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Abstract

This paper studies an extension of biorders that has a “frontier” between the
relation and the absence of relation. This extension is motivated by a conjoint
measurement problem consisting in the additive representation of ordered coverings
defined on product sets of two components. We also investigate interval orders and
semiorders with frontier.
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1 Introduction

Let T be a relation between two sets A and Z, i.e., a subset of A × Z. Biorders
are relations between two sets that were introduced in the literature by Ducamp
and Falmagne (1969) and later studied in Doignon, Ducamp, and Falmagne (1984,
1987) and Nakamura (2002). The initial motivation for studying biorders was
the formalization of the idea of a Guttman scale, i.e., a model in which there are
real-valued functions f on A and g on Z such that, for all a ∈ A and all p ∈ Z,

a T p⇔ f(a) > g(p).

The usual interpretation is that A is a set of subjects and Z a set of questions. The
relation T is defined in such a way that a T p if subject a gives the correct answer
to question p. If the above model obtains, the scale f therefore orders subjects
according to their ability to answer questions and the scale g orders questions ac-
cording to their difficulty. Biorders also proved an important tool to study various
classes of binary relations, most notably interval orders and semiorders. Indeed,
when A = Z, an irreflexive biorder is nothing but an interval order as defined
in Fishburn (1970). Adding semitransitivity to irreflexivity leads to semiorders
(Luce, 1956, Scott and Suppes, 1958).

This paper studies extensions of biorders in which we consider two relations T

and F between the sets A and Z. Using the interpretation of biorders introduced
above, the relation F corresponds to situations in which we are unsure whether the
subject has given or not the correct answer to the question. It therefore plays the
role of a frontier between correct and incorrect answers. The underlying numerical
model will be such that:

a T p⇔ f(a) > g(p),

a F p⇔ f(a) = g(p).

The main purpose of this paper is to study such structures, called biorders with
frontier. Our initial motivation for doing so was not linked with Guttman scales
but with a conjoint measurement problem encountered in the study of additive rep-
resentations of ordered coverings on a product set (see Bouyssou and Marchant,
2009, 2010). In this context, the frontier corresponds to a case of hesitation be-
tween two consecutive categories.

The paper is organized as follows. Section 2 presents our setting. Classic
results on biorders are recalled in Section 3. Biorders with frontier are studied
in Section 4. These results are used to tackle interval orders with frontier in
Section 5. Section 6 is devoted to semiorders with frontier. Section 7 briefly
presents our initial conjoint measurement motivation for studying structures with
frontier and gives some applications of our results.
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2 Definitions and Notation

2.1 Binary relations between two sets

Let A = {a, b, . . . } and Z = {p, q, . . . } be two sets. Following Ducamp and
Falmagne (1969), we define a binary relation V between A and Z to be a subset
of A × Z. We often write a V p instead of (a, p) ∈ V. A binary relation on a set
X is a binary relation between X and X.

Let V be a relation between A and Z. Define1 the left trace of V as the binary
relation %`

V on A defined letting, for all a, b ∈ A,

a %`
V b⇔ [b V p⇒ a V p, for all p ∈ Z].

Similarly, define the right trace of V as the binary relation %r
V on Z defined letting,

for all p, q ∈ Z,
p %r

V q ⇔ [a V p⇒ a V q, for all a ∈ A].

By construction, the relations %`
V and %r

V are reflexive and transitive.
A binary relation V between A and Z is said to be a biorder if it is Ferrers,

i.e., for all a, b ∈ A and all p, q ∈ Z, we have:

[a V p and b V q]⇒ [a V q or b V p.].

A simple check shows that V is Ferrers iff2 %`
V is complete iff %r

V is complete (see
Doignon et al., 1984, Proposition 2, p. 78).

Let V be a relation between A and Z. Its complement is the relation Vc

between A and Z such that for all a ∈ A and p ∈ Z, a Vc p ⇔ Not [a V p]. The
dual of V is the relation Vd between Z and A such that, for all a ∈ A and p ∈ Z,
p Vd a⇔ a V p. Its codual Vcd is the relation between Z and A such that, for all
a ∈ A and p ∈ Z, p Vcd a⇔ Not [a V p]. It is easy to check that if V is Ferrers iff
Vcd (or Vc, or Vd) is Ferrers. The traces generated by V on A and Z coincide with
the ones generated by Vcd.

Suppose that V is a relation between A and Z and that W is a binary relation
between Z and K. We define the product of V and W as the binary relation VW

between A and K such that, for all a ∈ A and all k ∈ K, a VW k iff [a V p
and p W k, for some p ∈ Z]. The Ferrers property can therefore be expressed
compactly as VVcdV ⊆ V.

1Our use of the terms left trace and right trace differs from the one in Doignon, Monjardet,
Roubens, and Vincke (1988). They use left trace to designate our right trace and vice versa.
The rationale for our terminology is the following. A biorder is a subset of A × Z. Hence, the
set A is the set “on the left”. The left trace is a relation on the left set.

2i.e., if and only if
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For our purposes, when studying a relation betweenA and Z, it is not restrictive
to suppose that the sets A and Z are disjoint: if they are not, we may build a
disjoint duplication of these sets as done in Doignon et al. (1984, Definition 4,
p. 79). We will suppose so, without explicit mention, whenever needed.

2.2 Binary relations on a set

Let V be a binary relation on X. The asymmetric part (resp. symmetric part,
symmetric complement) of V is the binary relation V a (resp. V s, V sc) on X that
is equal to V ∩ V cd (resp. V ∩ V d, V c ∩ V cd). For instance, we have x V sc y ⇔
[x V c y and x V cd y] ⇔ [Not [x V y] and Not [y V x]].

Whenever we use the symbol % to denote a binary relation on a set X, it will be
understood that � (resp. ∼) denotes its asymmetric part (resp. symmetric part).
The same convention will hold if % is subscripted and/or superscripted.

A binary relation that is complete (for all x, y ∈ X, x V y or y V x) and
transitive is said to be a weak order. If V and W are two weak orders on X, we
say that V refines W if V ⊆ W . This implies V s ⊆ W s and W a ⊆ V a.

The trace of a binary relation V on X is the binary relation %V on X that
is equal to %`

V ∩ %r
V . The relations %V , %`

V and %r
V are clearly reflexive and

transitive. Hence, the relations ∼V , ∼`
V and ∼r

V are reflexive, symmetric and
transitive, i.e., are equivalences. Whenever E is an equivalence on a set X, we
denote by X/E the set of equivalence classes of X under E.

A binary relation V on X is said to be semitransitive if, for all x, y, z, w ∈ X,

[x V y and y V z]⇒ [x V w or w V z],

which can be written more compactly as V cd V V ⊆ V or V V V cd ⊆ V . A simple
check shows that the trace %V of a relation V is complete iff V is Ferrers and
semitransitive. In this case the left and right traces are not contradictory, i.e., it
is never true that x �`

V y and y �r
V x, for some x, y ∈ X (for more details, see,

e.g., Fishburn, 1985, Monjardet, 1978, Pirlot and Vincke, 1997, or Suppes, Krantz,
Luce, and Tversky, 1989, Ch. 16).

A binary relation V on X is an interval order if it is irreflexive and Ferrers.
A semiorder is a semitransitive interval order. It is easy to check that an interval
order is asymmetric, transitive, and such that V V sc V ⊆ V . When, furthermore,
V is semitransitive, we have V sc V V ⊆ V and V V V sc ⊆ V .

3 Biorders, Interval Orders, Semiorders

This section mainly recalls a number of basic results on the numerical representa-
tion of biorders, following Ducamp and Falmagne (1969), Doignon et al. (1984),
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and Nakamura (2002). We also briefly show how these results apply to interval
orders and semiorders.

3.1 Biorders: the countable case

We first tackle the case in which both A and Z are countable (i.e., finite or count-
ably infinite). We have:

Proposition 1 (Prop. 4, p. 79 in Doignon et al., 1984)
Let A and Z be finite or countably infinite sets and T be a relation between A and
Z. The following statements are equivalent.

1. T is Ferrers.

2. There are a real-valued function f on A and a real-valued function g on Z
such that, for all a ∈ A and p ∈ Z,

a T p⇔ f(a) ≥ g(p). (1)

3. There are a real-valued function f on A and a real-valued function g on Z
such that, for all a ∈ A and p ∈ Z,

a T p⇔ f(a) > g(p). (2)

Furthermore, the functions f and g used in statements 2 or 3 above can always be
chosen so that, for all a, b ∈ A and p, q ∈ Z,

a %`
T b⇔ f(a) ≥ f(b),

p %r
T q ⇔ g(p) ≥ g(q).

(3)

It may be instructive to outline the proof of the above result, following Doignon
et al. (1984). Necessity is easily established. To prove sufficiency, let us build the
binary relation Q on A ∪ Z defined letting, for all α, β ∈ A ∪ Z,

α Q β ⇔


α ∈ A, β ∈ A, and α %`

T β,

α ∈ Z, β ∈ Z, and α %r
T β,

α ∈ A, β ∈ Z, and α T β,

α ∈ Z, β ∈ A, and [for all γ ∈ A, δ ∈ Z, γ T α and β T δ ⇒ γ T δ].

It is easy to see that the relation Q on A ∪ Z is always reflexive and transitive,
i.e., is a quasi-order (Doignon et al., 1984, have shown that Q is the maximal
quasi-order on A ∪ Z that coincides with T on A× Z). When T is a biorder, it is
not difficult to check that relation Q is also complete, so that it is a weak order.
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Since A ∪ Z is countable, there is a real-valued function F on A ∪ Z representing
Q, i.e., such that, for all α, β ∈ A ∪ Z,

α Q β ⇔ F (α) ≥ F (β).

Defining f (resp. g) as the restriction of F on A (resp. Z) leads to a non-strict
numerical representation of type (1). To obtain a strict numerical representation
of type (2), it suffices to apply the same analysis to Tcd.

As will be apparent later, Q is not the only relation on A∪Z that is a weak order
when T is Ferrers and that induces T on A × Z. This construction nevertheless
proves quite useful to deal with the general case, to which we now turn.

3.2 Biorders: the general case

The Ferrers property is a necessary condition for the existence of a strict repre-
sentation (2) or of a non-strict one (1) independently of the cardinality of A and
Z. Without the restriction that A and Z are countable, order-denseness condi-
tions must be invoked to obtain a numerical representation and, unsurprisingly,
the equivalence between strict and non-strict representations does not hold any
more. We first tackle the case of a strict representation.

Proposition 2 (Prop. 9, p. 84 in Doignon et al., 1984)
Let T be a binary relation between A and Z. The following statements are equiva-
lent.

1. T is Ferrers and there is a finite or countably infinite subset A∗ ⊆ A such
that, for all a ∈ A and p ∈ Z,

a T p⇒
[
a %`

T a
∗ and a∗ T p, for some a∗ ∈ A∗

]
. (4)

2. There are a real-valued function f on A and a real-valued function g on Z
such that (2) holds.

Furthermore, the functions f and g used in statement 2 can always be chosen so
that (3) holds.

Remark 1
The order-denseness used above is not symmetric between A and Z. We use it
only to keep things simple. As shown in Doignon et al. (1984, Prop. 8, p. 82), it
would be sufficient to require that there is a finite or countably infinite subset of
K∗ ⊆ A ∪ Z such that

a T p⇒


a %`

T α
∗ and α∗ T p, for some α∗ ∈ K∗ ∩ A,

or
a T α∗ and α∗ %r

T p, for some α∗ ∈ K∗ ∩ Z.
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Nakamura (2002, Th. 3.1) has shown that the order-denseness condition used in
Proposition 2 can be equivalently formulated as follows. A pair of subsets A∗ ⊆ A,
Z∗ ⊆ Z is said to be jointly dense for T if, for all a ∈ A and p ∈ Z,

a T p⇒
[
a %`

T a
∗, a∗ T p∗, p∗ %r

T p, for some a∗ ∈ A∗ and p∗ ∈ Z∗
]
.

Nakamura (2002, Th. 3.1) shows that a biorder T between A and Z has a numerical
representation in model (2) iff there are countable subsets A∗ ⊆ A, Z∗ ⊆ Z that
are jointly dense for T. •

In order to tackle the non-strict case, it is useful to observe that T has a non-strict
representation iff Tcd has a strict representation.

Proposition 3 (Prop. 8, p. 82 in Doignon et al., 1984)
Let T be a binary relation between A and Z. The following statements are equiva-
lent.

1. T is Ferrers and there is a finite or countably infinite subset A∗ ⊆ A such
that, for all a ∈ A and p ∈ Z,

a Tc p⇒
[
a∗ %`

T a and a∗ Tc p, for some a∗ ∈ A∗
]
. (5)

2. There are a real-valued function f on A and a real-valued function g on Z
such that (1) holds.

Furthermore, the functions f and g used in statement 2 can always be chosen so
that (3) holds.

The sufficiency proof of the above proposition consists in showing that the order-
denseness on Tc implies that there is a countable subset K∗ ⊆ A∪Z that is dense
in A ∪ Z for the weak order Q, i.e., that α Qa β implies that [α Q γ∗ and γ∗ Q β,
for some γ∗ ∈ K∗].

Again, the order-denseness condition used above is not symmetric between A
and Z. We refer to Doignon et al. (1984, Prop. 8, p. 82) and to Nakamura (2002,
Th. 3.2) for symmetric reformulations of this condition.

3.3 A lemma on biorders

We conclude our brief review of biorders by stating a simple lemma that will prove
useful in the sequel.
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Lemma 1
Suppose that T is a relation between A and Z. Let %`

[ be a weak order on A and
%r

[ be a weak order on Z. Suppose that, for all a, b ∈ A and all p, q ∈ Z,

a %`
[ b and b T p⇒ a T p,

p %r
[ q and a T p⇒ a T q.

Then:

1. T is a biorder,

2. %`
[ refines %`

T,

3. %r
[ refines %r

T,

4. the binary relation Q on A ∪ Z that is defined letting, for all α, β ∈ A ∪ Z,

α Q β ⇔


α ∈ A, β ∈ A, and α %`

[ β,

α ∈ Z, β ∈ Z, and α %r
[ β,

α ∈ A, β ∈ Z, and α T β,

α ∈ Z, β ∈ A, and Not[β T α].

is a weak order.

Proof
Part 1. Suppose that a T p and b T q. Since %`

[ is complete, we have either b %`
[ a

or a %`
[ b. If b %`

[ a, a T p implies b T p. In the second case, b T q implies a T q.
Hence, T is Ferrers.

Part 2. Suppose that a %`
[ b and, in contradiction with the thesis, b �`

T a. This
implies that b T p and Not [a T p], for some p ∈ Z. Now, a %`

[ b and b T p imply
a T p, a contradiction. The proof of Part 3 is similar.

Part 4. It is simple to check that Q is complete. Let us show that it is
transitive, i.e., that, for all α, β, γ ∈ A∪Z, α Q β and β Q γ imply α Q γ. Since
each of α, β, γ can belong either to A or to Z, there are 8 cases to examine.

1. If α, β, γ ∈ A, the conclusion follows from the transitivity of %`
[.

2. If α, β, γ ∈ Z, the conclusion follows from the transitivity of %r
[ .

3. If α, β ∈ A and γ ∈ Z, α Q β and β Q γ means that α %`
[ β and β T γ.

This implies α T γ, so that α Q γ.

4. If α, γ ∈ A and β ∈ Z, α Q β and β Q γ means that α T β and Not [γ T β].
This implies Not [γ %`

T α]. Because T is a biorder, we know that %`
T is com-

plete, so that α �`
T γ. Because %`

[ refines %`
T, α �`

T γ implies α �`
[ γ, so that

α Q γ.
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5. If β, γ ∈ A and α ∈ Z, α Q β and β Q γ means that Not [β T α] and β %`
[ γ.

Suppose that γ T α. Using β %`
[ γ, we obtain β T α, a contradiction.

Therefore, we must have Not [γ T α] so that α Q γ.

6. If α, β ∈ Z and γ ∈ A, α Q β and β Q γ means that α %r
[ β and Not [γ T β].

Suppose that γ T α. Using α %r
[ β, we obtain γ T β, a contradiction. Hence,

we must have Not [γ T α], so that α Q γ.

7. If α, γ ∈ Z and β ∈ A, α Q β and β Q γ means that Not [β T α] and
β T γ. This implies Not [γ %r

T α]. Because T is a biorder, we know that %r
T

is complete, so that α �r
T γ. Because %r

[ refines %r
T, α �r

T γ implies α �r
[ γ,

so that α Q γ.

8. If β, γ ∈ Z and α ∈ A, α Q β and β Q γ means that α T β and β %r
[ γ.

This implies α T γ, so that α Q γ. 2

When T is a biorder, it is clear that the relations %`
T and %r

T satisfy the conditions
of the above lemma. Note that, since Q is the maximal quasi-order on A∪Z that
coincides with T on A× Z, the weak order Q refines Q.

3.4 Interval orders

An interval order T is an irreflexive Ferrers relation on a set X, which implies that
it is a biorder between X and X. Hence, if X is countable, it has a non-strict
numerical representation such that, for all x, y ∈ X,

x T y ⇔ u(x) ≥ v(y),

where u and v are two real-valued function on X. Since T is irreflexive, we obtain
u(x) < v(x), for all x ∈ X. A similar analysis can be conducted using a strict
representation instead of a non-strict one.

This is summarized below, mainly following Fishburn (1970).

Proposition 4
Let T be a binary relation on a finite or countably infinite set X. The following
statements are equivalent.

1. T is an interval order

2. There are real-valued functions u and v on X such that, for all x, y ∈ X,

x T y ⇔ u(x) > v(y),

u(x) ≤ v(x).
(6)
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3. There are real-valued functions u and v on X such that, for all x, y ∈ X,

x T y ⇔ u(x) ≥ v(y),

u(x) < v(x).
(7)

Furthermore, the functions u and v used in statements 2 and 3 can always be
chosen so that, for all x, y ∈ X,

x %`
T y ⇔ u(x) ≥ u(y),

x %r
T y ⇔ v(x) ≥ v(y).

(8)

Remark 2
Using Lemma 1, it is not difficult to check that the above result may be slightly
strengthened requiring that the set X/∼T of equivalence classes of X under ∼T is
finite or countably infinite (Fishburn, 1985, Th. 8, p. 29). •

Clearly, the order-denseness conditions introduced for biorders are all that is
needed to cover the general case. For the record this is stated below for the
case of a strict representation. A similar proposition can obviously be obtained
for the case of a non-strict representation.

Proposition 5
Let T be a binary relation on a set X. The following statements are equivalent.

1. T is an interval order and there is a finite or countably infinite set X ∗ ⊆ X
such that, for all x, y ∈ X,

x T y ⇒
[
x %`

T x
∗ and x∗ T y, for some x∗ ∈ X ∗

]
. (9)

2. There are real-valued functions u and v on X such that (6) holds.

Furthermore, the functions u and v used in statement 2 can always be chosen so
that (8) holds.

For a detailed study of the numerical representation of interval orders, we
refer to Bosi, Candeal, Induráin, Oloriz, and Zudaire (2001). Early studies of
this problem include Bridges (1983a,b, 1985), Doignon et al. (1984), and Fishburn
(1970, 1973), Gensemer (1987b), Lück (2004), and Oloriz, Candeal, and Induráin
(1998). In model (6), a closed interval [u(x), v(x)] is associated to each element of
X. A generalization of this representation that allows for intervals that may be
closed or open is considered in Fishburn (1985, Ch. 7), and Nakamura (2002).
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3.5 Semiorders

A semiorder T is a semitransitive interval order. We envisage below three dif-
ferent forms of numerical representation for such relations, following Aleskerov,
Bouyssou, and Monjardet (2007).

3.5.1 Representations with no proper nesting

Semitransitivity implies that it is never true that x �`
T y and y �r

T x. When X
is countable, this leads to what Aleskerov et al. (2007) called representations with
no proper nesting of semiorders, i.e., representations that are identical to the ones
envisaged above for interval orders with the added feature that, for all x, y ∈ X,

u(x) > u(y)⇒ v(x) ≥ v(y).

This is recorded below.

Proposition 6
Let T be a binary relation on a finite or countably infinite set X. The following
statements are equivalent.

1. T is a semiorder.

2. There are real-valued functions u and v on X such that, for all x, y ∈ X,

x T y ⇔ u(x) > v(y),

u(x) > u(y)⇒ v(x) ≥ v(y),

u(x) ≤ v(x).

(10)

3. There are real-valued functions u and v on X such that, for all x, y ∈ X,

x T y ⇔ u(x) ≥ v(y),

u(x) > u(y)⇒ v(x) ≥ v(y),

u(x) < v(x).

(11)

Furthermore, the functions u and v used in statements 2 and 3 can always be
chosen so that (8) holds (Fishburn, 1985, Th. 8, p. 29).

Remark 3
As with interval orders, the above result may be slightly strengthened requiring
that requiring that the set X/∼T of equivalence classes of X under ∼T is finite or
countably infinite. •
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The extension to the general case is immediate using the order-denseness condi-
tions introduced above for biorders. The following proposition deals with strict
representations in the general case. A similar proposition can be formulated for
non-strict representations.

Proposition 7
Let T be a binary relation on a set X. The following statements are equivalent.

1. T is a semiorder and there is a finite or countably infinite set X ∗ ⊆ X such
that (9) holds.

2. There are real-valued functions u and v on X such that (10) holds.

Furthermore, the functions u and v used in statement 2 can always be chosen so
that (8) holds.

3.5.2 Representations with no nesting

As shown in Fishburn (1973, 1985), a more constrained representation can be
envisaged for semiorders in which, for all x, y ∈ X, u(x) ≥ u(y) ⇔ v(x) ≥ v(y).
Such a representation (called representation with no nesting in Aleskerov et al.,
2007), is easy to obtain in the countable case. Its extension to the general case is
more delicate (on this point, see Fishburn, 1985, Chap. 7). This is recorded below.

Proposition 8
Let T be a binary relation on a finite or countably infinite set X. The following
statements are equivalent.

1. T is a semiorder.

2. There are real-valued functions u and v on X such that, for all x, y ∈ X,

x T y ⇔ u(x) > v(y),

u(x) ≥ u(y)⇔ v(x) ≥ v(y),

u(x) ≤ v(x).

(12)

3. There are real-valued functions u and v on X such that, for all x, y ∈ X,

x T y ⇔ u(x) ≥ v(y),

u(x) ≥ u(y)⇔ v(x) ≥ v(y),

u(x) < v(x).

(13)
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Furthermore, the functions u and v used in statements 2 and 3 can always be
chosen so that, for all x, y ∈ X,

x %T y ⇔ u(x) ≥ u(y)⇔ v(x) ≥ v(y). (14)

Proof
It is clear that (12) implies that T is a semiorder. Conversely, we apply Lemma 1
with %`

[ = %T and %r
[ = %T . Because X is at most countable, there is a numerical

representation F of the weak order Q on X∪X ′, where X ′ is a disjoint duplication
of X. Defining u (resp. v) as the restriction of F on X (resp. X ′), it is clear that
(12) and (14) hold. The proof for (13) is similar once it is observed that if T is
Ferrers and semitransitive, the same will be true with T cd and that %T = %T cd . 2

Remark 4
In the above result, we may only ask that requiring that the set X/∼T of equiva-
lence classes of X under ∼T is finite or countably infinite. •

The following proposition deals with strict representations in the general case. A
similar proposition can be formulated for non-strict representations.

Proposition 9 (Fishburn, 1985, Th. 8, p. 136)
Let T be a binary relation on a set X. The following statements are equivalent.

1. T is a semiorder and there is a finite or countably infinite set X ∗ ⊆ X such
that (9) holds.

2. There are real-valued functions u and v on X such that (12) holds.

Furthermore, the functions u and v used in statement 2 can always be chosen so
that (14) holds.

3.5.3 Constant threshold representations

When X is finite, the classic result of Scott and Suppes (1958) shows that it is
always possible to obtain a constant threshold representation of semiorders, i.e.,
a representation in which, for all x ∈ X, v(x) = u(x) + 1. It is well-known
that constant threshold representations do not extend to the countable case with-
out additional restrictions. The study of constant threshold representations of
semiorders on countable sets was pioneered by Manders (1981) and pursued in
Beja and Gilboa (1992). The situation is even more complex in the general case
as shown in Candeal, Induráin, and Zudaire (2002) and Abŕısqueta, Candeal, In-
duráin, and Zudaire, 2009 (see also Gensemer, 1987a and Narens, 1994). Aleskerov
et al. (2007) offer a recent survey of these developments.

The following proposition is proved in Pirlot and Vincke (1997, Th. 3.4) or
Fishburn (1985, Th. 2.9, p. 122).
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Proposition 10
Let T be a binary relation on a finite set X. The following statements are equiv-
alent.

1. T is a semiorder

2. There is a real-valued function u such that, for all x, y ∈ X

x T y ⇔ u(x) > u(y) + 1, (15)

3. There is a real-valued function u such that, for all x, y ∈ X

x T y ⇔ u(x) ≥ u(y) + 1. (16)

4 Biorders with frontier

4.1 The model

Consider now two disjoint relations T and F between the sets A and Z. We
investigate below the conditions on T and F under which there are a real-valued
function f on A and a real-valued function g on Z such that, for all a ∈ A and
p ∈ Z,

a T p⇔ f(a) > g(p), (17a)

a F p⇔ f(a) = g(p). (17b)

The above model constitutes a simple generalization of biorders. Apparently it
has never been studied in the literature3. We denote by R the relation between A
and Z equal to T∪F. Remember from Section 2 that Rc is the relation between A
and Z such that a Rc p ⇔ Not [a R p]. As above, let %`

T (resp. %r
T) be the trace

of T on A (resp. on Z). Similarly, let %`
R (resp. %r

R) be the trace of R on A (resp.
on Z). Define

%`
? = %`

T ∩%`
R

and

%r
? = %r

T ∩%r
R.

3Ducamp and Falmagne (1969, Th. 1, p. 363) have given necessary and sufficient conditions on
a relation F between two finite sets to have a representation (17b); their analysis can straightfor-
wardly be extended to cover arbitrary sets. Such relations have been further studied in Doignon
and Falmagne (1984) under the name of matching relations.
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Hence, we have:

a %`
T b⇔ [b T p⇒ a T p, for all p ∈ Z] ,

p %r
T q ⇔ [a T p⇒ a T q, for all a ∈ A]

a %`
R b⇔ [b R p⇒ a R p, for all p ∈ Z] ,

p %r
R q ⇔ [a R p⇒ a R q, for all a ∈ A] ,

a %`
? b⇔

[
[b T p⇒ a T p] and [b R p⇒ a R p] , for all p ∈ Z

]
,

p %r
? q ⇔

[
[a T p⇒ a T q] and [a R p⇒ a R q] , for all a ∈ A

]
.

By construction, %`
T, %`

R, %`
?, %

r
T, %r

R, %r
? are reflexive and transitive. We know

that %`
T is complete iff %r

T is complete iff T is a biorder. Similarly, %`
R is complete

iff %r
R is complete iff R is a biorder.

Whereas it is clear that the existence of a representation of type (17) implies
that R has a non-strict numerical representation of type (1), the converse is not
true as will be shown below (see Lemma 2(2) and the examples following Propo-
sition 12).

4.2 The countable case

In view of Proposition 2, we know that (17) implies that both T and R are biorders.
Clearly, these two biorders must somehow be compatible. This compatibility will
be ensured by the two thinness conditions introduced below.

In model (17), the pair of relations T and F is “thin” in the following sense.
If a F p and b F p, we have f(a) = g(p) and f(b) = g(p), so that f(a) = f(b).
Hence, for all q ∈ Z, we have a F q ⇔ b F q and a T q ⇔ b T q. We say that the
pair of relations T and F is left thin if, for all a, b ∈ A and p ∈ Z,

[a F p and b F p]⇒ a ∼`
? b.

Similarly, we say that the pair of relations T and F is right thin if, for all a ∈ A
and p, q ∈ Z,

[a F p and a F q]⇒ p ∼r
? q.

Observe that left thinness (resp. right thinness) may be formulated as FFd ⊆ ∼`
?

(resp. FdF ⊆ ∼`
?). We say that thinness holds if left and right thinness are satisfied.

Some of the consequences of these conditions are collected below.

Lemma 2
1. If two disjoint relations T and F between the sets A and Z have a represen-

tation (17), then T is a biorder, R is a biorder, and thinness holds.
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2. For a pair of disjoint relations, the following four conditions are independent:
T is a biorder, R is a biorder, left thinness holds, right thinness holds.

3. If two disjoint relations T and F between A and Z are such that T and R are
biorders and thinness holds, then the relation %`

? on A and the relation %r
?

on Z are both complete.

4. Under the conditions of Part 3, we have:

[a F p and b �`
? a]⇒ b T p, (18a)

[a F p and p �r
? q]⇒ a T q, (18b)

[a F p and a �`
? c]⇒ c Rc p, (18c)

[a F p and r �r
? p]⇒ a Rc r, (18d)

for all a, b, c ∈ A and p, q, r ∈ Z.

Proof
Part 1 is obvious. The proof of Part 2 follows from the four examples below. We
indicate, for each example, which condition among the set of four conditions is the
only one to be violated.

T biorder

p q
a T F

b F T

R biorder

p q
a F −
b − F

right thinness

p q
a F F

b T −

left thinness

p q
a F T

b F −

Part 3. Suppose that %`
? is not complete. Hence, for some a, b ∈ A and some

p, q ∈ Z, we have:

b T p and Not [a T p], for some p ∈ Z, (19a)

or

b R p and Not [a R p], for some p ∈ Z, (19b)

and

a T q and Not [b T q], for some q ∈ Z, (19c)

or

a R q and Not [b R q], for some q ∈ Z, (19d)

The combination of (19a) and (19c) violates the fact that T is a biorder. Similarly,
the combination of (19b) and (19d) violates the fact that R is a biorder. The
combination of conditions (19a) and (19d) says that a R q, b T p, Not [a T p]
and Not [b R q]. Notice that Not [a T p] implies either Not [a R p] or a F p. If
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Not [a R p], since we know that a R q, b R p and Not [b R q], we have a violation
of the fact that R is a biorder. Hence, we must have a F p. We know that a R q
implies either a T q or a F q. Suppose that a T q. Since b T p, we obtain, using
the fact that T is a biorder a T p or b T q, a contradiction. Therefore, we must
have a F q. Using right thinness, a F p and a F q implies that b T p ⇔ b T q, a
contradiction. The proof for %r

? is similar.
Part 4. Suppose that a F p and b �`

? a. Since a F p implies a R p and b �`
? a

implies b %`
? a, we know that b R p. Suppose that b F p. Using left thinness, we

know that that a F p and b F p imply b ∼`
? a, a contradiction. Hence, we must

have b T p, as required by (18a).
Suppose now that a F p and a �`

? b and b R p. If b F p, a F p and left thinness
imply a ∼`

? b, a contradiction. Hence, we must have b T p and a %`
? b implies b T p,

a contradiction. This shows that (18c) holds. The proofs of (18b) and (18d) with
�r

? are similar. 2

The following lemma generalizes Lemma 1 to cope with a frontier.

Lemma 3
Let T and F be a pair of disjoint relations between A and Z. Suppose that %`

[ is a
weak order on A and %r

[ is a weak order on Z. Suppose that, for all α, β ∈ A and
all γ ∈ Z,

β T γ and α %`
[ β ⇒ α T γ,

β F γ and α �`
[ β ⇒ α T γ,

β F γ and α ∼`
[ β ⇒ α F γ.

(20)

Suppose furthermore that, for all α ∈ A and all β, γ ∈ Z,

α T β and β %r
[ γ ⇒ α T γ,

α F β and β �r
[ γ ⇒ α T γ,

α F β and β ∼r
[ γ ⇒ α F γ.

(21)

Then %`
[ refines %`

? and %r
[ refines %r

?. Furthermore, the binary relation L on
A ∪ Z that is defined letting, for all α, β ∈ A ∪ Z,

α L β ⇔


α ∈ A, β ∈ A, and α %`

[ β,

α ∈ Z, β ∈ Z, and α %r
[ β,

α ∈ A, β ∈ Z, and α R β,

α ∈ Z, β ∈ A, and Not[β T α].

is a weak order.
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Proof
Let us show that %`

[ refines %`
?, the proof that %r

[ refines %r
? being similar. Suppose

that α %`
[ β, for some α, β ∈ A. We have to show that α %`

? β, i.e., that, for all
γ ∈ Z,

β T γ ⇒ α T γ,

β R γ ⇒ α R γ,

Using (20), β T γ and α %`
[ β imply α T γ. Similarly, if β F γ, (20) and α %`

[ β
imply either α F γ or α T γ, so that α R γ. Hence, %`

[ refines %`
?.

Let us now show that L is a weak order. It is simple to check that L is
complete. Let us show that it is transitive, i.e., that, for all α, β, γ ∈ A ∪ Z,
α L β and β L γ imply α L γ. Since each of α, β, γ can belong either to A or
to Z, there are 8 cases to examine.

1. If α, β, γ ∈ A, the conclusion follows from the transitivity of %`
[.

2. If α, β, γ ∈ Z, the conclusion follows from the transitivity of %r
[ .

3. If α, β ∈ A and γ ∈ Z, α L β and β L γ means that α %`
[ β and β R γ.

This implies α R γ, so that α L γ.

4. If α, γ ∈ A and β ∈ Z, α L β and β L γ means that α R β and Not [γ T β].
Suppose first that α T β. Because Not [γ T β], we have α �`

? γ. Since %`
[

refines %`
?, we have α �`

[ γ, so that α L γ. Suppose now that α F β.
Because Not [γ T β], we have either γ F β or Not [γ R β]. If Not [γ R β], we
have α �`

? γ, so that α �`
[ γ and α L γ. Suppose now that γ F β. Because

α F β, (20) implies that we must have α ∼`
[ γ, so that α L γ.

5. If β, γ ∈ A and α ∈ Z, α L β and β L γ means that Not [β T α] and
β %`

[ γ. Suppose that γ T α. Using β %`
[ γ, we obtain β T α, a contradiction.

Therefore, we must have Not [γ T α] so that α L γ.

6. If α, β ∈ Z and γ ∈ A, α L β and β L γ means that α %r
[ β and Not [γ T β].

Suppose that γ T α. Using α %r
[ β, we obtain γ T β, a contradiction. Hence,

we must have Not [γ T α], so that α L γ.

7. If α, γ ∈ Z and β ∈ A, α L β and β L γ means that Not [β T α] and β R γ.
Since Not [β T α], we have either β F α or Not [β R α]. Suppose first that
Not [β R α]. Since β R γ, we have α �r

? γ, so that α �r
[ γ and α L γ.

Suppose now that β F α. If β F γ, then (21) implies that we must have
α ∼r

[ γ and α L γ. If β T γ, we have α �r
? γ, so that α �r

[ γ and α L γ.

8. If β, γ ∈ Z and α ∈ A, α L β and β L γ means that α R β and β %r
[ γ.

Because %r
[ refines %r

?, this implies α R γ, so that α L γ. 2
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The above lemmas give all what is necessary to obtain the desired numerical rep-
resentation on countable sets. We have:

Proposition 11
Let A and Z be finite or countably infinite sets and let T and F be a pair of disjoint
relations between A and Z. There are real-valued functions f on A and g on Z
such that (17) holds iff T is a biorder, R = T ∪F is a biorder, and thinness holds.
Furthermore, the functions f and g can always be chosen so that, for all a, b ∈ A
and p, q ∈ Z,

a %`
? b⇔ f(a) ≥ f(b),

p %r
? q ⇔ g(p) ≥ g(q).

(22)

Proof
Necessity results from Lemma 2(1). Sufficiency is shown applying Lemma 3 with
%`

[ = %`
? and %r

[ = %r
?. We know that the binary relation L on A ∪ Z is a weak

order. Because A and Z are both countable, there is a real-valued function F on
A ∪ Z such that, for all α, β ∈ A ∪ Z,

α L β ⇔ F (α) ≥ F (β).

Suppose that, for some, a ∈ A and p ∈ Z, we have a T p. This implies a L p
and Not [p L a] so that F (a) > F (p). Similarly a F p implies both of a L p and
p L a, so that F (a) = F (p). If Not [a R b] we have Not [a L p] and p L a, so that
F (a) < F (p). Therefore defining f (resp. g) to be the restriction of F on A (resp.
Z) leads to a representation satisfying (17). In view of the definition of L , it is
clear that (22) will hold. 2

4.3 The general case

The extension of Proposition 11 calls for the introduction of order-denseness con-
ditions. We say that a subset A∗ ⊆ A is dense for the pair T and F if, for all a ∈ A
and all p ∈ Z,

a T p⇒ [a %`
? a
∗ and a∗ T p, for some a∗ ∈ A∗], (23)

a Rc p⇒ [a∗ Rc p and a∗ %`
? a, for some a∗ ∈ A∗]. (24)

The intuition behind these conditions should be clear. Condition (17a) imposes
that the relation T has a strict representation. Hence, we must impose on T the
order-denseness condition used in Proposition 2. This is exactly what (23) does.
Similarly, the conjunction of conditions (17a) and (17b) imposes that the relation
R has a non-strict representation. Hence, we must require that R satisfies the
order-denseness condition used in Proposition 3. This is exactly what (24) does.

The existence of finite or countably infinite subset A∗ that is dense for the pair
T and F will guarantee the existence of numerical representation. We have:
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Proposition 12
Let A and Z be two sets and let T and F be a pair of disjoint relations between A
and Z. There are real-valued functions f on A and g on Z such that (17) holds
iff T is a biorder, R = T ∪ F is a biorder, thinness holds, and there is a finite or
countably infinite subset A∗ ⊆ A that is dense for the pair T and F. Furthermore,
the functions f and g can always be chosen so that (22) holds.

Proof
Necessity. Suppose that there are real-valued functions f on A and g on Z such
that (17) holds. Let us show that this implies the existence of a finite or countably
infinite subset A∗ ⊆ A that is dense for the pair of disjoint relations T and F.

Let λj ∈ f(A) be such that

µj < λj and (µj, λj) ∩ f(A) = ∅, (25)

for some µj ∈ g(Z). With each such λj ∈ f(A), we associate a particular µj ∈ g(Z)
such that (25) holds. Suppose that λk < λj. The two intervals (µk, λk) and
(µj, λj) are disjoint since λk > µj would violate the fact that (µj, λj) ∩ f(A) = ∅.
The collection of the numbers λj must be countable because the intervals (µj, λj)
are nonempty and disjoint and, therefore, each one contains a distinct rational
number. Therefore, there is a finite or countably infinite set A∗1 ⊆ A such that
f(A∗1) contains all the λj.

Let λj ∈ f(A) be such that

λj < µj and (λj, µj) ∩ f(A) = ∅, (26)

for some µj ∈ g(Z). With each such λj ∈ f(A), we associate a particular µj ∈ g(Z)
such that (26) holds. Suppose that λj < λk. The two intervals (λk, µk) and
(λj, µj) are disjoint since λk < µj would violate the fact that (λj, µj) ∩ f(A) = ∅.
The collection of the numbers λj must be countable because the intervals (λj, µj)
are nonempty and disjoint and, therefore, each one contains a distinct rational
number. Therefore, there is a finite or countably infinite set A∗2 ⊆ A such that
f(A∗2) contains all the λj.

Let us select a subset A∗3 ⊆ A such that for every pair of rational numbers p
and q such that p < q the following condition holds:

(p, q) ∩ f(A) 6= ∅⇒ [p < f(a∗) < q, for some a∗ ∈ A∗3]. (27)

The set A∗3 ⊆ A can always be taken to be finite or countably infinite.
Define A∗ = A∗1 ∪ A∗2 ∪ A∗3. By construction, A∗ ⊆ A is finite or countably

infinite. Let us show that A∗ is dense for the pair T and F.
Suppose that a T p, so that f(a) > g(p). If (g(p), f(a)) ∩ f(A) = ∅ then, by

construction, we have f(a) = f(a∗), for some a∗ ∈ A∗1. Because f(a) = f(a∗) >
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g(p), we clearly have a %`
? a
∗ and a∗ T p. Otherwise we have (g(p), f(a))∩ f(A) 6=

∅ and let c be any element in A such that g(p) < f(c) < f(a). Let p, q ∈ Q be
such that g(p) < p < f(c) < q < f(a). By construction of the set A∗3, we have
g(p) < p < f(a∗) < q < f(a), for some a∗ ∈ A∗3. Because f(a) > f(a∗) > g(p), we
have a∗ T p and a %`

? a
∗.

Suppose now that a Rc p, so that f(a) < g(b). If (f(a), g(p))∩f(A) = ∅, then,
by construction, we have f(a) = f(a∗), for some a∗ ∈ A∗2. Because f(a) = f(a∗) <
g(p), we have a∗ Rc p and a∗ %`

? a. Otherwise we have (f(a), g(p)) ∩ f(A) 6= ∅
and let d be any element in A such that f(a) < f(d) < g(p). Let p, q ∈ Q be
such that f(a) < p < f(d) < q < g(p). By construction of the set A∗3, we have
f(a) < p < f(a∗) < q < g(p), for some a∗ ∈ A∗3. Because f(a) < f(a∗) < g(p), we
have a∗ Rc p and a∗ %`

? a.
Sufficiency. Define the relation Q? on A ∪ Z as the relation L defined in

Lemma 3 with %`
[ = %`

? and %r
[ = %r

?. The proof will be complete if we show
that there is a countable subset K∗ of A∪Z that is dense for Q?, i.e., that, for all
α, β ∈ A ∪ Z,

α Qa
? β ⇒ [α Q? γ and γ Q? β, for some γ ∈ K∗] .

By hypothesis, we know that there is a finite or countably infinite subset A∗ ⊆ A
that is dense for the pair T and F. Let us show that this set A∗ is dense for the
weak order Q?. There are four cases to consider.

1. Suppose that α ∈ A and β ∈ Z. Then α Q? β and Not [β Q? α] implies
α T β. Using the fact that A∗ ⊆ A is dense for the pair T and F, we obtain
α %`

? a
∗ and a∗ T β, for some a∗ ∈ A∗, so that α Q? a

∗ and a∗ Q? β.

2. Suppose that α ∈ Z and β ∈ A. Then α Q? β and Not [β Q? α] implies
β Rc α. Using the fact that A∗ ⊆ A is dense for the pair T and F, we obtain
a∗ %`

? β and a∗ Rc α, for some a∗ ∈ A∗, so that α Q? a
∗ and a∗ Q? β.

3. Suppose that α, β ∈ A, so that α Q? β and Not [β Q? α] implies α �`
? β. By

definition, we have either

α T p and β Tc p, (28a)

or

α R p and β Rc p, (28b)

for some p ∈ Z.

Suppose that (28a) holds. Using the fact that A∗ ⊆ A is dense for the pair
T and F, α T p implies α %`

? a
∗ and a∗ T p, for some a∗ ∈ A∗. If β %`

? a
∗,

a∗ T p implies β T p, a contradiction. Hence, we must have a∗ �`
? β, so that
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α %`
? a
∗ and a∗ �`

? β. We therefore have α Q? a
∗ and a∗ Q? β, for some

a∗ ∈ A∗, as required.

Suppose now that (28b) holds. Using the fact that A∗ ⊆ A is dense for
the pair T and F, β Rc p implies a∗ Rc p and a∗ %`

? β, for some a∗ ∈ A∗.
If a∗ %`

? α, α R p implies a∗ R p, a contradiction. Hence, we must have
α �`

? a
∗, so that α �`

? a
∗ and a∗ %`

? β. We therefore have α Q? a
∗ and

a∗ Q? β, for some a∗ ∈ A∗, as required.

4. Suppose that α, β ∈ Z, so that α Q? β and Not [β Q? α] implies α �r
? β. By

definition, we have either

a T β and a Tc α, (28c)

or

a R β and a Rc α, (28d)

for some a ∈ A.

Suppose that (28c) holds. Using the fact that A∗ ⊆ A is dense for the pair
T and F, a T β implies a %`

? a
∗ and a∗ T β, for some a∗ ∈ A∗. If a∗ T α,

a %`
? a
∗ implies a T α, a contradiction. Therefore, we must have Not [a∗ T α].

Hence, we have Not [a∗ T α] and a∗ R β, so that α Q? a
∗ and a∗ Q? β, as

required.

Suppose finally that (28d) holds. Using the fact that A∗ ⊆ A is dense for
the pair T and F, a Rc α implies a∗ Rc α and a∗ %`

? a, for some a∗ ∈ A∗. If
a∗ Rc β, a∗ %`

? a implies a Rc β, a contradiction. Therefore, we must have
a∗ R β. Hence, we have a∗ Rc α and a∗ R β, so that a Q? a

∗ and a∗ Q? β, as
required. 2

The above result uses six conditions: the four conditions used in Proposition 11
(T is a biorder, R = T ∪ F is a biorder, left thinness, right thinness, and the two
order-denseness conditions (23) and (24). Let us show that these six conditions
are independent. It is clear that when both A and Z are countable, the two order-
denseness conditions are trivially satisfied. The examples presented in the proof
of Lemma 2(2) can therefore be used to deal with the first four conditions. Let A
and Z be disjoint duplications of R and let T be such that (abusing notation in
an obvious way) a T x⇔ a > x. Suppose furthermore that F is empty. It is clear
that T is a biorder and that the same is true for R. The two thinness conditions
are trivially satisfied. Since T has a strict numerical representation, condition (23)
holds. Condition (24) is violated since R cannot have a non-strict representation.
Modifying the last example by taking a T x ⇔ a ≥ x clearly leads to a situation
in which all conditions used in Proposition 12 are satisfied, except (23).
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We briefly examine below how the above results may be used to tackle the case
of interval orders and semiorders with frontier. The application to interval orders
will be straightforward. The case of semiorders will be slightly more delicate.

5 Interval orders with frontier

Let T and F be two disjoint relations on X. Define R = T ∪ F .
We are interested in conditions ensuring the existence of two real-valued func-

tions u and v on X such that, for all x, y ∈ X,

x T y ⇔ u(x) > v(y),

x F y ⇔ u(x) = v(y),

u(x) < v(x).

(29)

A pair of relations T and F having such a representation is called an interval order
with frontier.

Model (29) implies that u < v, so that that both T and F must be irreflexive4.
Using Lemma 2(1), we know that model (29) implies that both T and R must be
Ferrers (notice that, because both T and F are irreflexive, this will imply that T
and R are asymmetric). Hence, a necessary condition for model (29) is that both
T and R are interval orders.

Remember from Section 3 that we have defined %`
? on X as %`

T ∩%`
R and %r

?

on X as %r
T ∩%r

R.
It is easy to check that (29) implies left and right thinness. Indeed, suppose

that x F z, and y F z. This implies u(x) = v(z) and u(x) = v(z), so that
u(x) = u(y). Hence, we must have x F w ⇔ y F w and x T w ⇔ y T w, for all
w ∈ X. A similar reasoning shows the necessity of the right thinness condition.

It is straightforward to adapt the examples given above for biorders with fron-
tier to show that the following four conditions are independent: T is an interval
order, R is an interval order, left thinness, and right thinness. Using Lemma 2(3),
it is simple to check that when both T and R are interval orders, and thinness
holds, both relations %`

? and %r
? are complete.

This leads to the following corollary of Proposition 11.

Proposition 13
Let X be a finite or countably infinite set. Let T and F be a pair of disjoint
relations on X and define R = T ∪ F .There are real-valued functions u and v
on X such that (29) holds iff T is an interval order, R is an interval order, and

4Note that if F were supposed to be reflexive, model (29) would be identical to the classic
numerical representation of a weak order % with T = � and F = ∼.
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thinness holds. Furthermore, the functions u and v can always be chosen so that,
for all x, y ∈ X,

x %`
? y ⇔ u(x) ≥ u(y),

x %r
? y ⇔ v(x) ≥ v(y).

(30)

Proof
Necessity was noted above. Sufficiency is established noting that the conditions
imposed on T and F imply the conditions used in Proposition 11. The fact that
u < v follows from the irreflexivity of R. 2

It suffices to bring the order-denseness condition used in Proposition 12 into the
picture to be able to cover the general case. This is recorded below.

Proposition 14
Let T and F be a pair of disjoint relations on X and define R = T ∪ F .There are
real-valued functions u and v on X such that (29) holds iff T is an interval order,
R is an interval order, thinness holds, and there is a countable subset X ∗ ⊆ X
such that, for all x, y ∈ X,

x T y ⇒ [x %`
? x
∗ and x∗ T y], (31)

x Rc y ⇒ [x∗ Rc y and x∗ %`
? x], (32)

for some x∗ ∈ X ∗. Furthermore, the functions u and v can always be chosen so
that (30) holds.

We now turn to the more delicate case of semiorders with frontier.

6 Semiorders with frontier

6.1 Representations with no proper nesting

We are first interested in conditions that will ensure the existence of two real-valued
functions u and v on X such that, x, y ∈ X,

x T y ⇔ u(x) > v(y),

x F y ⇔ u(x) = v(y),

u(x) > u(y)⇒ v(x) ≥ v(y),

u(x) < v(x),

(33)

which specializes the representation envisaged above for interval orders with fron-
tier by adding a consistency condition between u and v.
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It is clear that model (33) implies that both T and R must be semiorders. It
also implies that

TFRsc ⊆ T , (34a)

RscFT ⊆ T . (34b)

Indeed, if a T b, b F c and c Rsc d, we have u(a) > v(b), u(b) = v(c), u(c) < v(d),
and u(d) < v(c). In contradiction with the thesis, suppose that Not [a T d], so
that v(d) ≥ u(a). Because v(d) ≥ u(a) > v(b), we obtain v(d) > v(b). Since
u(b) = v(c) > u(d), we have u(b) > u(d), contradicting the fact that u(x) >
u(y)⇒ v(x) ≥ v(y). The proof that RscFT ⊆ T holds is similar.

Conditions (34) are inspired from the study of pseudo-orders in Vincke (1980)
and Roy and Vincke (1987). In pseudo-orders, the frontier F between T and Rsc

does not have to be “thin”. Model (33) being a particular case of model (29), it
implies both left and right thinness.

Lemma 4
For a pair of disjoint irreflexive relations T and F , the following conditions are
independent: T is Ferrers, T is semitransitive, R is Ferrers, R is semitransitive,
TFRsc ⊆ T , RscFT ⊆ T , left thinness, and right thinness.

Proof
We provide the eight required examples indicating, for each example, which con-
dition is the only one to be violated. The first six are taken from Roy and Vincke
(1987, page 267), with a minor adaptation for the second one.

R Ferrers
a b c d

a Rsc F Rsc Rsc

b − Rsc Rsc Rsc

c − − Rsc F
d − − − Rsc

R semi-transitive
a b c d

a Rsc F T Rsc

b − Rsc F Rsc

c − − Rsc Rsc

d − − − Rsc

T Ferrers
a b c d

a Rsc T Rsc F
b − Rsc − Rsc

c − F Rsc T
d − − − Rsc

T semi-transitive
a b c d

a Rsc T T F
b − Rsc T Rsc

c − − Rsc −
d − − F Rsc

TFRsc ⊆ T
a b c d

a Rsc T T F
b − Rsc F Rsc

c − − Rsc Rsc

d − − − Rsc

RscFT ⊆ T
a b c d

a Rsc Rsc Rsc F
b − Rsc F T
c − − Rsc T
d − − − Rsc
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right thinness

a b c d
a Rsc Rsc F F
b − Rsc Rsc T
c − − Rsc Rsc

d − − − Rsc

left thinness
a b c d

a Rsc Rsc T F
b − Rsc Rsc F
c − − Rsc Rsc

d − − − Rsc

2

We define the trace of the pair of relations T and F as the binary relation %?

on X such that, for all x, y ∈ X,

x %? y ⇔ [x %`
? y and x %r

? y] (35)

By construction, %? is reflexive and transitive. As shown below, the conditions
introduced so far imply that the relation %? is also complete.

Lemma 5
Let T and F be a pair of disjoint relations on X. If T is a semiorder, R is a
semiorder, TFRsc ⊆ T , RscFT ⊆ T , and thinness holds, then %? is complete.

Proof
Let us show that %? is complete. Using the results in Vincke (1980) or in Roy
and Vincke (1987), it suffices to prove that we have FRscT ⊆ T and TRscF ⊆ T .
Suppose that a F b, b Rsc c and c T d. Using the fact that R is a semiorder,
we must have a R d. Suppose that a F d. Using right thinness, a F b, a F d,
and c T d imply c T b, a contradiction. Hence, we must have a T d, so that
FRscT ⊆ T . Suppose now that a T b, b Rsc c and c F d. Using the fact that R is
a semiorder, we must have a R d. Suppose that a F d. Using left thinness, c F d,
a F d, and a T b imply c T b, a contradiction. Hence, we must have a T d, so that
TRscF ⊆ T . 2

This leads to our first result representations with no proper nesting.

Proposition 15
Let T and F be a pair of disjoint relations on a finite or countably infinite set
X. Define R = T ∪ F . There are real-valued functions u and v on X such that
(33) holds iff T is a semiorder, R is a semiorder, TFRsc ⊆ T , RscFT ⊆ T , and
thinness holds. Furthermore the functions u and v can always be chosen so that
(30) holds.

Proof
Necessity was shown above. Sufficiency is established as in the proof of the Proposi-
tion 13. The only difference is that we must show that u(x) > u(y)⇒ v(x) ≥ v(y).
We know that u is a representation of %`

? and that v is a representation of %r
?.

Lemma 5 has shown that %? = %`
?∩%r

? is complete. Hence it is impossible to have
x �`

? y and y �r
? x. This completes the proof. 2
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Adding the two order-denseness conditions used in Proposition 12, allows to deal
with the general case.

Proposition 16
Let T and F be a pair of disjoint relations on X. Define R = T ∪ F . There are
real-valued functions u and v on X such that (33) holds iff T is a semiorder, R
is a semiorder, TFRsc ⊆ T , RscFT ⊆ T , thinness holds, and there is a countable
subset X ∗ ⊆ X such that (31) and (32) hold. Furthermore, the functions u and v
can always be chosen so that (30) holds.

6.2 Representations with no nesting

A representation with no nesting is such that there are real-valued functions u and
v on X such that, for all x, y ∈ X,

x T y ⇔ u(x) > v(y),

x F y ⇔ u(x) = v(y),

u(x) ≥ u(y)⇔ v(x) ≥ v(y),

u(x) < v(x).

(36)

For semiorders without frontier, we know that representations with no proper
nesting are equivalent to representations with no nesting. With the introduction
of frontier, this equivalence fails. This leads to study a structure that is more
constrained that the one envisaged in the preceding section.

All conditions needed for the existence of a representation with no proper nest-
ing are clearly necessary for model (36). However, model (36) implies a stronger
form of thinness that the one required above. Suppose indeed that x F z and
y F z. This implies u(x) = v(z) and u(y) = v(z), so that u(x) = u(y). This
implies that v(x) = v(y). Hence, it will impossible to distinguish x and y. A
similar conclusion clearly holds if we have z F x and z F y. This is the motivation
for the following two conditions.

We say the pair of relations T and F is strongly left thin if, for all x, y, z ∈ X,
[x F z and y F z] implies that x ∼? y. Similarly, we say that the pair of relations
T and F is strongly right thin if, for all x, y, z ∈ X, [z F x and z F y] implies
that x ∼? y. Observe that strong left and right thinness may equivalently be
formulated as FF d ⊆ ∼? and F dF ⊆ ∼?. We say that strong thinness holds if left
and right strong thinness are satisfied.

The difference between strong thinness and thinness is illustrated below. Let
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X = {a, b, c, d} and let T and F be defined as follows:

a b c d
a Rsc Rsc T T
b − Rsc Rsc F
c − − Rsc F
d − − − Rsc

The pair of relations T and F is thin. It has a representation with no proper
nesting taking, e.g., v(a) = 4, u(a) = 3, v(b) = 4, u(b) = 1, v(c) = 2, u(c) = 1,
and v(d) = 1, u(d) = 0. It cannot have a representation without nesting since
strong left thinness is violated. Indeed, b F d and c F d imply u(b) = u(c). In a
representation with no nesting, we must also have v(b) = v(c). This violates the
fact that a Rsc b while a T c.

Replacing thinness by strong thinness does not alter the independence of the
conditions used in Proposition 15.

Lemma 6
For a pair of disjoint irreflexive relations T and F , the following conditions are
independent: T is Ferrers, T is semitransitive, R is Ferrers, R is semitransitive,
TFRsc ⊆ T , RscFT ⊆ T , strong left thinness holds, and strong right thinness
holds.

Proof
A simple check shows that the first six examples used in the proof of Lemma 6
satisfy strong thinness. The seventh example violates right thinness and, hence,
strong right thinness. It trivially satisfies strong left thinness. Similarly, the eighth
example violates left thinness and, hence, strong left thinness. It trivially satisfies
strong right thinness. 2

Using Lemma 5, we know that if a pair of disjoint relations T and F , is such
that T is a semiorder, R is a semiorder, TFRsc ⊆ T , RscFT ⊆ T , and thinness
holds, then the relation %? is complete. The following lemma takes note of some
additional properties that obtain when thinness is replaced by strong thinness.

Lemma 7
Suppose that a pair of disjoint relations T and F is such that: T is a semiorder,
R is a semiorder, TFRsc ⊆ T , RscFT ⊆ T , and strong thinness holds. We have:

1. x F y and y �? z imply x T z,

2. x �? y and y F z imply x T z,

for all x, y, z ∈ X.
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Proof
Part 1. By definition of %?, we know that x R z. If x F z, strong right thinness
and x F y imply that y ∼? z, a contradiction. Part 2 is proved similarly using
strong left thinness. 2

Hence, under the conditions of the above lemma, we have that, for all x, y, z ∈ X,

x %? y and y T z ⇒ x T z,

x �? y and y F z ⇒ x T z,

x ∼? y and y F z ⇒ x F z,

x T y and y %? z ⇒ x T z,

x F y and y �? z ⇒ x T z,

x F y and y ∼? z ⇒ x F z,

(37)

This leads to our first result on representations with no nesting.

Proposition 17
Let T and F be a pair of disjoint relations on a finite or countably infinite set
X. Let R = T ∪ F . There are real-valued functions u and v on X such that (36)
holds iff T is a semiorder, R is a semiorder, TFRsc ⊆ T , RscFT ⊆ T , and strong
thinness holds. Furthermore the functions u and v can always be chosen so that,
for all x, y ∈ X,

x %? y ⇔ u(x) ≥ u(y)⇔ v(x) ≥ v(y). (38)

Proof
Necessity was noted earlier. Sufficiency is established as follows. Let us view the
pair of relations T and F as relations between X and X ′, a disjoint duplication
of X. In view of (37), it is clear that (20) and (21) holds with %?. Hence, we
may apply the construction of Lemma 3. Because we have supposed that X is
countable, the weak order L has a numerical representation F . Defining u and v
on X as the restriction of F on X (resp. X ′) leads to a representation in which

x T y ⇔ u(x) > v(y),

x F y ⇔ u(x) = v(y),

x %? y ⇔ u(x) ≥ u(y)⇔ v(x) ≥ v(y).

Since R is irreflexive, we must have that u(x) < v(x), which completes the proof. 2

We now turn to the general case. This will require order-denseness conditions that
are inspired from the ones used in Nakamura (2002).
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Proposition 18
Let T and F be a pair of disjoint relations on a X. Define R = T ∪ F . There are
real-valued functions u and v on X such that (36) holds iff T is a semiorder, R is
a semiorder, TFRsc ⊆ T , RscFT ⊆ T , strong thinness holds, and there is a finite
or countably infinite subset X ∗ ⊆ X such that, for all x, y ∈ X,

x T y ⇒ [x %? x
∗, x∗ T y∗, y∗ %? y] , (39)

x Rc y ⇒ [x∗ %? x, x
∗ Rc y∗, y %? y

∗] , (40)

for some x∗, y∗ ∈ X ∗. Furthermore the functions u and v can always be chosen so
that (38) holds.

Proof
Necessity. The necessity of the first six conditions is easily shown. Let us prove
that model (36) implies (39) and (40).

Let λj ∈ u(X) be such that

µj < λj and (µj, λj) ∩ u(X) = ∅, (41)

for some µj ∈ v(X). With each such λj ∈ u(X), we associate a particular µj ∈
v(X) such that (41) holds. Suppose that λk, λj ∈ u(X) both satisfy (41) and
λk < λj. The two intervals (µk, λk) and (µj, λj) are disjoint since µj < λk would
violate the fact that (µj, λj) ∩ u(X) = ∅. The collection of the numbers λj
must be countable because the intervals (µj, λj) are nonempty and disjoint and,
therefore, each one contains a distinct rational number. Therefore, there is a finite
or countably infinite set X ∗1 ⊆ X such that u(X ∗1 ) contains all the λj.

Let λj ∈ u(X) be such that

λj < µj and (λj, µj) ∩ u(X) = ∅, (42)

for some µj ∈ v(X). With each such λj ∈ u(X), we associate a particular µj ∈
v(X) such that (42) holds. Suppose that λk, λj ∈ u(X) both satisfy (42) and
λk < λj. The two intervals (λk, µk) and (λj, µj) are disjoint since λj < µk would
violate the fact that (λk, µk) ∩ u(X) = ∅. The collection of the numbers λj
must be countable because the intervals (λj, µj) are nonempty and disjoint and,
therefore, each one contains a distinct rational number. Therefore, there is a finite
or countably infinite set X ∗2 ⊆ X such that u(X ∗2 ) contains all the λj.

Let µj ∈ v(X) be such that

µj < λj and (µj, λj) ∩ v(X) = ∅, (43)

for some λj ∈ u(X). With each such µj ∈ v(X), we associate a particular λj ∈
u(X) such that (43) holds. Suppose that µj, µk ∈ v(X) both satisfy (43) and
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µj < µk. The two intervals (µj, λj) and (µk, λk) are disjoint since µk < λj would
violate the fact that (µj, λj) ∩ v(X) = ∅. The collection of the numbers µj

must be countable because the intervals (µj, λj) are nonempty and disjoint and,
therefore, each one contains a distinct rational number. Therefore, there is a finite
or countably infinite set X ∗3 ⊆ X such that v(X ∗3 ) contains all the µj.

Let µj ∈ v(X) be such that

λj < µj and (λj, µj) ∩ v(X) = ∅, (44)

for some λj ∈ u(X). With each such µj ∈ v(X), we associate a particular λj ∈
u(X) such that (44) holds. Suppose that µj, µk ∈ v(X) both satisfy (44) and
µj < µk. The two intervals (λj, µj) and (λk, µk) are disjoint since µj > λk would
violate the fact that (λk, µk) ∩ v(X) = ∅. The collection of the numbers µj

must be countable because the intervals (λj, µj) are nonempty and disjoint and,
therefore, each one contains a distinct rational number. Therefore, there is a finite
or countably infinite set X ∗4 ⊆ X such that v(X ∗4 ) contains all the µj.

Let us select a subset X ∗5 ⊆ X such that for every pair of rational numbers p
and q such that p < q the following condition holds:

(p, q) ∩ u(X) 6= ∅⇒ [p < u(x∗) < q, for some x∗ ∈ X ∗5 ]. (45)

It is easy to see that the set X ∗5 ⊆ X can always be taken to be finite or countably
infinite.

Let us finally select a subset X ∗6 ⊆ X such that for every pair of rational
numbers p and q such that p < q the following condition holds:

(p, q) ∩ v(X) 6= ∅⇒ [p < v(x∗) < q, for some x∗ ∈ X ∗6 ]. (46)

It is easy to see that the set X ∗6 ⊆ X can always be taken to be finite or countably
infinite.

Define X ∗ = X ∗1 ∪X ∗2 ∪X ∗3 ∪X ∗4 ∪X ∗5 ∪X ∗6 . By construction, X ∗ ⊆ X is finite
or countably infinite. Let us show that X ∗ satisfies (39) and (40).

Let us first show that (39) holds. Suppose that x T y, so that u(x) > v(y). We
distinguish two cases.

1. If (v(y), u(x)) ∩ u(X) = ∅ then, by construction, we have u(x) = u(x∗), for
some x∗ ∈ X ∗1 . Because u(x) = u(x∗) > v(y), we clearly have x %? x

∗ and
x∗ T y.

2. Otherwise we have (v(y), u(x))∩u(X) 6= ∅ and let z be any element inX such
that v(y) < u(z) < u(x). Let p, q ∈ Q be such that v(y) < p < u(z) < q <
u(x). By construction of the set X ∗5 , we have v(y) < p < u(x∗) < q < u(x),
for some x∗ ∈ X ∗5 . Because u(x) > u(x∗) > v(y), we have x %? x

∗ and
x∗ T y.

30



In either case we have x %? x
∗, x∗ T y, and u(x∗) > v(y). Again, we distinguish

two cases.

1. If (v(y), u(x∗)) ∩ v(X) = ∅ then, by construction, we have v(y) = v(y∗), for
some y∗ ∈ X ∗3 . Because v(y) = v(y∗) < v(x∗), we have y∗ %? y and x∗ T y∗.
Hence we have x %? x

∗, x∗ T y∗, and y∗ %? y, as required.

2. Otherwise, we have (v(y), u(x∗)) ∩ v(X) 6= ∅ and let z be any element in X
such that v(y) < v(z) < u(x∗). Let p, q ∈ Q be such that v(y) < p < v(z) <
q < u(x∗). By construction of the set X ∗6 , we have v(y) < p < v(y∗) < q <
u(x∗), for some y∗ ∈ X ∗6 . Because u(x∗) > v(y∗) > v(y), we have x∗ T y∗

and y∗ %? y. Hence we have x %? x
∗, x∗ T y∗, and y∗ %? y, as required.

Let us now show that (40) holds. Suppose now that x Rc y, so that u(x) < v(y).
We distinguish two cases.

1. If (u(x), v(y)) ∩ v(X) = ∅ then, by construction, we have v(y) = v(y∗), for
some y∗ ∈ X ∗4 . Because v(y) = v(y∗) > u(x), we clearly have y %? y

∗ and
x Rc y∗.

2. Otherwise we have (u(x), v(y))∩v(X) 6= ∅ and let z be any element inX such
that u(x) < v(z) < v(y). Let p, q ∈ Q be such that u(x) < p < v(z) < q <
v(y). By construction of the set X ∗6 , we have u(x) < p < v(y∗) < q < v(y),
for some y∗ ∈ X ∗6 . Because u(x) < v(y∗) < v(y), we have y %? y

∗ and
x Rc y∗.

In either case we have y %? y
∗, x Rc y∗, and u(x) < v(y∗). Again, we distinguish

two cases.

1. If (u(x), v(y∗))∩ u(X) = ∅ then, by construction, we have u(x) = u(x∗), for
some x∗ ∈ X ∗2 . Because u(x) = u(x∗) < v(y∗), we have x∗ %? x and x∗ Rc y∗.
Hence we have x∗ %? x, x∗ Rc y∗, and y %? y

∗, as required.

2. Otherwise, we have (u(x), v(y∗))∩ u(X) 6= ∅ and let z be any element in X
such that u(x) < u(z) < v(y∗). Let p, q ∈ Q be such that u(x) < p < u(z) <
q < v(y∗). By construction of the set X ∗5 , we have u(x) < p < u(x∗) < q <
v(y∗), for some x∗ ∈ X ∗5 . Because u(x) < u(x∗) < v(y∗), we have x∗ %? x
and x∗ Rc y∗. Hence we have x∗ %? x, x∗ Rc y∗, and y %? y

∗, as required.

Sufficiency. Let us view the pair of relations T and F as relations between X
andX ′, a disjoint duplication ofX. In view of (37), it is clear that %? onX satisfies
(20) and that %? on X ′ satisfies (21). Hence, we may apply the construction of
Lemma 3 showing that the relation L on X ∪X ′ is a weak order. In what follows,
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we consider the weak order L with %`
[ = %? and %r

[ = %?. The proof will be
complete if we show that there is a countable subset Y∗ of X ∪ X ′ that is dense
for L , i.e., that, for all α, β ∈ X ∪X ′,

α L a β ⇒ [α L γ and γ L β, for some γ ∈ Y∗] .

There are four cases to consider.

1. Suppose that α, β ∈ X. Then α L a β means that α �? β. This implies
either α �`

T β or α �r
R β.

Suppose first that α �`
T β. This implies that we have α T γ and Not [β T γ],

for some γ ∈ X ′. We know that α T γ implies that α %? α
∗, α∗ T γ∗, γ∗ %? γ,

for some α∗ ∈ X ∗∩X and some γ∗ ∈ X ∗∩X ′. Because α∗ T γ∗ and γ∗ %? γ,
we know that α∗ T γ. Since Not [β T γ], we have α∗ �? β. Hence we have
α %? α

∗ and α∗ �? β, for some α∗ ∈ X ∗ ∩ X. This implies α L α∗ and
α∗ L β.

Suppose now that α �`
R β. This implies that we have α R γ and Not [β R γ],

for some γ ∈ X ′. We know that β Rc γ implies that β∗ %? β, β∗ Rc γ∗,
γ %? γ

∗, for some β∗ ∈ X ∗ ∩X and some γ∗ ∈ X ∗ ∩X ′. Because α R γ and
γ %? γ

∗, we know that α R γ∗. Because we know that β∗ Rc γ∗, we must
have α �? β

∗. Hence we have α %? β
∗ and β∗ %? β, for some β∗ ∈ X ∗ ∩X.

This implies α L β∗ and β∗ L β.

2. Suppose that α, β ∈ X ′. The proof is clearly similar to the preceding case.

3. Suppose that α ∈ X and β ∈ X ′. Then α L a β means that α T β. We know
that α T β implies that α %? α

∗, α∗ T β∗, β∗ %? β, for some α∗ ∈ X ∗ ∩ X
and some β∗ ∈ X ∗ ∩ X ′. Since α∗ T β∗ and β∗ %? β, we obtain α∗ T β.
Hence, we have α %? α

∗ and α∗ T β, for some α∗ ∈ X ∗ ∩ X. This implies
α L α∗ and α∗ L β.

4. Suppose that α ∈ X ′ and β ∈ X. Then α L a β means that β Rc α.
We know that β Rc α implies that β∗ %? β, β∗ Rc α∗, α %? α

∗, for some
β∗ ∈ X ∗ ∩X and some α∗ ∈ X ∗ ∩X ′. Since β∗ %? β and β∗ Rc α∗, we have
that β Rc α∗. Hence we have α %? α

∗ and β Rc α∗, for some α∗ ∈ X ∗ ∩X ′.
This implies α L α∗ and α∗ L β. 2
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6.3 Constant threshold representations

In a constant threshold representation, there is a real-valued function u on X such
that, for all x, y ∈ X,

x T y ⇔ u(x) > u(y) + 1,

x F y ⇔ u(x) = u(y) + 1.
(47)

It will first be useful to note additional implications of the conditions introduced
above.

Lemma 8
Let T and F be a pair of disjoint relations on a set X. If T is a semiorder, R is
a semiorder, TFRsc ⊆ T , RscFT ⊆ T , strong thinness holds, then we have:

FF ⊆ T , FT ⊆ T , TF ⊆ T .

Furthermore, we have:

RscTT ⊆ T TRscT ⊆ T TTRsc ⊆ T ,

F dTT ⊆ T TF dT ⊆ T TTF d ⊆ T ,

RscTF ⊆ T FTRsc ⊆ T FRscT ⊆ T TRscF ⊆ T ,

F dFT ⊆ T F dTF ⊆ T FF dT ⊆ T FTF d ⊆ T TFF d ⊆ T TF dF ⊆ T ,

RscFF ⊆ T FRscF ⊆ T FFRsc ⊆ T ,

F dFF ⊆ F FF dF ⊆ F FFF d ⊆ F .

Proof
Let us show that FF ⊆ T . Suppose that a F b and b F c. Since R is a semiorder,
we know that a R c. Suppose that a F c. Since b F c, strong left thinness implies
that a ∼? b. Since a F b, this implies a F a, contradicting the irreflexivity of F .
The proof that FT ⊆ T and TF ⊆ T is similar.

That RscTT ⊆ T , TRscT ⊆ T , TTRsc ⊆ T , F dTT ⊆ T , TF dT ⊆ T , TTF d ⊆
T are immediate consequences of the fact that T is a semiorder.

By hypothesis, we know that RscFT ⊆ T and TFRsc ⊆ T . Lemma 5 has
shown that FRscT ⊆ T and TRscF ⊆ T . Let us show that RscFT ⊆ T . Because
R is a semiorder, a Rsc b, b F c and c T d imply that a R d. If a F d, c F d and
strong left thinness imply a ∼? c. This contradicts the fact that b Rsc a and b F c.
The proof that RscTF ⊆ T is similar.

Let us show that F dFT ⊆ T . Suppose that a F d b, b F c, and c T d. Hence,
we have b F a and b F c, so that strong right thinness implies a ∼? c. Hence c T d
implies a T d. The proofs that F dTF ⊆ T , FF dT ⊆ T , FTF d ⊆ T , TFF d ⊆ T ,
and TF dF ⊆ T are similar.

Let us show that RscFF ⊆ T . Suppose that a Rsc b, b F c, and c F d. Because
R is a semiorder, we know that a R d. Suppose that a F d. Using c F d and
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strong left thinness, we obtain a ∼? c, so that b F c implies b F a, a contradiction.
The proofs that FRscF ⊆ T and FFRsc ⊆ T are similar.

Let us finally prove that F dFF ⊆ F . Suppose that a F d b, b F c, and c F d.
Hence, we have b F a and b F c, so that strong right thinness implies a ∼? c. Hence
c F d implies a F d, as required. The proofs that FF dF ⊆ F and FFF d ⊆ F are
similar. 2

This leads to our main result on representations with constant threshold.

Proposition 19
Let T and F be a pair of disjoint relations on a finite set X. Let R = T ∪ F .
There is a real-valued function u on X such that (47) holds iff T is a semiorder, R
is a semiorder, TFRsc ⊆ T , RscFT ⊆ T , and strong thinness holds. Furthermore
the function u can always be chosen so that, for all x, y ∈ X,

x %? y ⇔ u(x) ≥ u(y). (48)

Proof
Necessity results from Proposition 17. We show sufficiency. We use the following
result from Graph Theory (see Roy, 1970, Theorem VIII.1, page 270 or Schrijver,
2003, page 108). Let G = (A,U) be a finite digraph, A being the set of nodes and
U ⊆ A2 being the set of arcs. If (a, b) ∈ U , we say that a (resp. b) is the initial
(resp. terminal) extremity of the arc (a, b). Let σ be a real-valued function on U .
There is a real-valued function f on A such that, for all a, b ∈ A,

f(a)− f(b) ≥ σ(a, b) (49)

iff this valued digraph has no circuit of strictly positive value, the value of a circuit
being the sum of the values σ(a, b) on the arcs (a, b) belonging to the circuit. It is
clear that, in the above result, we may restrict our attention to elementary circuits,
i.e., each node visited by the circuit is the initial extremity of exactly one arc in
the circuit and the terminal extremity of exactly one arc in the circuit.

Given a pair of relations T and F on X, we build a digraph having X for set
of nodes. Let ε ∈ R. The set of arcs and the function σ are as follows. If x T y,
we add an arc (x, y) with value 1 + ε. If x F y, we add an arc (x, y) with value 1
and an arc (y, x) with value −1. If x Rsc y, we add an arc (x, y) with value −1 + ε
and an arc (y, x) with value −1 + ε.

The length of a circuit is the number of its arcs. Let n be the the length of
an elementary circuit of maximum length in this digraph. We take ε such that
0 < ε < 1/n.

34



Any function f on this digraph satisfying (49) will be such that, for all x, y ∈ X,

x T y ⇒ f(x)− f(y) ≥ 1 + ε⇒ f(x)− f(y) > 1,

x F y ⇒

{
f(x)− f(y) ≥ 1

f(y)− f(x) ≥ 1

}
⇒ f(x)− f(y) = 1,

x Rsc y ⇒

{
f(x)− f(y) ≥ −1 + ε

f(y)− f(x) ≥ −1 + ε

}
⇒ |f(x)− f(y)| < 1.

Since for each ordered pair (x, y) ∈ X2, we have one and only one of: x T y, x F y,
x Rsc y, x F d y and x T d y, we obtain a numerical representation of T and F in
model (47) with u = f .

The value of a circuit of length n = nT +nF +nF d +nRsc in this valued digraph
is given by

(nT + nF − nF d − nRsc) + ε(nT + nRsc),

where nT (resp. nF , nF d , nRsc) is the number of arcs of type T (resp. F , F d, Rsc).
We show below that the digraph cannot contain an elementary circuit having a
strictly positive value.

Let us first observe that a circuit in this digraph containing only arcs of type
T or of type F would contradict the irreflexivity of R. Hence, the digraph cannot
contain a circuit of length 1 (i.e., a loop) having strictly positive value. It is simple
to check that the digraph cannot contain a circuit of length 2 having a strictly
positive value (this easily results from the disjointness of T and F , the definition
of Rsc, and the fact that R is a semiorder).

Suppose that the digraph contains a circuit of length n ≥ 3 having a strictly
positive value. We prove that this is contradictory. We distinguish two cases.

Case 1. Suppose that nT + nRsc = 0. Because the value of the circuit is strictly
positive, we must have nF > nF d . Since we know that the circuit cannot contain
only arcs of type F , we have at least one configuration of type FF d or of type
F dF . Because FF d ⊆ ∼? and F dF ⊆ ∼?, in either case, we can build a circuit of
length n − 2 (e.g., the three arcs a F b, b F d c and c F d are replaced by an arc
a F d in the new circuit). This shorter circuit (of length n− 2) only contains arcs
of type F and of type F d. Compared to the initial circuit, we have reduced by one
both the number of arcs of type F and the number of arcs of type F d. Repeating
the process, we keep eliminating the arcs of type F d. At some step, we will obtain
a circuit only containing arcs of type F , which is impossible.

Case 2. Suppose that nT + nRsc > 0. Since the circuit has a strictly positive
value, we must have nT + nF ≥ nF d + nRsc (if nT + nF < nF d + nRsc , supposing
that (nT + nF − nF d − nRsc) + ε(nT + nRsc) > 0 implies ε > 1/(nT + nRsc), which
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is impossible since ε < 1/n). Hence, the circuit contains at least as many arcs of
type T or F as arcs of type F d or Rsc. Because we cannot have only arcs of type
T or of type F , there is at least one arc of type F d or Rsc. We distinguish two
cases.

a) Suppose first that the circuit contains at least one arc of type T , i.e., that
nT > 0. Because nT + nF ≥ nF d + nRsc , the circuit contains a sequence of one
of the following three types: αββ, βαβ, or ββα with α being either Rsc or F d

and β being either T or F . Using Lemma 8, we can build a circuit of length
n− 2 still containing at least as many arcs of type F or T as arcs of type Rsc

or F d. If, in the sequence, at least one of the two β is T , we know that the
arc that replaces the three suppressed ones is of type T . Hence, since we still
have nT > 0 in the new shorter circuit. If the sequence αββ, βαβ, or ββα is of
the type RscFF , FRscF , or FFRsc the arc that replaces the three suppressed
ones is of type T , so that we still have nT > 0 in the new shorter circuit. If
the sequence αββ, βαβ, or ββα is of the type F dFF , FF dF , or FFF d the
added arc is of the type F . Hence the number of arcs of type T and Rsc in the
new circuit remain unchanged and nT > 0 still holds in the new shorter circuit.
We can therefore repeat the above process. Doing so, we build a sequence of
circuits in which nF d + nRsc is decreased by one unit at each step. If, at some
step, nF d +nRsc becomes 0, we have built a circuit containing only arcs of type
T and F , which is impossible. Otherwise, we will obtain a circuit of length 1
or 2 that has a strictly positive value, which is also impossible.

b) Suppose now that the circuit does not contain arcs of type T , which implies
that there is at least one arc of type Rsc, i.e., nRsc > 0. Because there at least
as many arcs of type F than of arcs of type F d or Rsc, the circuit contains at
least one configuration of the type αββ, βαβ, or ββα with α being either Rsc

or F d and β being F . We distinguish two cases.

(i) If α is Rsc, we know, using Lemma 8, that RscFF ⊆ T , FRscF ⊆ T and
FFRsc ⊆ T . We can therefore build a circuit of length n − 2 such that
nT + nF ≥ nF d + nRsc and nT > 0 (e.g., the three arcs a Rsc b, b F c, and
c F d are replaced by an arc a T d). Hence, we are back to case a).

(ii) If α is F d, we know, using Lemma 8, that F dFF ⊆ F , FF dF ⊆ F and
FFF d ⊆ F . We can therefore build a circuit of length n− 2 in which we
have reduced by one the number of arcs of type F d and the number of
arcs of type F . Repeating the process, we keep eliminating arcs of type
F d. Because the initial circuit contains at least one arc of type Rsc, we
will be confronted, at some step, with a configuration of the type αββ,
βαβ, or ββα with α being Rsc and β being F . Using Lemma 8, we now
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that RscFF ⊆ T , FRscF ⊆ T and FFRsc ⊆ T . We can therefore build a
shorter circuit replacing the three arcs in the sequence by an arc of type
T . In this shorter circuit, we have decreased the number of F arcs by 2,
decreased the number of Rsc arcs by 1 and added one arc of type T . In
this new circuit, we therefore have nT > 0 and nT + nF ≥ nF d + nRsc and
we are back to case a).

Hence the digraph cannot contain a circuit of strictly positive value, which
proves the existence of a representation of type (47).

To complete the proof, observe that the above reasoning can be applied to
the set X/∼? of equivalence classes of X under ∼?. Doing so, leads to build a
numerical representation in model (47) in which u is a numerical representation of
the weak order %?. 2

Combining Propositions 17 and 19, shows that on finite sets, representations
with no nesting and constant threshold representations are equivalent, as was the
case when there is no frontier.

We have not investigated the generalization of constant threshold represen-
tation to countable and uncountable sets, which could be the subject of future
research.

7 Applications: conjoint measurement and tem-

poral logic

Our initial motivation for studying biorders with frontier was the following. Let
X = X1×X2× · · ·×Xn be a set of objects evaluated on n attributes. Traditional
conjoint measurement (Krantz, Luce, Suppes, and Tversky, 1971, Ch. 6) starts
with a binary relation % on X and looks for an additive numerical representation
of this relation, i.e., for real-valued functions ui on Xi such that, for all x, y ∈ X,

x % y ⇔
n∑

i=1

ui(xi) ≥
n∑

i=1

ui(yi),

where x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn)
In Bouyssou and Marchant (2009, 2010) we study measurement models in

which the binary relation % is replaced with an ordered partition or an ordered
covering 〈C1, C2, . . . , Cr〉 of the set of objects (a similar problem was first studied in
Goldstein, 1991. This analysis was pursued in S lowiński, Greco, and Matarazzo,
2002 and Bouyssou and Marchant, 2007a,b). In such a setting, we know that
objects belonging to Ck+1 are better than objects belonging to Ck but we have
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no information on the way two objects belonging to the same category compare
in terms of preference. This amounts to working with a much poorer information
than in the classic setting with a complete binary relation %.

Consider first an ordered partition 〈C1, C2, . . . , Cr〉 (i.e., the sets Ck are non-
empty, pairwise disjoint and their union is the entire set X). In this case, we are
interested in finding real-valued functions ui on Xi such that, for all x ∈ X and
all k ∈ {1, 2, . . . , r},

x ∈ Ck ⇔ σk−1 ≤
n∑

i=1

ui(xi) < σk,

with the convention that σ0 = −∞, σr = +∞ and where σ1, σ2, . . . , σr−1 are real
numbers such that σ1 < σ2 < · · · < σr−1.

When there are only two attributes and two categories, the above problem
is highly degenerate and our problem relates more to ordinal than to conjoint
measurement. Indeed, in such a case, the problem clearly reduces to finding real-
valued functions u1 on X1 and u2 on X2 such that, for all x ∈ X,

x ∈ C2 ⇔ u1(x1) + u2(x2) > 0. (50)

Define the relation T between the sets X1 and X2 letting, for all x1 ∈ X1 and all
x2 ∈ X2,

x1 T x2 ⇔ (x1, x2) ∈ C2.

It is clear that asking for a representation in model (50) is equivalent to asking for
the existence of two functions f on X1 and g on X2 such that

x1 T x2 ⇔ f(x1) > g(x2),

and Proposition 2 gives necessary and sufficient conditions for that.
In model (50), all objects belong either to C2 or to C1. A simple extension

consists in removing the condition that C2 ∩ C1 = ∅, therefore allowing for an
hesitation between two consecutive categories. Let C2

> = C2 \ C1. With such a
model, we are looking for a numerical representation such that, for all x ∈ X,

x ∈ C2
> ⇔ u1(x1) + u2(x2) > 0,

x ∈ C2 ∩ C1 ⇔ u1(x1) + u2(x2) = 0.
(51)

Define the relations T and F between the sets X1 and X2 letting, for all x1 ∈ X1

and all x2 ∈ X2,
x1 T x2 ⇔ (x1, x2) ∈ C2

>,

x1 F x2 ⇔ (x1, x2) ∈ C2 ∩ C1.
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It is clear that asking for a representation in model (51) is equivalent to asking for
the existence of two functions f on X1 and g on X2 such that

x1 T x2 ⇔ f(x1) > g(x2),

x1 F x2 ⇔ f(x1) = g(x2),

and Proposition 12 gives necessary and sufficient conditions for that.
In view of the results in Levine (1970) (see also Krantz et al., 1971, sec. 6.7),

it seems clear that the case of three categories and two attributes is also quite
particular. This calls for the study of a generalization of the bi-semiorder model
introduced in Ducamp and Falmagne (1969) in which two frontiers are introduced.
This will be the subject of a subsequent paper.

A distinct motivation can be found in the study of time intervals in the context
of temporal logic5. In this field of study, an important question is to locate events6

on a time scale using only information linked to the fact one event entirely precedes
another or that there is a period of time during which they simultaneously occur.
Clearly, the results on the numerical representation of interval orders give a good
basis to cope with such problems. In such a context, it may also be interesting to
consider a relation saying that an event is immediately followed by another (see,
e.g., Golumbic and Shamir, 1993). When this extra relation is brought into the
picture, the question of locating events on a time scale can be solved using our
results about the numerical representation of interval orders with frontier.
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