” using our models based on marginal traces on
levels (see Bouyssou and Pirlot, 2002b,c,e). Alternative approaches to this
kind of models may be found in Bouyssou and Vansnick (1986); Dubois,
Fargier, Perny, and Prade (2003b); Fargier and Perny (2001); Fishburn
(1976); Tsoukiàs, Perny, and Vincke (2002)

• the characterization of various functional forms for F , G or H (see Bouys-
sou, Greco, Matarazzo, Pirlot, and S lowiński, 2002; Greco, Matarazzo, and
S lowiński, 2003),

• the particularization of our results to the important case of decision un-
der uncertainty Bouyssou, Perny, and Pirlot (2000); Bouyssou and Pirlot
(2003a),

• the characterization of “ordinal” models (see Dubois, Fargier, and Prade,
1997) for decision under uncertainty (see Bouyssou et al., 2000; Bouys-
sou and Pirlot, 2003b). Alternative approaches were proposed in Dubois,
Fargier, and Perny (2003a); Dubois, Fargier, Prade, and Perny (2002).

It is clearly impossible to develop these points here. The patient reader who
has followed us till now should be in position to guess the general spirit of
these results.

Summarizing the main messages in a few words, we would say that:
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• when confronted to a nontransitive/noncomplete relation, it is always prof-
itable to investigate its traces and/or marginal traces,

• the use of conjoint measurement techniques is not restricted to the study of
complete and transitive binary relations,

• if assessment procedures are not looked for, replacing additivity by mere
decomposability requirements often allows to grasp in a very simple way
the essence of a model,

• replacing additivity by mere decomposability requirements amounts to using
models which are intimately related with “rule-based” preference modelling
Greco, Matarazzo, and S lowiński (1999, 2001); Greco et al. (2002). This
allows to consider the possibility of deriving assessment procedures using
the machinery of “rule induction” in Artificial Intelligence.

Our framework and results are also intended to contribute to the general theory
of conjoint measurement. They allow to draw the following general picture of
conjoint measurement models (see figure 6), where models are classified, when
studying the proposition x % y, according to whether:

• they use traces on differences, i.e. their functional form can be written so
as to be nondecreasing in functions pi(xi, yi),

• they use traces on levels, i.e. their functional form can be written so as to
be nondecreasing in functions ui(xi) and nonincreasing in functions ui(yi),

• they are transitive.

These various models are summarized in figure 6, where T denotes a transitive
model, L a model involving traces on levels and D a model involving traces on
differences. It is clear that the classical additive utility model (1.1) is transitive
and involves traces on levels (via the functions ui) and on differences (via the
differences ui(xi) − ui(yi)).

In the L family all relations are weakly separable but may not be weakly
independent (and, even less, independent). On the contrary, the D family
includes only independent relations, as soon as axiom RC2 is invoked. The
marginal preference relations will be rather well-behaved in the L family being
complete and most often semiorders (as soon as AC3 and either AC1 or AC2
are invoked). This will not be the case in the D family.

It is worth noting that all combinations of T, L and D have been studied in
the literature except for the combination T,L,D. This is no surprise since
when D applies, most models appeal to RC2 and, hence, are independent.
When this is combined with transitivity and completeness of %, %i is a weak
order and is confounded with %±

i . Hence, such models also involve traces on
levels.

Our hope is that the proposed framework and results will stimulate research
in the area.
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Figure 6. Summary of models

x % y ⇔
∑n

i=1 ui(xi) ≥
∑n

i=1 ui(yi)
T,L,D

x % y ⇔ U([ui(xi)]) ≥ U([ui(yi)]) x % y ⇔ H([φi(ui(xi), ui(yi))]) ≥ 0

T,L,D T,L,D

x % y ⇔ U(x) ≥ U(y) x % y ⇔ F ([ui(xi)]; [ui(yi)]) ≥ 0 x % y ⇔ F ([pi(xi, yi)]) ≥ 0

T,L,D T,L,D T,L,D

x % y ⇔ T (x, y) ≥ 0

T,L,D

T means “transitive”
D means “uses traces on differences”

L means “uses traces on levels”
x means “Not x”

A Examples

A.1 AC1, AC2, AC3, TAC1 and TAC2

We first give 3 examples showing that, in the class of complete binary relations
on X , AC1i, AC2i and AC3i are independent conditions. We leave to the
reader the easy task of finding similar examples in the case of incomplete
(e.g., irreflexive) binary relations. This will prove part 5 of lemma 4.2. It is
tedious, but easy, to check that completeness, AC1i, AC2i and AC3i are in
fact completely independent conditions.

Examples A.1 to A.3 have a common structure. In all of them X = X1 ×X2

with X1 = {w1, x1, y1, z1} and X2 = {w2, x2, y2, z2}. We define % on X by:

(r1, r2) % (s1, s2) ⇔ F [f(r1, s1); g(r2, s2)] ≥ 0 (A.1)

where f (resp. g) is a real-valued function on X2
1 (resp. on X2

2 ) and F is a
real-valued function on R

2.

It is clear that, using obvious notation:

(1) When F is odd (F (x) = −F (−x)) and f and g are skew symmetric
(f(r1, s1) = −f(s1, r1)), % is complete.
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(2) When F is nondecreasing in its first argument, [f(r1, t1) ≥ f(s1, t1) for all
t1 ∈ X1] ⇒ r1 %

+
1 s1 and [f(t1, r1) ≤ f(t1, s1) for all t1 ∈ X1] ⇒ r1 %

−
1 s1.

Similar conditions hold for the second component when F is nonincreasing
in its second argument.

In all the following examples, f and g will be skew symmetric and F (α, β) =
α + β, so that F is odd and increasing in its two arguments.

Example A.1 (AC1, AC2, Not AC3). Define f and g by the following tables
(all tables are to be read from row to column):

f w1 x1 y1 z1
w1 0 0 0 0
x1 0 0 2 2
y1 0 −2 0 1
z1 0 −2 −1 0

g w2 x2 y2 z2
w2 0 0 3 4
x2 0 0 3 4
y2 −3 −3 0 4
z2 −4 −4 −4 0

Since the table for g is step-typed, it is clear that %±
2 is complete. Hence,

AC12, AC22 and AC32 hold.

It is easily checked that AC11 holds with %+
1 as (using obvious simplified

notation for weak orders): [x1;w1] ≻
+
1 y1 ≻

+
1 z1. Similarly, AC21 holds with:

x1 ≻
−
1 y1 ≻

−
1 [w1; z1].

Because w1 ≻
+
1 y1 and y1 ≻

−
1 w1, AC31 is violated.

Hence we have an example of a complete binary relation satisfying AC1, AC2
and AC3i on all but one attribute.

Example A.2 (Not AC1, AC2, AC3). Define f by the following table:

f w1 x1 y1 z1
w1 0 0 0 1
x1 0 0 2 3
y1 0 −2 0 3
z1 −1 −3 −3 0

and use the same table for g as in example A.1. We have: Not[ y1 %+
1 w1 ]

(because (w1, w2) % (x1, w2) and Not[ (y1, w2) % (x1, w2) ]) and Not[w1 %+
1

y1 ] (because (y1, y2) % (z1, w2) and Not[ (w1, y2) % (z1, w2) ]). Hence AC11 is
violated. In fact it is easy to check that %+

1 is such that x1 ≻
+
1 y1, x1 ≻

+
1 w1,

x1 ≻
+
1 z1, y1 ≻

+
1 z1 and w1 ≻

+
1 z1.

It is easily checked that AC21 holds with x1 ≻−
1 [y1;w1] ≻

−
1 z1. Using part 3

of lemma 4.2, we can check that AC31 holds.
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Hence we have an example of a complete binary relation satisfying AC2, AC3
and AC1i on all but one attribute.

Example A.3 (AC1, Not AC2, AC3). Transposing the tables defining f and
g in example A.2 gives an example of a complete binary relation satisfying
AC1, AC3 and AC2i on all but one attribute.

The next two examples are related to lemma 4.5. We first show that there are
weakly independent semiorders satisfying TAC12 that are not weak orders.

Example A.4 (Nontransitive semiorder satisfying TAC12). Let X = X1×X2

with X1 = {x1, y1, z1} and X2 = {x2, y2, z2}. Consider the binary relation
% identical to the weak order: (x1, x2) > (x1, y2) > (y1, x2) > (x1, z2) >
(y1, y2) > (z1, x2) > (y1, z2) > (z1, y2) > (z1, z2), except that (y1, y2) ∼ (x1, z2)
and (z1, x2) ∼ (y1, y2)

This relation is clearly complete. It is not transitive since (z1, x2) % (y1, y2),
(y1, y2) % (x1, z2) but (x1, z2) ≻ (z1, x2).

It is easily checked that this relation is a semiorder having the preceding weak
order for trace. This semiorder is independent. Its marginal relations are weak
orders identical to its marginal traces. We have x1 > y1 > z1 and x2 > y2 > z2.

This relation has only a few pairs of alternatives linked by ∼. It is then easy
to check that TAC12 holds. For instance, starting with (y1, y2) % (x1, z2)
we should have (x1, y2) ≻ (x1, z2), (y1, x2) ≻ (x1, z2) and (y1, y2) ≻ (y1, z2),
because x1 ≻

±
1 y1 and x2 ≻

±
2 y2. This is indeed the case.

Hence we have an example of a nontransitive weakly independent semiorder
satisfying TAC12.

The final example shows that for complete relations, TAC2 may hold without
TAC1. An example of complete relation verifying TAC1 but not TAC2 is
easily built using a similar principle.

Example A.5 (Not TAC1, TAC2). Let X = X1 × X2 with X1 = R
2 and

X2 = R.

Define % letting:

((a1, b1), x2) % ((c1, d1), y2) ⇔ a1 + x2 > c1 + y2 or











a1 + x2 = c1 + y2
and
a1 + b1 ≥ c1.

It is clear that % is complete.

We have (a1, b1) %
−
1 (c1, d1) ⇔ a1 ≥ c1 and (a1, b1) %

+
1 (c1, d1) ⇔ (a1, b1) ≥L
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(c1, d1), where ≥L denotes the lexicographic order on R
2. On the second

attribute, it is clear that x2 %
+
2 y2 ⇔ x2 %

−
2 y2 ⇔ x2 > y2.

A simple check shows that % is strictly responsive to %+
2 , %−

2 and %−
1 . This

not so for %+
1 since, for instance, ((10, 0), 10) ∼ ((8, 2), 12) and ((10, 2), 10) ∼

((8, 2), 12), while (10, 2) ≻+
1 (10, 0) (because ((10, 2), 10) % ((11, 0), 9) and

Not[ ((10, 0), 10) % ((11, 0), 9) ]).

Hence we have an example of a complete relation satisfying TAC2 and TAC12

but violating TAC11.

A.2 RC1 and RC2

We first give six examples complete the proof of part 3 of lemma 5.3 showing
that independence, reflexivity and RC1i are completely independent condi-
tions.

Example A.6 (reflexive, RC1, not independent). Let X = {a, b} × {z, w}
and consider % on X defined by: for all (α, β), (γ, δ) ∈ X , (α, β) % (γ, δ) ⇔
f(α, γ)+ g(β, δ) ≥ 0, where f and g are such that: f(a, a) = −1, f(a, b) = 0.5,
f(b, a) = −0.5, f(b, b) = 1, g(z, z) = g(w,w) = g(w, z) = 1, g(z, w) = 0

It is easy to see that % is reflexive and satisfies RC1. It is not independent
since (b, z) % (b, w) and Not[ (a, z) % (a, w) ].

Example A.7 (RC1, not reflexive, not independent). In example A.6, taking
f(a, a) = −2 leads to a relation % that verifies RC1 but is neither independent
nor reflexive (since Not[ (a, z) % (a, z) ]).

Example A.8 (RC1, not reflexive, independent). Let X = {a, b} × {z, w}
and consider % on X defined by: for all (α, β), (γ, δ) ∈ X, (α, β) % (γ, δ)
⇔ f(α, γ)+ g(β, δ) ≥ 0, where f and g are such that: f(a, a) = f(b, b) =
f(b, a) = −1, f(a, b) = 1, g(z, z) = g(w,w) = 0, g(z, w) = 1, g(w, z) = −1

It is easy to see that % is not reflexive (it is in fact irreflexive). It is easily
seen to satisfy RC1. Since f(a, a) = f(b, b) and g(z, z) = g(w,w), % is clearly
independent.

Example A.9 (not RC1, reflexive, independent). Let X = {a, b, c} × {z, w}
and consider % on X that is a clique (with all loops) except that Not[ (a, z) %
(c, w) ] and Not[ (a, w) % (b, z) ].

It is clear that % is reflexive. It can easily be checked that % is independent. It
does not satisfy RC1 since: (a, z) % (b, w), (a, w) % (c, z), Not[ (a, z) % (c, w) ]
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and Not[ (a, w) % (b, z) ].

Example A.10 (not RC1, not reflexive, independent). Modifying example
A.9 in order to have % irreflexive gives an example of a relation that is inde-
pendent but violates RC1 and reflexivity.

Example A.11 (not RC1, reflexive, not independent). Modifying example
A.9 in order to have Not[ (b, z) % (b, w) ] leads to a relation % that is reflexive
but violates independence and RC1.

We now give three examples that complete the proof of part 4 of lemma 5.3
showing that RC1i and RC2i are completely independent conditions in the
class of complete relations.

Example A.12 (not RC1, not RC2). Let X = {a, b, c} × {z, w, k} and
consider % on X that is a clique (with all loops) except that Not[ (a, z) %

(c, w) ], Not[ (a, k) % (b, z) ] and Not[ (c, z) % (a, w) ]. It is clear that %

is complete. Since (a, z) % (b, w), (c, k) % (a, z), Not[ (a, k) % (b, z) ] and
Not[ (c, z) % (a, w) ], % violates RC1. Since (a, z) % (b, w), (b, z) % (a, w),
Not[ (a, z) % (c, w) ] and Not[ (c, z) % (a, w) ], % violates RC2.

Example A.13 (not RC1, RC2). Modify example A.12 adding the relation
(a, z) % (c, w). It is clear that % is complete and violates RC1. Using lemma
5.2, it is not difficult to see that it satisfies RC2.

Example A.14 (RC1, not RC2). Let X = {a, b} × {z, w} and consider
% on X defined by: for all (α, β), (γ, δ) ∈ X, (α, β) % (γ, δ) ⇔ f(α, γ)+
g(β, δ) ≥ 0, where f and g are such that: f(a, a) = −1, f(a, b) = f(b, a) =
f(b, b) = 1, g(z, w) = 0, g(z, z) = g(w,w) = g(w, z) = 1.

It is easy to see that % is complete and satisfies RC1. It is not independent
since (b, z) % (b, w) and Not[ (a, z) % (a, w) ]. In view of part 2 of lemma 5.3,
this shows that RC2 is violated.

A.3 TC, AC1, AC2, AC3

We show below that, in the class of complete binary relations conditions TCi,
AC1i, AC2i and AC3i are independent.

Example A.15 (AC1,AC2, AC3, Not TC). Let X = {a, b, c} × {d, e, f};
x % y iff G(p1(x1, y1), p2(x2, y2) ≥ 0 with

G(α, β) =

{

α + β if |α + β| > 2
0 otherwise
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and p1 and p2 given in the following tables:

p1 a b c
a 0 −2 −1
b 2 0 1
c 1 −1 0

p2 d e f
d 0 0 −2
e 0 0 −2
f 2 2 0

G is odd and nondecreasing and p1, p2 are skew symmetric; hence % is complete
and satisfies RC1, RC2. Condition TC is violated since (c, d) % (a, f), (a, e) %
(c, d), (a, d) % (b, e) but Not[ (a, d) % (b, f) ].

It is easily checked that AC1, AC2 and AC3 hold with b ≻±
1 c ≻±

1 a and
f ≻±

2 [d ∼±
2 e].

Example A.16 (Not AC1, AC2, AC3, TC). Let X = {a, b, c} × {d, e, f}.
Define % letting x % y iff G(p1(x1, y1), p2(x2, y2) ≥ 0, with p1 and p2 given in
the following tables:

p1 a b c
a 0 2 −1
b −2 0 −1
c 1 1 0

p2 d e f
d 0 2 2
e −2 0 2
f −2 −2 0

and G such that:

G −2 −1 0 1 2
−2 −41 −30 −21 −10 0
−1 −31 −20 −9 0 10

0 −19 −11 0 11 19
1 −10 0 9 20 31
2 0 10 21 30 41

G is odd and increasing in its two arguments and p1, p2 are skew symmetric
implying that % is complete and satisfies TC.

It is easy to check that we have: c ≻−
1 a ≻−

1 b, c ≻+
1 b, a ≻+

1 b, Not[ c %±
1 a ],

Not[ a %±
1 c ], d ≻±

2 e ≻±
2 f .

Hence AC2 and AC3 hold but AC11 is violated (while AC12 holds). One
verifies indeed that we have (c, f) % (c, f) and (a, f) % (b, e) but neither
(a, f) % (c, f) nor (c, f) % (b, e).

Example A.17 (AC1, Not AC2, AC3, TC). This example is the same as
example A.16 except that p1 becomes −p1. The effect of this modification is to
interchange the rôles of AC11 and AC21 since the value associated to the pair
(y1, x1) is the value that was formerly associated to (x1, y1) in example A.16.
Therefore % is complete and verifies TC.
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We have: b ≻+
1 a ≻+

1 c, b ≻−
1 c, b ≻−

1 a, Not[ a %−
1 c ], Not[ c %−

1 a ],
d ≻±

2 e ≻±
2 f . Hence AC1 and AC3 hold but AC21 is violated (while AC22

holds). One verifies indeed that (c, f) % (c, f) and (b, e) % (a, d) but neither
(c, f) % (a, f) nor (b, e) % (c, d).

Example A.18 (AC1, AC2, Not AC3, TC). Let X = {a, b, c, d}×{w, x, y, z}.
Define % as in example A.16 with the same table for G and p1, p2 given in the
following tables:

p1 a b c d
a 0 1 2 2
b −1 0 1 0
c −2 −1 0 −2
d −2 0 2 0

p2 w x y z
w 0 2 2 2
x −2 0 2 2
y −2 −2 0 2
z −2 −2 −2 0

Since G is odd and increasing and p1, p2 are skew symmetric, we know that
% is complete and verifies TC.

It can be checked that we have: w ≻±
2 x ≻±

2 y ≻±
2 z, a ≻+

1 d ≻+
1 b ≻+

1 c
and a ≻−

1 b ≻−
1 d ≻−

1 c. Hence AC1 and AC2 hold but AC3 is violated since
neither d %±

1 b nor b %±
1 d.

B Proof of lemma 6.12

We prove lemma 6.12 in the most constrained case, i.e. when f is skew symmet-
ric. Since U is countable, the set S of values r for which there are a, b, c, d ∈ U
such that either:

f(a, c) = f(b, c) = r with a > b or

f(a, c) = f(a, d) = r with c > d,

is countable. Consider separately the positive part S+ (r > 0), the null part
S= (r = 0) and the negative part S− (r < 0) of S. We number arbitrarily the
elements of S+ and S−

r+1 , r
+
2 , . . . for the elements of S+

r−1 , r
−
2 , . . . for the elements of S−.
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For each u, v in U × U , we define g(u, v) letting:

g(u, v) =










































u− v if f(u, v) = 0,

f(u, v) + 1 +
∑

k:r+
k
<f(u,v)(1/2)k if f(u, v) > 0 and f(u, v) 6∈ S

r+i + 1 +
∑

k:r+
k
<r+

i

(1/2)k + (1/2)i+1(1 + u− v) if f(u, v) = r+i

f(u, v) − 1 −
∑

k:r−
k
>f(u,v)(1/2)k if f(u, v) < 0 and f(u, v) 6∈ S

r−i − 1 −
∑

k:r−
k
>r−

i

(1/2)k − (1/2)i+1(1 − u + v) if f(u, v) = r−i

The function g is now fully described. It is skew symmetric since f is. It is
strictly monotonic on f−1(r), for all r ∈ S. By construction, we have:

[f(u, v) = f(u′, v′)] ⇒ [g(u, v)) = g(u′, v′)] iff f(u, v) 6∈ S (6.18)

It is easy to check that g is increasing in its first argument, decreasing in its
second argument and such that (6.17) holds.
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