
Abstract Proof Search

Tristan Cazenave

Laboratoire d'Intelli gence Artificielle
Département Informatique, Université Paris 8,
2 rue de la Liberté, 93526 Saint Denis, France.

 cazenave@ai.univ-paris8.fr

Abstract. In complex games with a large branching factor such as Go, pro-
grams usuall y use highly selective search methods, heuristicall y expanding
just a few plausible moves in each position. As in early Chess programs,
these methods have shortcomings, they often neglect good moves or overlook
a refutation. We propose a safe method to select the interesting moves using
game definiti on functions. This method has multiple advantages over basic
alpha-beta search: it solves more problems, the answers it finds are always
correct, it solves problems faster and with less nodes, and it is more simple
to program than usual heuristic methods. The only small drawback is the re-
quirement for an abstract analysis of the game. This could be avoided by
keeping track of the intersections tested during the search, maybe with a loss
of eff icacy but with a gain in generalit y. We give examples and experimental
results for the capture game, an important sub-game of the game of Go. The
principles underlying the method are not specific to the capture game. The
method can also be used with different search algorithms. This algorithm is
important for every Go programmer, and is li kely to interest other game pro-
grammers.

Key words: Computer Go, Search, Theorem Proving, Capture Game.

1 Introduction

It is very important in complex games where search trees have a large branching
factor to safely select the possible moves worth trying. Finding the moves worth
trying and the moves that can be eliminated, drasticall y reduces the search trees [1].
It is important to select the moves safely, which includes not forgetting a possible
refutation and not considering as a refutation a useless move. Abstract Proof Search
uses game definition functions to safely select complete and minimal sets of moves
worth trying. The capture game is used as an ill ustration of the algorithm, experi-
mental results for this sub-game of Go show that Abstract Proof Search is very eff i-
cient: it is more accurate, more safe and faster than basic alpha-beta search for this
kind of problems.

2 Tristan Cazenave

The capture game is a fundamental sub-game of the game of Go. All the non-
trivial computer Go programs use it. A Go proverb says "If you don't read ladders,
don't play Go", its equivalent in computer Go is "if you don't program ladders, don't
program Go" as Mark Boon pointed it. The capture game is important by itself, but
it i s also an important sub-game of other useful sub-games such as the connection,
eye and li fe sub-games.

Proving theorems on the capture game is important because most or even all the
other sub-games of Go rely on it. False results of the capture game can invalidate a
connection or a li fe and death analysis, and it often results in the program losing a
group or being under severe attack. It is responsible for many lost games.

In our experiments we use a variant of Alpha Beta Null Window Search. How-
ever, our method works with other search algorithms, it has also been successfull y
tested with Proof Number search for example.

Abstract Proof Search improves the speed and the accuracy of Go programs, it is
li kely that it can also be used to improve search in other games. The difference
between our algorithm and other planning approaches to game playing using ab-
straction [3, 9] is that we concentrate on the classes of states that are worthwhile
searching (ip1, ip2 and ip3 states at AND nodes) instead of identifying abstract
operators. The word abstract in our algorithm means that the moves are selected
using abstract properties of the objects of the games, such as the liberties of the
strings.

The second section describes the capture game and its relation to other sub-games
of Go. The third section uncovers our search algorithm. The fourth section explains
what is the abstract analysis of games that enables Abstract Proof Search. In the fifth
section we invalidate the widely accepted knowledge among Go programmers that
the number of liberties is a good heuristic for the capture game, we show that the
capture game is more subtle and that using too simple heuristics can be harmful. We
propose a more accurate classification of situations worthwhile searching as well as
a more selective move generator. The sixth section detail s experimental results and
compares Abstract Proof Search to usual alpha-beta search for the capture game on
standard test sets.

2 The capture game

The capture game is the most fundamental sub-game of Go. It is usually associated
to deep and narrow search trees. It has strong relations with connections, eyes, li fe
and death, safety of groups and many important Go concepts.

Figure 1 gives some examples of the capture game. The first example is called a
geta, a white move at A captures the black stone marked with an x, it can be found
in 5 plies. The second example is an ill ustration of the capture game as a sub-game
of the connection game, a white move at B captures the marked black stone and
connects the two white strings, it requires 9 plies. The third example shows the
capture game as a sub-game of the li fe and death game, white at C can make two
eyes by capturing the marked black stone in a simple but 15 plies depth ladder. Note

Abstract Proof Search 3

that move B is harder to find than move C, the depth of a problem is not always a
good measure of its complexity in Go.

x
A

xB

x C

Figure 1. Examples of captures

3 The search algorithm

We use Null Window Search [7] with some modifications tailored to computer Go.
We do not use forward pruning with null move search because we are looking for
exact results, however some of our experimental results show that null move prun-
ing can speed-up the algorithm with very littl e drawbacks or even improve it. We
use iterative deepening, transposition tables, quiescence search, null -window search
when not at the root and the history heuristic. We stop search early when the goal is
reached. We search all the moves at the root, even if a previous move at the root has
solved the problem, in order to find all the moves that reach the goal. Because it is
useful for a Go program to know more than one way to accomplish its goals. Espe-
ciall y when it is useful for the program to reach multiple goals with one move.

To make the explanations easier, from now on, the friend color is black and the
enemy color is white. The string that is under attack is black.

In the capture game, the evaluation can take three values : -INFINITY if the
string has more than 5 liberties and it is white to play or the string is captured and it
is black to play; +INFINITY if the string has more than 5 liberties and it is black to
play or the string is captured and it is white to play; 0 when the state of the string is
unknown. At the beginning of each node, the evaluation function is called, and the
value is returned if it is different from 0.

We also use incrementalit y so as not to recalculate all the abstract properties of
the strings after each move. We keep track of the liberties of the strings, and of the
adjacent strings of each string. Each intersection is associated to a bit in a bit array
so as to optimize checking of liberties, and the same is done for adjacent strings
numbers.

Transposition Tables are used to detect identical positions and return the associ-
ated value if the search depth of the stored position is greater than the depth of the
node or if the value is +INFINITY or –INFINITY. Transpositions are also used to

4 Tristan Cazenave

recall the best move from previous search in the position and try it first when
searching deeper so as to maximize cut-off . The size of the transposition table is set
to 16384, a larger table could easil y contain in memory, but the time to initiali ze the
table before each search becomes too important for large tables. Given the simplic-
ity of some problems and the number of different problems that have to be solved a
small table is enough as the threshold for the number of nodes is set to 10 000. An-
other interesting possibilit y would be to set a larger size for the table, and to switch
it off f or the first 100 nodes, keeping the initiali zation for harder problems that po-
tentiall y require many nodes.

The History Heuristic is used to order the moves that are not given by the trans-
position table. When all the moves at a node have been tried, the move that returned
the best value, or the one that caused a cut-off , is credited with 2Depth. At each node,
the moves are sorted according to their credit, and tried in this order. For the capture
game, it may be a better idea to order moves also taking into account simple heuris-
tics that works well for this game: trying the liberties of the string first (ordered by
number of neighbor second order liberties), then the liberties of the liberties (or-
dered by the number of neighbor liberties), and then other moves sorted by the dis-
tance to the string. The History Heuristic is a general domain independent heuristic,
but it can be improved by using domain-dependent knowledge such as trying the
check moves first (playing the liberties first in the Capture game is equivalent to
playing the check moves first in Chess).

A Quiescence Search is performed at leaf nodes. The quiescence search alterna-
tively call s two function QSCapture() that plays on the liberties of the string to cap-
ture if it has 2 liberties, and QSSave() that plays the liberty of the string to capture
and the liberties of the adjacent strings in atari1, if the string to capture is in atari.
This ensures that the Quiescence search sends back correct results on the capture
status of the string and quickly reads simple ladders.

Iterative deepening does not stop after the first winning move, it continues two
more plies to find some other working moves. There are multiple stopping criteria to
iterative deepening: the time allotted to the search, the number of visited interior
nodes, the depth of the search, and the comparison between the depth of the first
solution found and the current depth.

In order to find the games status and the moves associated to goals in the test po-
sitions, one or two searches may be performed. The first search is made with the
player trying to capture playing first. If the goal is to prove that the string can be
captured, no more search is performed. Otherwise another search is made with the
player trying to save the string playing first, it is useful to know when the string is
captured, and when it can be saved and which moves save it.

1 atari means only one liberty left

Abstract Proof Search 5

4 Abstract analysis of games

The possible moves that can modify the outcome of the search can be easil y found
when the goal is almost reached. However, when the goal is not one or two moves
away, it becomes less clear. This section deals with the selection of a complete set
of worthwhile possible moves, when the goal cannot be directly reached.

We try to find the complete set of abstract moves that can possibly change the
outcome of a game a given number of moves in advance. For example, given that a
string can be captured in 5 plies, we want to find all the abstract moves than can
possibly prevent it to be captured in 5 plies. An abstract move is a move that is de-
fined using abstract properties either of the strings or of the board. An example of an
abstract move is 'a liberty of the string to capture'.

The set of possible moves that can modify the outcome of the search could be
found dynamicall y by simply recalli ng the intersections tested during the search.
The only moves that can modify the issue of the search are the moves that modify
one of the tested intersections. Selecting forced moves in this way may be more
general than an abstract analysis. It is done in [8], and it is similar to keeping an
explanation of the search to find the forced moves as in early learning versions of
Introspect [1]. Abstract analysis is more related to pre-computation of some parts of
the search tree in order to be more eff icient, such as in the partial evaluation version
of Introspect [2]. Some more tests need to be performed to compare the two ap-
proaches and decide which one is the most eff icient.

In the following we will use names for the different games states. The names of
the games are usually followed by a number that indicate the minimal number of
white moves in order to reach the goal. A game that can be won if white moves is
called 'gi', a game where black has to play otherwise white wins the game by play-
ing in it is called 'ip', it is the almost the same as 'gi' except that it is associated to
black moves. A game that is won for white whatever black plays is called 'g'. A
game is always associated to a player, the g and gi games are associated to the
player that can reach the goal, the ip games are associated to the player that tries to
prevent to reach the goal. Here the goal is to capture strings, it can be easil y defined
as: removing the last liberty of the string to capture. A forced move is a move asso-
ciated to an ip game. For example, when the program checks whether a game is ip2,
it begins with verifying that white can capture in two moves if it plays first (a gi2
game). The forced ip2 moves are the black moves that prevent white from capturing
the string in two moves once one of the black ip2 moves has been played (we can
say that the gi2 game has been invalidated by the black move).

It is quite simple to find forced moves, one move from the goal: when the string
has only one liberty, the only moves to save the string are the moves that directly
increase the number of liberties. There are only two ways to increase the number of
liberties of a string: play one of its liberties, or remove an adjacent string in atari.
These moves are associated to the ip1 game.

6 Tristan Cazenave

Figure 2. The dependencies between games

Figure 2 gives the dependencies between games. A game can be defined using the
games for the lower number of plies, for example, the g1 game for white is defined
as: the game is ip1 for black, and all the forced black moves lead to a gi1 game for
white after the black move. So the g1 game is defined using the definitions of the
gi1 and of the ip1 games, as it is shown in figure 2 where the g1 game depends on
the gi1 and ip1 games. Another example is the gi3 game for white: a white move
leads to a g2 game for white. So the gi3 game depends on the g2 game only. Some
more detailed game definition functions are given in the next section on the selec-
tion of moves. In order to make things clear some examples of games are given in
the figure 3.

x
A

x x A x x
A

Figure 3. Examples of games

The only abstract moves that can change an ip1 game are the liberty of the string
and the liberties of the adjacent strings in atari. A g1 game for white is defined as an
ip1 game for black that is still gi1 for white after each of the forced black move is
played. The set of intersections that are responsible for the state of a g1 game are the
intersections involved in the corresponding ip1 game, and the intersections involved
in the gi1 games following each forced black move. But as we know the abstract set
of intersections for the ip1 and the gi1 games, we can deduce that the intersections
responsible for a g1 game are the liberty of the string, the liberties of the adjacent

gi1

ip1 g1

gi2

ip2 g2

gi3

ip3

= is used to define

gi1 for White

ip1 for Black

g1 for White gi2 for White

ip2 for Black

g2 for White gi3 for White

ip3 for Black

Abstract Proof Search 7

strings in atari, the liberty after a black move is played on the liberty of the string, or
on the liberties of the adjacent strings in atari.

Another example of how the abstract sets of moves can be calculated is the tran-
sition from a gi set of moves to an ip set of move: the only move that can modify an
empty intersection is to play on this intersection, therefore if some empty intersec-
tions are involved in the definition of a gi game, the set of moves that can prevent it
(the corresponding possible ip moves) contains all these empty intersections.

More detailed explanations of how this knowledge can be automaticall y gener-
ated can be found in [2], but more formal and easy to use tools for analyzing games
need to be investigated.

A more practical example of such a set of abstract moves is the function that
finds the complete set of abstract moves for the ip2 game. The function begins with
adding the liberties of the string to the set of moves to prevent gi2, then for each
liberties, it plays a black move on it, and adds the liberties of the string after the
move. It also adds the liberties of the white strings adjacent to the string to capture
that have strictly less than three liberties after the black move. Then it adds the lib-
erties of all the adjacent string that have strictly less than four liberties (because a
gi2 string has two liberties and the only adjacent strings that can be captured to save
it have strictly less than four liberties: any four liberties adjacent string cannot be
captured before the two liberties gi2 string). The code for CompleteSetOfMovesTo-
Preventgi2 is quite simple, requiring only 16 lines of C. Similarly the code for
CompleteSetOfMovesToPreventgi3 is 23 lines of C.

Here is the CompleteSetOfMovesToPreventgi2 function in pseudo-code that finds
the complete set of abstract moves for the ip2 game:

CompleteSetOfMovesToPreventgi2(S) {
 for each liberty l {
 add l to S // add the liberty to the set of moves
 if (LegalMove (l,StringColor)) {
 MakeMove (l,StringColor);
 // add the liberties of liberties
 add the liberties after the move to S;
 // liberties of adjacent strings after the move
 for each adjacent string adj
 if (number of liberties of adj < 3)
 add the liberties of adj to S;
 UndoMove();
 }
 }
 // liberties of adjacent strings < 4 liberties
 for each adjacent string adj
 if (number of liberties of adj < 4)
 add the liberties of adj to S;
}

A property of the game of Go is that the minimum number of moves to take a
string is its number of liberties. As a consequence, it is often useless to try to in-
crease the number of liberties of a string by capturing an adjacent string that has

8 Tristan Cazenave

more liberties or to play the external li berties of an adjacent string that has many
liberties trying to make a seki2 with it. There are exceptions to this rule when the
adjacent string and the string to capture share some liberties or when the string to
save has protected liberties and a suff icient number of liberties. Only in this case, it
can be useful to fill t he external li berties of the adjacent string in order to obtain a
seki or to capture it so as to save the string under attack.

A
x

x x x

B

x x x
x

x

Figure 4. Playing li berties of adjacent strings with more li berties

The figure 4 gives ill ustrations of these two cases. In the left position, playing at
A, one of the three liberties of a string adjacent to the string to save that has two
liberties, enables to save it by capturing the adjacent string in 5 plies. The reason is
that the string to save has two protected liberties after the move. In the right posi-
tion, playing at B saves the marked string by making a seki between the black and
the white strings. In the cases of ip2 and ip3 games, the string to capture has only
two or three liberties and can be captured in 3 or 5 plies. These limitations ensure
that looking at the adjacent strings that have less than one or two liberties more than
the string to capture, is enough. Strings that become adjacent after a move can also
be taken into account as shown in the CompletSetOfMovesToPreventgi2 function,
where the abstract properties of the string are taken into account after some black
moves are tried. Improvements could be made by also counting shared liberties
between the string and its adjacent strings so as to be more selective on the adjacent
strings to consider.

5 Selection of moves

The functions that safely select moves use practicall y very littl e knowledge, they are
quite simple to program and are based on the abstract analysis of the game and the
definition of games values. This way of coding the functions is more simple than
explicitl y programming all the interesting case. Experiments with coding all the
cases related to the Preventip3 knowledge show that it needs 22034 lines of C for
the Preventip3 function itself and some more lines to write the functions associated
to the definitions of high level and abstract concepts which are called by the main
function [1, 2].

2 Seki: Two strings that are mutuall y ali ve. One string cannot capture the other by playing a

common liberty because it will be captured itself f irst. However as the pass move is legal
in Go, the two strings of a seki are safe provided all the adjacent strings are also safe.

Abstract Proof Search 9

Instead of expli citl y coding all the cases, either in patterns or in complex pro-
grams, it is better to rely on the definition of games, and to rely on simple concepts
only, simulating the playing of moves.
At each node and at each depth of the Abstract Proof Search, the game definition
functions are called, they are equivalent to the development of small search trees. So
Abstract Proof Search is a search algorithm that can be considered as developing
small speciali zed search trees at each node of its search tree. At OR nodes, the pro-
gram first checks if the position is gi1, if it is not, it checks if it is gi2 (equivalent to
a depth 3 search tree), and if it is not, it checks if it is gi3 (equivalent to a depth 5
search tree). As soon as one of the gi games is checked, the program stops searching
and sends back Won. Otherwise it tries the OR node moves associated to the posi-
tion. At AND nodes, the same thing is done for ip1, ip2 and ip3 games, if none of
them is verified, the programs sends back Lost, otherwise it tries the moves associ-
ated to the verified ip1, ip2 or ip3 game. Note that the game definition functions are
equivalent to the programs generated by the Introspect system to safely select moves
in games search trees [1, 2].

For example the pseudo-code that finds whether the string can be captured in 3
plies at each OR node is:

Capturegi2 () {
 res = 0;
 if (number of liberties == 2)
 for each liberty l
 if (res == 0)
 if (LegalMove (l, Opposite(StringColor))) {
 MakeMove (l, Opposite(StringColor));
 if (Captureg1())
 res = 1;
 UndoMove();
 }
 return res;
}

It relies on the Captureg1 function as shown by the arrow between gi1 and gi2 in the
figure 2. The functions begins with verifying that the string to capture has two liber-
ties. Then for each of the two liberties, and if the results has not been proved yet
(res==0), it tries to fill t he liberty, and verifies that the game is g1 after the liberty is
fill ed, using the Captureg1 game definition function.

The function defining the ip2 game and its associated moves is equivalent to find
the forced moves that prevent the string to be captured in 3 plies. It is checked at
every AND nodes of the Abstract Proof Search tree provided the ip1 function has
not been verified before:

Captureip2 (S) {
 res = 0;
 if (Capturegi2()) {
 res = 1;
 CompleteSetOfMovesToPreventgi2 (S1);

10 Tristan Cazenave

 for each move m of S1
 if (LegalMove (m, StringColor)) {
 MakeMove (m, StringColor);
 if (!Capturegi1())
 if (!Capturegi2())
 add move m to S;
 UndoMove();
 }
 }
 return res;
}

Again it is defined using simple concepts and the functions corresponding to other
games. Here again, as shown in the figure 2, the ip2 game definition function relies
on the functions defining the gi1 and gi2 games. The function adds the forced moves
to prevent capture in 3 plies (the ip2 moves). The function begins with verifying that
the string can be captured in two moves if white plays first, by calli ng the Cap-
turegi2 game definition function. If it is the case, the function finds the complete set
of black moves that may change the issue of a gi2 game by calli ng the function
CompleteSetOfMovesToPreventgi2. Then, for each move of this set, it plays it and
verifies that the game is not gi1 and not gi2 after the move. If it is the case, then the
move has been successful in preventing the gi2 game, and is therefore an ip2 black
move, so it adds the move to the set of forced ip2 moves.

In order to give an example for each kind of game, here is the pseudo-code that
detects situations won 4 plies ahead:

Captureg2 () {
 res = 0;
 if (Captureip1(S)) {
 res = 1;
 for each move m of S
 if (LegalMove (m, StringColor)) {
 MakeMove (m, StringColor);
 if (!Capturegi1())
 if (!Capturegi2())
 res = 0;
 UndoMove();
 }
 }
 else if (Captureip2(S))
 res = S is empty;
 return res;
}

The Captureg2 game definition is a littl e more complex than the previous ones be-
cause there are two possibiliti es:

- Either the black string can be captured in one move by white, so it has only
one liberty, and the Captureip1 function fill s the set S with it. And after
playing on its liberty the string can still be captured in two white moves (the
Capturegi2 function matches).

Abstract Proof Search 11

- Or the function Captureip2 is verified, but all the moves that could prevent
the game to be gi2 do not work, so the Captureip2 function sends back an
empty set in S for the preventing moves. In that case, the game is won for
white because none of the black moves to prevent gi2 works.

Again, as shown in the figure 2, the g2 game is defined using the ip1, ip2, gi1 and
gi2 games.

Figure 5. A part of an Abstract Proof Search tree

Figure 5 gives a part of an Abstract Proof Search tree, some moves at OR nodes
(white moves) have been omitted. Each move is labeled with its color and for forced
moves (black moves) with the name of the game that found it.

ip2 ip2 ip2

ip2 ip2 ip2

**

xx**

xx** xx**
xx**

xx**

xx**

xx**

xx**

xx**xx**

xx** xx**

12 Tristan Cazenave

A widely accepted knowledge among Go programmers is that the number of lib-
erties is a good heuristic for the capture game. In this paper we show that the cap-
ture game is more subtle and that using too simple heuristic can be harmful. We
propose a finer classification of situations worthwhile searching, by considering
forced moves only when a position can be proved to be winning a given number of
plies in advance (gi games that enable to define ip ones).

Forgetting a move at an OR node can lead a program to miss a winning move,
however it does not invalidate the result of the search: the result will be Unknown
(0) instead of Won (+INFINITY). In the capture game OR node moves are moves
that try to capture the string. On the contrary, forgetting an AND node move can
make the result of a search wrong by missing a refutation. Our approach to games
enable to be sure of not forgetting any move. Moreover it also enables to select only
a subset out of all the possibly refuting moves. Selecting the minimal number of
moves is as important as selecting all the necessary moves. Because, if a move does
not interfere with the result, but the associated search returns Unknown or Lost, it is
considered as a refutation and the program gives a false result.

Finding the complete set of forced moves, enables to prove theorems about
games by not forgetting to consider some moves, and also by not considering moves
that are proved not to have influence on the result of the game.

6 Experimental results

This section gives the results and the analysis of some experiments on a standard
test set. We begin with describing how we have managed to compare basic alpha-
beta search and Abstract Proof Search. At the end of the section some of the results
are detailed and discussed. We give experimental results on a standard test set for
capturing strings in Go: we call them ggv1 [4], ggv2 [5] and ggv3 [6]. We have
selected all the problems involving a capture of a string, including semeai3 and some
connection problems. There are 114 capture problems in ggv1, 144 in ggv2 and 72
in ggv3. Experiments were performed with a K6-2 450 MHz microprocessor.

In order to compare Abstract Proof Search with the basic alpha-beta search usu-
all y performed in Go programs, we choose to use as basic alpha-beta search the
same search algorithm with a different move generation function. The basic alpha-
beta search call s the function CompleteSetOfMovesToPreventgi3 to generate the set
of possible moves at AND nodes. It uses the same function for move selection as
Abstract Proof Search at OR nodes. This way, we are fair to basic alpha-beta search,
as it uses exactly the same move generation function as Abstract Proof Search, ex-
cept that Abstract Proof Search uses games definition functions so as to be more
selective and to ensure the validity of the results of the search. So our basic alpha-
beta search is already an improvement over the usual alpha-beta search as it never
overlooks a five plies deep refutation. The CompleteSetOfMovesToPreventgi3
function verifies that a string has strictly less than four liberties, and if it is the case,

3 Semeai: race to capture between two or more strings.

Abstract Proof Search 13

it returns the liberties of the string, the liberties of the string if black moves are
played on its liberties, the liberties of the adjacent strings that have strictly less than
four liberties after the black moves on a liberty of the string to capture is played, the
liberties of the string and the liberties of the adjacent strings that have strictly less
than three liberties if two black moves are played on the liberties of the string, and
finall y all the liberties of the adjacent strings that have strictly less liberties than the
number of liberties of the string to capture plus two.

In the tables below, the basic alpha-beta search that stops whenever the time al-
lotted to the search exceeds 1 second or the number of interior nodes exceeds 10,000
is called Preventip3-1s-10000N. Similarly, Preventip3-1s is the basic alpha-beta
search that stops when the time exceeds 1 second. The Abstract Proof Search, using
moves that prevent a goal up to 5 plies in advance is called ip3-1s-10000N. We do
not give the results for ip3-1s since they are the same as for ip3-1s-10000N. In the
number of nodes, we only count the interior nodes where some moves have been
played. We do not count the leaf nodes (nodes where a transposition has occurred
and has directly returned +INFINITY or –INFINITY are considered as leaf nodes).

Algorithm Total time Number of nodes % of problems
Preventip3-1s-10000N 19.79 109117 99.12%

Preventip3-1s 19.79 109117 99.12%

ip3-1s-10000N 11.82 10340 99.12%

Table 1. Results for ggv1

Algorithm Total time Number of nodes % of problems
Preventip3-1s-10000N 113.20 836387 78.47%

Preventip3-1s 118.60 870938 77.78%

ip3-1s-10000N 34.13 42382 88.19%

Table 2. Results for ggv2

Algorithm Total time Number of nodes % of problems
Preventip3-1s-10000N 65.61 449987 65.28%

Preventip3-1s 74.25 483390 65.28%

ip3-1s-10000N 21.13 27283 73.61%

Table 3. Results for ggv3

The problem number 172 in volume 1 is not solved with our algorithm but is
solved with the basic alpha-beta algorithm. Problem ggv1_172 can be considered as
a mix of capture and li fe and death. It involves a nakade4 shape that cannot be a part
of the capturing game three moves ahead. The basic problem solver continues to

4 Nakade: a shape of string that makes an unsettled li fe shape when captured.

14 Tristan Cazenave

play AND nodes moves even if the moves are not forced, provided the number of
liberties is small enough. For these kinds of problems only, the basic algorithm can
give better results. However, given the experimental results, the drawbacks of the
basic algorithm are more important than its gains. As we can see with the different
tables, the basic alpha-beta search method is not selective, and spends more time in
useless branches of the tree.

One of the proposed metrics for performance is the percentage of solved prob-
lems, this percentage corresponds to the number of problems with a correct game
value and a correct move, however on some problems, the basic alpha-beta algo-
rithm sometimes also gives moves that do not work. They are not counted as wrong
answers, so the metric favors the basic algorithm.

Surprisingly, there is one more solved problem in the ggv2-Preventip3-1s-
10000N test than in the ggv2-Preventip3-1s, this is due to the complexity of some
problems. When trying to find a move that saves the black stones, the algorithm
does not stop until the Alpha-Beta returns –INFINITY or +INFINITY or one of the
stopping criterion is met. So a move that returns 0, can be considered as a move that
saves the endangered stones if the search threshold corresponding to the number of
nodes is passed over. However, if more search is performed and the algorithm does
not send back correct results, as Preventip3 does, the saving move can then be asso-
ciated to –INFINITY, in other words as not saving the string. This is what happens
here for one problem in ggv2, where more search with a basic algorithm leads to
worse results.

Another problem related to the basic alpha-beta search is the treatment of sekis.
There are seki positions that are correctly assessed by Abstract Proof Search in a
natural way and incorrectly assessed by basic alpha-beta search. To prevent basic
search from faili ng in these situations, some special code has to be added or pass
moves may be considered. These possible solutions may be search time and/or pro-
gramming time consuming.

Algorithm Total time Number of nodes % of problems
Preventip3-10s-100000N 635.20 4607171 79.17%

ip3-10s-100000N 63.57 81302 90.28%

Table 4. Results for ggv2 with more time and nodes

Algorithm Total time Number of nodes % of problems
Preventip3-10s-100000N 726.40 4319840 70.83%

ip3-10s-100000N 23.97 33936 73.61%

Table 5. Results for ggv3 with more time and nodes

In order to check whether the algorithm scales well , we also did some experi-
ments with relaxed controls, which are unrealistic for today's technology, but that
show the evolution of the problem solving when more computation is available. The
results are summarized in tables 4 and 5. With stopping criteria of 10 seconds and

Abstract Proof Search 15

100,000 nodes, the interest of Abstract Proof Search increases. It solves much more
problems in the tenth of the time of basic alpha-beta search for ggv2, and for even
more complex problems such as in ggv3, it still solves more problem in 1/30th of the
time of basic alpha-beta search. We can note that giving more time and more nodes
to Abstract Proof Search for ggv3 does not change much the results, because for
complex problems, Abstract Proof Search stops searching early as it does not find
forced moves, whereas basic alpha-beta search, that relies on the number of liberties
of strings is inaccurate in establi shing the complexity of some problems and spends
much time searching complex and useless sub-trees.

The average speed of basic alpha-beta search is approximately 7,000 nodes per
second. It is much faster than Abstract Proof Search that only develops approxi-
mately 1,200 nodes per second. However, Abstract Proof Search finds the solutions
to the problem in much less nodes than basic alpha-beta search. The verification of
the game definitions functions at each nodes explains the relatively small speed of
Abstract Proof Search. Each game definition function is equivalent to a small tree
search. Transpositions Tables are not currently used in the game definition func-
tions, their proper use may well speed-up Abstract Proof Search.

A xx

Figure 6. A problem solved by Abstract Proof Search, not by basic alpha-beta search

 Figure 6 gives an example of a problem that is solved in 443 nodes and 0.33 sec-
onds with Abstract Proof Search and which is not solved in 8,844 nodes and 1.21
seconds with basic alpha-beta search. The search is stopped as soon as it exceeds
one second or 10,000 nodes. When more time and nodes are given to basic alpha-
beta search, it solves the problem in 46,227 nodes and 6.59 seconds.

Algorithm Book Total time nodes %
Preventip3-1s-10000N-NM ggv1 13.34 69582 98.25%

Preventip3-1s-10000N-NM ggv2 66.55 518398 77.08%

Preventip3-1s-10000N-NM ggv3 30.50 230724 65.28%

ip3-1s-10000N-NM ggv1 10.58 9401 99.12%

ip3-1s-10000N-NM ggv2 31.57 39220 88.89%

ip3-1s-10000N-NM ggv3 16.93 20902 73.61%

Table 6. Results with null move forward pruning

Null move forward pruning has been tried with a reduction factor of four. The re-
sults shows that it is beneficial to the search algorithm, despite that forward pruning
may alter the result of the search in some cases.

16 Tristan Cazenave

7 Conclusion

The theorem proving approach to the capture game in Go gives excellent results. It
solves more problems than the basic alpha-beta approach, the answers it finds are
always correct on the contrary of heuristics, it solve problems faster and with less
nodes, and it is more simple to program than other approaches. The only small
drawback is the requirement for an abstract analysis of the game. It may be over-
come by a dynamic selection of forced moves based on the intersections accessed
during smaller proofs. Note that the abstract analysis is not suff icient by itself, it has
to be used with game definition functions for selecting moves.

The principles underlying the method are not specific to the capture game. They
can also be used with different search algorithms. In the near future, we will t ry this
method in other sub-games of Go and in other games. The games and sub-games
that are concerned with this method are the games where a simple definition of the
goal to reach can be given. Such games are for example the connection sub-game of
Go, the virtual connections at Hex, or the five in a row game. Some sub-games of
other diff icult games such as mate search in Chess or Shogi may also benefit of our
method. Generali zing the method to make it work with integer numbers could bene-
fit to other search programs such as Chess programs. Improvements can be made by
using transposition tables in the game definition functions, and by being even more
accurate on the complete sets of moves to prevent gi games (for example taking into
account the number of shared liberties between strings). Other important improve-
ments to our current approach are the development of tools in order to facilit ate the
abstract analysis of games and the comparison between a dynamic selection of
forced moves by analyzing the set of intersections tested during a search, and a
selection based on abstract analysis. A combination of the two may well be the best
alternative.

8 References

1. Cazenave T.: Metaprogramming Forced Moves. Proceedings ECAI98 (ed. H. Prade), pp.
645-649. John Wiley & Sons Ltd., Chichester, England. ISBN 0-471-98431-0. 1998.

2. Cazenave T.: Generating Search Knowledge in a Class of Games. submitted.
http://www.ai.univ-paris8.fr/~cazenave/papers.html. 2000.

3. Frank I.: Search and Planning under Incomplete Information: a Study using Bridge Card
Play. PhD Thesis, Department of Artificial Intelli gence, University of Edinburgh. 1996.

4. Kano Y.: Graded Go Problems For Beginners. Volume One. The Nihon Ki-in. ISBN 4-
8182-0228-2 C2376. 1985.

5. Kano Y.: Graded Go Problems For Beginners. Volume Two. The Nihon Ki-in. ISBN 4-
906574-47-5. 1985.

6. Kano Y.: Graded Go Problems For Beginners. Volume Three. The Nihon Ki-in. ISBN 4-
8182-0230-4. 1987.

Abstract Proof Search 17

7. Marsland T. A., Björnsson Y.: From Minimax to Manhattan. Games in AI Research, pp. 5-
17. Edited by H.J. van den Herik and H. Iida, Universiteit Maastricht. ISBN 90-621-6416-
1. 2000.

8. Thomsen T.: Lambda-search in game trees – with appli cation to go. CG 2000. This vol-
ume.

9. Willmott S., Richardson J. D. C., Bundy A., Levine J. M.: Applying Adversarial Tech-
niques to Go. Journal of Theoretical Computer Science. 2000.

