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Abstract. In complex games with a large branching fador such as Go, pro-
grams usualy use highly seledive seach methods, heuristicaly expanding
just a few plausible moves in ead pcsition. As in ealy Chess programs,
these methods have shortcomings, they often negled goodmoves or overlook
a refutation. We propose asafe methodto seled the interesting moves using
game definition functions. This method res multiple alvantages over basic
apha-beta seach: it solves more problems, the answers it finds are dways
corred, it solves problems faster and with lessnodes, and it is more simple
to program than usua heuristic methods. The only small drawbadk is the re-
quirement for an abstrad analysis of the game. This could be avoided by
kegiing tradk of the intersedions tested duing the seach, maybe with a loss
of efficagy but with again in generality. We give examples and experimental
results for the cature game, an important sub-game of the game of Go. The
principles underlying the method are not spedfic to the cgture game. The
method can aso be used with dfferent seach algorithms. This algorithm is
important for every Go programmer, and is likely to interest other game pro-
grammers.
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1 Introduction

It is very important in complex games where seach trees have alarge branching
fador to safely seled the possble moves worth trying. Finding the moves worth
trying and the moves that can be diminated, drasticdly reduces the seach trees [1].
It is important to seled the moves sfely, which includes not forgetting a possble
refutation and nd considering as a refutation a uselessmove. Abstrad Proof Seach
uses game definition functions to safely seled complete and minimal sets of moves
worth trying. The cature game is used as an illustration d the dgorithm, experi-
mental results for this sib-game of Go show that Abstrad Proof Search is very effi-
cient: it is more acarrate, more safe and faster than basic dpha-beta search for this
kind d problems.
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The cature game is a fundamental sub-game of the game of Go. All the non
trivial computer Go programs use it. A Go proverb says "If you dort read ladders,
dorit play Go", its equivalent in computer Go is"if you dorit program ladders, dont
program Go" as Mark Boon panted it. The cgture game isimportant by itself, but
it is also an important sub-game of other useful sub-games gich as the mnredion,
eye and life sub-games.

Proving theorems on the cgture game is important because most or even all the
other sub-games of Go rely onit. False results of the cgture game can invalidate a
conredion a alife and deah analysis, and it often results in the program losing a
group @ being under severe dtadk. It isresporsible for many lost games.

In ou experiments we use avariant of Alpha Beta Null Window Seach. How-
ever, our method works with ather search algorithms, it has also been succesdully
tested with Proof Number search for example.

Abstrad Proof Search improves the speed and the acaracy of Go programs, it is
likely that it can also be used to improve seach in ather games. The difference
between ou algorithm and aher planning approaches to game playing wsing ab-
stradion [3, 9] is that we concentrate on the dasses of states that are worthwhile
seaching (ipl, ip2 and ip3 states at AND nocks) instead of identifying abstrad
operators. The word abstrad in ou algorithm means that the moves are seleded
using abstrad properties of the objeds of the games, such as the liberties of the
strings.

The secondsedion describes the cature game anditsrelationto ather sub-games
of Go. The third sedion urcovers our seach algorithm. The fourth sedion explains
what isthe astrad analysis of games that enables Abstrad Proof Search. In the fifth
sedion we invalidate the widely accepted knowledge anong Go programmers that
the number of liberties is a good leuristic for the cature game, we show that the
capture game is more subtle and that using too smple heuristics can be harmful. We
propcse amore acarate dassficaion d situations worthwhile searching as well as
a more seledive move generator. The sixth sedion cktail s experimental results and
compares Abstrad Proof Seach to usual alpha-beta search for the cature game on
standard test sets.

2 The capturegame

The cature game is the most fundamental sub-game of Go. It is usually associated
to degp and rerrow seach trees. It has grong relations with conredions, eyes, life
and cedh, safety of groups and many important Go concepts.

Figure 1 gves ame examples of the cature game. The first example iscdled a
geta, a white move & A captures the bladk stone marked with an x, it can be found
in 5 dies. The second example is an ill ustration d the cgture game & a sub-game
of the mnredion game, a white move & B captures the marked black stone and
conreds the two white strings, it requires 9 pies. The third example shows the
cgpture game & a sub-game of the life and deah game, white & C can make two
eyes by capturing the marked bladk stonein asimple but 15 dies depth ladder. Note
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that move B is harder to find than move C, the depth of a problem is not always a
goodmeasure of its complexity in Go.
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Figure 1. Examples of captures
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3 The search algorithm

We use Null Window Seach [7] with some modificaions tail ored to computer Go.
We do nd use forward pruning with ndl move seach becaise we ae looking for
exad results, however some of our experimental results siow that null move prun-
ing can speed-up the dgorithm with very little drawbadks or even improve it. We
use iterative degpening, transpasition tables, quiescence seach, null-window seach
when na at the root and the history heuristic. We stop search ealy when the goal is
readed. We seach all the moves at the roct, even if a previous move & the root has
solved the problem, in order to find all the moves that reat the goal. Because it is
useful for a Go program to knowv more than ore way to accomplish its goals. Espe-
cially when it is useful for the program to ready multi ple goals with ore move.

To make the explanations easier, from now on, the friend color is bladk and the
enemy color iswhite. The string that is under attad is bladk.

In the cature game, the evaluation can take three values : -INFINITY if the
string has more than 5liberties and it is white to pay or the string is cgptured and it
isblac to pay; +INFINITY if the string has more than 5 liberties and it is blad to
play or the string is captured and it is white to play; O when the state of the string is
unknawn. At the beginning d ead nodk, the evaluation function is cdled, and the
valueisreturned if it is different from O.

We dso use incrementality so as nat to recdculate dl the astrad properties of
the strings after ead move. We keep tradk of the liberties of the strings, and d the
adjacent strings of ead string. Each intersedion is associated to a bit in a bit array
S0 as to optimize deding d liberties, and the same is dore for adjacent strings
numbers.

Transpasition Tables are used to deted identicd positions and return the asci-
ated value if the search depth of the stored pasition is greder than the depth of the
noce or if the value is +INFINITY or —INFINITY. Transpositions are dso used to
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recdl the best move from previous sach in the paosition and try it first when
seaching ceeper so as to maximize ait-off. The size of the transpasition table is st
to 16384 alarger table could easily contain in memory, but the time to initi ali ze the
table before eat search beaomes too important for large tables. Given the smplic-
ity of some problems and the number of different problems that have to be solved a
small table is enoughas the threshold for the number of nodesis st to 10 000 An-
other interesting passhility would be to set a larger size for the table, and to switch
it off for the first 100 noas, keguing the initialization for harder problems that po-
tentially require many nodes.

The History Heuristic is used to arder the moves that are not given by the trans-
pasition table. When all the moves at a node have been tried, the move that returned
the best value, or the one that caused a ait-off, is credited with 2", At ead nock,
the moves are sorted acarding to their credit, and tried in this order. For the cature
game, it may be abetter ideato order moves also taking into aceurt simple heuris-
tics that works well for this game: trying the liberties of the string first (ordered by
number of neighba second ader liberties), then the liberties of the liberties (or-
dered by the number of neighba liberties), and then ather moves orted by the dis-
tanceto the string. The History Heurigtic is a general domain independent heuristic,
but it can be improved by wing danain-dependent knowledge such as trying the
chedk moves first (playing the liberties first in the Capture game is equivalent to
playing the check movesfirst in Chess.

A Quiescence Seach is performed at led nodes. The quiescence seach alterna-
tively cdlstwo function QSCapture() that plays on the liberties of the string to cgp-
tureif it has 2 liberties, and QSSave() that plays the liberty of the string to capture
and the liberties of the adjacent strings in atari?, if the string to cgpture is in atari.
This ensures that the Quiescence search sends badk corred results on the cature
status of the string and quickly reads smple ladders.

Iterative deepening daes not stop after the first winning move, it continues two
more plies to find some other working moves. There ae multi ple stopping criteria to
iterative deepening: the time dlotted to the search, the number of visited interior
nodes, the depth of the search, and the cmparison ketween the depth of the first
solution foundand the aurrent depth.

In order to find the games gatus and the moves associated to gaalsin the test po-
sitions, one or two seaches may be performed. The first seach is made with the
player trying to cgpture playing first. If the goal is to prove that the string can be
captured, no more seach is performed. Otherwise ancther search is made with the
player trying to save the string daying first, it is useful to knav when the string is
cgptured, and when it can be saved and which moves save it.

1 atari means only ore li berty left
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4 Abstract analysis of games

The possble moves that can modify the outcome of the search can be eaily found
when the goal is aimost reated. However, when the goal is not one or two moves
away, it becomes lessclea. This dion deds with the seledion d a complete set
of worthwhil e possble moves, when the goal canna be diredly readed.

We try to find the complete set of abstrad moves that can passbly change the
outcome of a game agiven number of moves in advance. For example, given that a
string can be catured in 5 dies, we want to find all the @strad moves than can
possbly prevent it to be cetured in 5 dies. An abstrad move is a move that is de-
fined using abstrad properties either of the strings or of the board. An example of an
abstrad move is 'aliberty of the string to capture'.

The set of possble moves that can modify the outcome of the search could be
found dyrmamicdly by smply recdling the intersedions tested duing the seach.
The only moves that can modify the isaue of the search are the moves that modify
ore of the tested intersedions. Seleding forced moves in this way may be more
general than an abstrad analysis. It is dore in [8], and it is smilar to keging an
explanation d the seach to find the forced moves as in ealy leaning versions of
Introsped [1]. Abstrad analysisis more related to pre-computation d some parts of
the seach treein order to be more dficient, such asin the partial evaluation version
of Introsped [2]. Some more tests need to be performed to compare the two ap-
proaches and dedde which ore isthe most efficient.

In the following we will use names for the different games dates. The names of
the games are usually followed by a number that indicate the minimal number of
white moves in order to read the goal. A game that can be won if white moves is
cdled 'gi', a game where blad has to play otherwise white wins the game by pay-
inginitiscdled'ip, it isthe dmost the same & 'gi' except that it is asociated to
black moves. A game that is won for white whatever blad plays is cdled 'g’. A
game is always asciated to a player, the g and gi games are asciated to the
player that can read the goal, the ip games are asciated to the player that tries to
prevent to read the goal. Here the goal isto capture strings, it can be eaily defined
as: removing the last liberty of the string to cgpture. A forced move is a move &-
ciated to an ip game. For example, when the program cheds whether a game isip2,
it begins with verifying that white can cgpture in two moves if it plays first (a gi2
game). The forced ip2 moves are the bladk moves that prevent white from capturing
the string in two moves once one of the bladk ip2 moves has been payed (we can
say that the gi2 game has been invalidated by the blad move).

It is quite simple to find forced moves, one move from the goal: when the string
has only ore liberty, the only moves to save the string are the moves that diredly
increase the number of liberties. There ae only two ways to increase the number of
liberties of a string: play one of its liberties, or remove an adjacent string in atari.
These moves are ssociated to theipl game.
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Figure 2. The dependencies between games

Figure 2 gves the dependencies between games. A game ca be defined using the
games for the lower number of plies, for example, the g1 game for white is defined
as: the game isipl for blad, and all the forced Hadk moves lead to a gil game for
white dter the bladk move. So the g1 game is defined using the definitions of the
gil and d theipl games, asit is sown in figure 2 where the g1 game depends on
the gil and ip1 games. Ancther example is the gi3 game for white: a white move
leads to a g2 game for white. So the gi3 game depends on the g2 game only. Some
more detailed game definition functions are given in the next sedion onthe selec-
tion d moves. In order to make things clea some examples of games are given in
the figure 3.
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gilfor White glfor White gi2for White g2for White  gi3 for White
iplfor Black ip2 for Black ip3 for Black

Figure 3. Examples of games

The only abstrad moves that can change an ipl game ae the liberty of the string
and the li berties of the aljacent stringsin atari. A g1 game for white is defined as an
ipl game for black that is gill gil for white dter ead of the forced Hadk move is
played. The set of intersedions that are resporsible for the state of agl game aethe
intersedions invalved in the correspondngipl game, and the intersedions involved
in the gil games following ead forced bladk move. But as we know the dstrad set
of intersedions for the ip1 and the gil games, we can deduce that the intersedions
resporsible for a g1 game ae the liberty of the string, the liberties of the ajacent
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stringsin atari, the liberty after abladk move is played onthe liberty of the string, or
onthe liberties of the ajacent stringsin atari.

Another example of how the astrad sets of moves can be cdculated is the tran-
sitionfrom agi set of movesto an ip set of move: the only move that can modify an
empty intersedionisto play onthis intersedion, therefore if some empty intersec-
tions are invaved in the definition d a gi game, the set of moves that can prevent it
(the correspondng pasble ip moves) contains all these empty intersedions.

More detail ed explanations of how this knowledge can be aitomaticdly gener-
ated can be foundin [2], but more formal and easy to use todls for analyzing games
need to be investigated.

A more pradicd example of such a set of abstrad moves is the function that
finds the complete set of abstrad moves for the ip2 game. The function begins with
adding the liberties of the string to the set of moves to prevent gi2, then for eath
liberties, it plays a bladk move on it, and adds the liberties of the string after the
move. It also adds the liberties of the white strings adjacent to the string to cgpture
that have strictly lessthan threeliberties after the bladk move. Then it adds the lib-
erties of all the aljacent string that have strictly lessthan four liberties (because a
gi2 string has two liberties and the only adjacent strings that can be catured to save
it have strictly lessthan four liberties: any four liberties adjacent string canna be
captured before the two liberties gi2 string). The code for CompleteSetOfMovesTo-
Preventgi2 is quite simple, requiring orly 16 lines of C. Smilarly the code for
CompleteSetOfMovesToPreventgi3 is 23 lines of C.

Here is the CompleteSetOfMovesT oPreventgi2 function in pseudo-code that finds
the complete set of abstrad moves for the ip2 game:

Conpl et eSet OF MovesToPrevent gi 2(S) {
for each liberty I
add | to S// add the liberty to the set of noves
if (Legal Move (I, StringColor)) {
MakeMove (I, StringColor);
/1 add the liberties of liberties
add the liberties after the nove to S
/1 liberties of adjacent strings after the nove
for each adjacent string adj
i f (nunber of liberties of adj < 3)
add the liberties of adj to S
UndoMove() ;

}

/1 liberties of adjacent strings < 4 liberties
for each adjacent string adj
if (nunber of liberties of adj < 4)
add the liberties of adj to S

}

A property of the game of Go is that the minimum number of moves to take a
string is its number of liberties. As a cnsequence, it is often uselessto try to in-
crease the number of liberties of a string by cgpturing an adjacent string that has



8 Tristan Cazenave

more liberties or to play the externa liberties of an adjacent string that has many
liberties trying to make aseki? with it. There ae exceptions to this rule when the
adjacent string and the string to capture share some liberties or when the string to
save has proteded liberties and a sufficient number of liberties. Only in this case, it
can be useful to fill the externa liberties of the aljacent string in order to oltain a
seki or to capture it so asto save the string undr attadk.

B <

A
A
1

Figure 4. Playingliberties of adjacent strings with more liberties

The figure 4 gvesill ustrations of these two cases. In the left position, playing at
A, one of the threeliberties of a string adjacent to the string to save that has two
liberties, enables to save it by capturing the ajacent stringin 5 dies. The reasonis
that the string to save has two proteded liberties after the move. In the right posi-
tion, playing at B saves the marked string by making a seki between the bladk and
the white strings. In the cases of ip2 and ip3 games, the string to cgpture has only
two o threeliberties and can be catured in 3 a 5 gies. These limitations ensure
that looking at the aljacent strings that have lessthan ore or two liberties more than
the string to capture, is enough Strings that become aljacent after a move can also
be taken into acoun as fiown in the CompletSetOfMovesToPreventgi2 function,
where the astrad properties of the string are taken into acourt after some black
moves are tried. Improvements could be made by also courting shared liberties
between the string and its adjacent strings © as to be more seledive on the ajacent
strings to consider.

5 Sdection of moves

The functions that safely seled moves use pradicdly very littl e knowledge, they are
quite simple to program and are based onthe astrad analysis of the game and the
definition d games values. This way of coding the functions is more simple than
explicitly programming al the interesting case. Experiments with coding all the
cases related to the Preventip3 knovledge show that it needs 22034 lines of C for
the Preventip3 function itself and some more lines to write the functions associated
to the definitions of high level and abstrad concepts which are cdled by the main
function[1, 2.

2 Seki: Two strings that are mutually alive. One string canna capture the other by playing a
common liberty becaise it will be catured itself first. However as the passmove is lega
in Go, the two strings of a seki are safe provided al the aljacent strings are dso safe.
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Instead of explicitly coding al the caes, either in patterns or in complex pro-

grams, it is better to rely onthe definition d games, and to rely on simple mncepts
only, smulating the playing d moves.
At eadh noce and at eath depth of the Abstrad Proof Search, the game definition
functions are cdl ed, they are equivalent to the development of small search trees. So
Abstrad Proof Seach is a seach algorithm that can be mnsidered as developing
small spedalized search trees at eat nock of its sach tree At OR nodks, the pro-
gram first chedks if the positionis gil, if it isnat, it chedksif it isgi2 (equivalent to
a depth 3seach treg), and if it isnat, it chedks if it is gi3 (equivalent to a depth 5
seach treg. As onas one of the gi games is cheded, the program stops ®aching
and sends badk Won. Otherwise it tries the OR node moves associated to the posi-
tion. At AND nodks, the same thing is dore for ipl, ip2 and ip3 games, if nore of
them is verified, the programs snds bad Lost, otherwise it tries the moves asci-
ated to the verified ipl, ip2 a ip3 game. Note that the game definition functions are
equivalent to the programs generated by the Introsped system to safely seled moves
in games eachtrees[1, 2].

For example the pseudo-code that finds whether the string can be catured in 3
pliesat eat OR nockis:

Capturegi 2 () {
res = 0;
i f (nunber of liberties == 2)
for each liberty I
if (res ==
if (Legal Move (I, Opposite(StringColor))) {
MakeMove (I, Opposite(StringColor));
if (Capturegl())
res = 1;
UndoMove() ;

return res;

}

It relies on the Capturegl function as snown bythe arow between g1 and g2 in the
figure 2. The functions begins with verifying that the string to capture has two li ber-
ties. Then for ead o the two liberties, and if the results has not been proved yet
(res==0), it triesto fill the liberty, and verifies that the game is g1 after the liberty is
fill ed, using the Capturegl game definiti on function.

The function defining the ip2 game and its asociated moves is equivalent to find
the forced moves that prevent the string to be catured in 3 dies. It is chedked at
every AND nodes of the Abstrad Proof Seach tree provided the ipl function hes
not been verified before:

Capturei p2 (S) {
res = 0;
if (Capturegi2()) {
res = 1;
Conpl et eSet OF MovesToPreventgi 2 (S1);
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for each nove mof S1
if (Legal Move (m StringColor)) {
MakeMove (m StringCol or);
if (!Capturegi1())
if (!Capturegi?2())
add nove mto S
UndoMove() ;

return res;

}

Again it is defined using smple concepts and the functions correspondng to ather
games. Here again, as siown in the figure 2, the ip2 game definition function relies
on the functions defining the gi1 and g2 games. The function adds the forced moves
to prevent cgpturein 3 dies (the ip2 moves). The function begins with verifying that
the string can be catured in two moves if white plays first, by cdling the Cap-
turegi2 game definition function. If it is the case, the function finds the complete set
of bladk moves that may change the isaie of a gi2 game by cdling the function
CompleteSetOfMovesToPreventgi2. Then, for eat move of this &, it plays it and
verifiesthat the gameisnat gil and nd gi2 after the move. If it isthe cae, then the
move has been successul in preventing the gi2 game, and is therefore an ip2 Hadk
move, o it adds the move to the set of forced ip2 moves.

In order to gve an example for eat kind d game, here is the pseudo-code that
deteds stuationswon 4 gies ahead:

Captureg?2 () {
res = 0;
if (Captureipl(S)) {
res = 1;
for each nove mof S
if (Legal Move (m StringColor)) {
MakeMove (m StringCol or);
if (!Capturegi1())
if (!Capturegi?2())
res = 0;
UndoMove() ;

}

else if (Captureip2(S))
res = Sis enpty;

return res;

}

The Captureg2 game definition is a little more complex than the previous ones be-
cause there ae two passhiliti es:

- Either the bladk string can be catured in ore move by white, so it has only
ore liberty, and the Captureipl function fill s the set S with it. And after
playing onits liberty the string can still be catured in two white moves (the
Capturegi2 function matches).
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- Or the function Captureip?2 is verified, but al the moves that could prevent
the game to be gi2 do nd work, so the Captureip2 function sends badk an
empty set in S for the preventing moves. In that case, the game is won for
white because nore of the bladk movesto prevent gi2 works.

Again, as iown in the figure 2, the g2 game is defined usingtheipl, ip2, gil and

gi2 games.

yi;\.ifz\”-ipz‘

G
i

Figure5. A part of an Abstrad Proof Seach tree

Figure 5 gves a part of an Abstrad Proof Seach tree some moves at OR nodes
(white moves) have been amitted. Each move is labeled with its color and for forced
moves (bladk moves) with the name of the game that foundit.



12 Tristan Cazenave

A widely accepted knavledge anong Go programmers is that the number of lib-
ertiesis a good leuristic for the cature game. In this paper we show that the cg-
ture game is more subtle and that using too simple heuristic can be harmful. We
propcse afiner classficaion d situations worthwhile searching, by considering
forced moves only when a pasition can be proved to be winning a given number of
pliesin advance (gi gamesthat enable to define ip ores).

Forgetting a move & an OR noce can lead a program to missa winning move,
however it does not invalidate the result of the search: the result will be Unknown
(0) instead of Won (+INFINITY). In the cature game OR node moves are moves
that try to capture the string. On the contrary, forgetting an AND node move can
make the result of a search wrong by misdang a refutation. Our approach to games
enable to be sure of nat forgetting any move. Moreover it also enables to seled only
a subset out of all the possbly refuting moves. Seleding the minimal number of
moves is as important as sleding all the necessary moves. Because, if a move does
not interfere with the result, but the sssciated search returns Unknown o Logt, it is
considered as a refutation and the program gives a fal se result.

Finding the cmplete set of forced moves, enables to prove theorems abou
games by na forgetting to consider some moves, and also by nd considering moves
that are proved na to have influence on the result of the game.

6 Experimental results

This dion gves the results and the analysis of some experiments on a standard
test set. We begin with describing hav we have managed to compare basic dpha-
beta seach and Abstrad Proof Seach. At the end d the sedion some of the results
are detailed and dscused. We give experimental results on a standard test set for
cepturing strings in Go: we cdl them ggvl [4], ggv2 [5] and ggv3[6]. We have
seleded all the problemsinvaving a cature of a string, including semed? and some
conredion poblems. There ae 114 capture problemsin ggvl 144in ggv2and 72
in ggv3 Experiments were performed with a K6-2 450MHz microprocesor.

In order to compare Abstrad Proof Seach with the basic dpha-beta search usu-
aly performed in Go programs, we dhocse to use & basic dpha-beta search the
same seach algorithm with a different move generation function. The basic dpha-
beta search cdl's the function CompleteSetOfMovesT oPreventgi3 to generate the set
of passble moves at AND nodes. It uses the same function for move seledion as
Abstrad Proof Seach at OR nodes. Thisway, we ae fair to basic dpha-beta search,
as it uses exadly the same move generation function as Abstrad Proof Search, ex-
cept that Abstrad Proof Search uses games definition functions © as to be more
seledive and to ensure the validity of the results of the seach. So ou basic dpha
beta seach is already an improvement over the usual apha-beta search as it never
overlooks a five plies deeg refutation. The CompleteSetOfMovesToPreventgi3
function \erifies that a string has drictly lessthan four liberties, and if it is the case,

3 Semed: raceto capture between two or more strings.
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it returns the liberties of the string, the liberties of the string if bladk moves are
played onits liberties, the liberties of the adjacent strings that have strictly lessthan
four liberties after the bladk moves on a liberty of the string to capture is played, the
liberties of the string and the liberties of the adjacent strings that have strictly less
than threeliberties if two badk moves are played on the liberties of the string, and
finally all the liberties of the adjacent strings that have strictly lessliberties than the
number of liberties of the string to capture plus two.

In the tables below, the basic dpha-beta search that stops whenever the time d-
lotted to the search exceads 1 seaond a the number of interior nodes exceeds 10,000
is cdled Preventip3-1s-1000(N. Similarly, Preventip3-1s is the basic dpha-beta
seach that stops when the time exceals 1 seacond The Abstrad Proof Search, using
moves that prevent agoal upto 5 gdiesin advanceis cdled ip3-1s-1000IN. We do
naot give the results for ip3-1s snce they are the same & for ip3-1s-1000MN. In the
number of nodes, we only court the interior nodes where some moves have been
played. We do nd court the led nodes (nodes where atranspasition has occurred
and hes diredly returned +INFINITY or —INFINITY are considered as led nodks).

Algorithm Total time | Number of nodes | % of problems
Preventip3-1s-1000N 19.79 109117 99. 12%
Preventip3-1s 19.79 109117 99. 12%
ip3-1s-1000N 11.82 10340 99. 12%
Table 1. Resultsfor ggvl
Algorithm Total time | Number of nodes | % of problems
Preventip3-1s-1000N 113. 20 836387 78. 47%
Preventip3-1s 118. 60 870938 77.78%
ip3-1s-1000N 34.13 42382 88. 19%
Table 2. Results for ggv2
Algorithm Total time | Number of nodes | % of problems
Preventip3-1s-1000N 65. 61 449987 65. 28%
Preventip3-1s 74. 25 483390 65. 28%
ip3-1s-1000N 21.13 27283 73.61%

Table 3. Results for ggv3

The problem number 172 in vdume 1 is not solved with ou algorithm but is

solved with the basic dpha-beta dgorithm. Problem ggvl_172can be mnsidered as
amix of cgpture and life and deah. It involves a nakade* shape that canna be apart
of the caturing game three moves aheal. The basic problem solver continues to

4 Nakade: a shape of string that makes an ursettled life shape when captured.
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play AND nodes moves even if the moves are not forced, provided the number of
liberties is small enough For these kinds of problems only, the basic dgorithm can
give better results. However, given the experimental results, the drawbadks of the
basic dgorithm are more important than its gains. As we can see with the different
tables, the basic dpha-beta search methodis nat seledive, and spends more time in
uselessbranches of the tree

One of the propased metrics for performance is the percentage of solved prob-
lems, this percentage rresponds to the number of problems with a mrrea game
value and a crred move, however on some problems, the basic dpha-beta dgo-
rithm sometimes also gves moves that do nd work. They are not counted as wrong
answers, so the metric favors the basic dgorithm.

Surprisingly, there is one more solved problem in the ggv2-Preventip3-1s-
1000(N test than in the ggv2-Preventip3-1s, this is due to the complexity of some
problems. When trying to find a move that saves the bladk stones, the dgorithm
does nat stop urtil the Alpha-Beta returns —INFINITY or +INFINITY or one of the
stoppng criterionis met. So a move that returns O, can be mnsidered as a move that
saves the endangered stones if the seach threshald correspondng to the number of
nodes is passed over. However, if more seach is performed and the dgorithm does
not send badk corred results, as Preventip3 dces, the saving move ca then be &s0-
ciated to ANFINITY, in ather words as nat saving the string. This is what happens
here for one problem in ggv2 where more seach with a basic dgorithm leads to
worse results.

Another problem related to the basic dpha-beta search is the treament of sekis.
There ae seki positions that are corredly asesed by Abstrad Proof Seach in a
natural way and incorredly assessed by kasic dpha-beta seach. To prevent basic
seach from faili ng in these situations, some spedal code has to be added o pass
moves may be considered. These possble solutions may be search time and/or pro-
gramming time consuming.

Algorithm Total time | Number of nodes | % of problems
Preventip3-10s-100000N 635. 20 4607171 79. 17%
ip3-10s-10000N 63. 57 81302 90. 28%

Table 4. Results for ggv2with more time axd nods

Algorithm Total time | Number of nodes | % of problems
Preventip3-10s-100000N 726. 40 4319840 70. 83%
ip3-10s-10000N 23.97 33936 73.61%

Table 5. Results for ggv3with more time and nods

In order to chedk whether the dgorithm scdes well, we dso dd some experi-
ments with relaxed controls, which are unredistic for today's techndogy, but that
show the evolution d the problem solving when more computation is avail able. The
results are summarized in tables 4 and 5 With stopping criteria of 10 seaconds and
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100,000 noes, the interest of Abstrad Proof Search increases. It solves much more
problems in the tenth of the time of basic dpha-beta seach for ggv2, and for even
more complex problems gich asin ggv3 it still solves more problem in /30" of the
time of basic dpha-beta seach. We cax nae that giving more time and more nodes
to Abstrad Proof Seach for ggv3 d@s not change much the results, because for
complex problems, Abstrad Proof Seach stops ®aching ealy as it does naot find
forced moves, whereas basic dpha-beta seach, that relies on the number of liberties
of strings is inacarrate in establishing the complexity of some problems and spends
much time searching complex and wseless sib-trees.

The average speed of basic dpha-beta seach is approximately 7,000 noes per
seoond It is much faster than Abstrad Proof Seach that only develops approxi-
mately 1,200 noes per seoond However, Abstrad Proof Search finds the solutions
to the problem in much lessnodes than basic dpha-beta seach. The verification o
the game definitions functions at ead nodes explains the relatively small spead of
Abstrad Proof Seach. Each game definition function is equivalent to a small tree
seach. Transpositions Tables are not currently used in the game definition func-
tions, their proper use may well speed-up Abstrad Proof Search.

A e
\
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Figure 6. A problem solved by Abstrad Proof Search, not by basic dpha-beta seach

Figure 6 gves an example of a problem that is lved in 443 nods and 033 sec-
onds with Abstrad Proof Search and which is nat solved in 8,844 noas and 121
seonds with basic dpha-beta search. The seach is gopped as on as it exceals
one second a 10,000 noas. When more time and noges are given to basic dpha
beta search, it solvesthe problem in 46227 noas and 659 seconds.

Algorithm Book | Total time nodes %

Preventip3-1s-10000N-NM ggvl 13.34 69582 98. 25%
Preventip3-1s-1000IN-NM ggv2 66. 55 518398 77.08%
Preventip3-1s-1000IN-NM ggv3 30. 50 230724 65. 28%
ip3-1s-1000IN-NM ggvl 10. 58 9401 99. 12%
ip3-1s-1000IN-NM ggv2 31.57 39220 88. 89%
ip3-1s-1000IN-NM ggv3 16. 93 20902 73.61%

Table 6. Results with nul move forward pruning

Null move forward pruning hes been tried with a reduction fador of four. The re-
sults hows that it is beneficial to the search algorithm, despite that forward pruning
may alter the result of the search in some cases.
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7 Conclusion

The theorem proving approad to the cature game in Go gves excdlent results. It
solves more problems than the basic dpha-beta gproad, the answers it finds are
always corred on the cntrary of heuristics, it solve problems faster and with less
nodes, and it is more simple to program than ather approaches. The only small
drawbad is the requirement for an abstrad analysis of the game. It may be over-
come by a dynamic seledion d forced moves based on the intersedions accessed
during smaller proofs. Note that the abstrad analysisis not sufficient by itself, it has
to be used with game definition functions for seleding moves.

The principles underlying the method are not spedfic to the cature game. They
can also be used with dfferent search algorithms. In the nea future, we will try this
method in ather sub-games of Go and in ather games. The games and sub-games
that are concerned with this method are the games where asimple definition d the
goal to read can be given. Such games are for example the conredion sub-game of
Go, the virtual conredions at Hex, or the five in a row game. Some sub-games of
other difficult games auch as mate seach in Chessor Shog may also benefit of our
method Generalizing the method to make it work with integer numbers could bene-
fit to ather search programs such as Chessprograms. Improvements can be made by
using transpositi on tables in the game definition functions, and by being even more
acarate onthe complete sets of movesto prevent gi games (for example taking into
acournt the number of shared liberties between strings). Other important improve-
ments to ou current approach are the development of todsin arder to fadlit ate the
abstrad analysis of games and the comparison between a dynamic seledion o
forced moves by analyzing the set of intersedions tested duing a seach, and a
seledion based onabstrad analysis. A combination d the two may well be the best
aternative.
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