
Actes JIAF 2022

Generalisation of alpha-beta search for AND-OR graphs with
partially ordered values∗

Junkang Li1,2 Bruno Zanuttini2
Tristan Cazenave1,3 Véronique Ventos1

1NukkAI, Paris, France
2Normandie Univ.; UNICAEN, ENSICAEN, CNRS, GREYC, 14 000 Caen, France

3LAMSADE, Université Paris-Dauphine, PSL, CNRS, France
junkang.li@nukk.ai bruno.zanuttini@unicaen.fr

tristan.cazenave@lamsade.dauphine.fr vventos@nukk.ai

Résumé

Nous proposons un cadre pour l’évaluation de graphes
ET-OU (orientés, acycliques) portant des valeurs partielle-
ment ordonnées. De tels graphes apparaissent naturellement
dans la résolution de jeux à information incomplète (par
exemple, la plupart des jeux de cartes, comme le bridge)
ou multicritères. En particulier, notre cadre généralise
l’évaluation standard de graphes ET-OU et le calcul de straté-
gies optimales pour les jeux à information complète.

Dans ce cadre, nous proposons un nouvel algorithme,
qui utilise l’élagage alpha-beta et un cache des valeurs déjà
calculées. Cet article présente l’algorithme, démontre sa cor-
rection, et fournit des résultats expérimentaux sur des jeux
aléatoires et sur un jeu de cartes à information incomplète.

Abstract

We define a new setting related to the evaluation of
AND-OR directed acyclic graphs with partially ordered val-
ues. Such graphs arise naturally when solving games with in-
complete information (e.g. most card games such as Bridge)
or games with multiple criteria. In particular, this setting
generalises standard AND-OR graph evaluation and compu-
tation of optimal strategies in games with complete informa-
tion.

Under this setting, we propose a new algorithm which
uses both alpha-beta pruning and cached values. In this
paper, we present our algorithm, prove its correctness, and
give experimental results on random games and on a card
game with incomplete information.

∗This article is a long version with full proofs of the article published
in the proceedings of the 31st International Joint Conference on Artificial
Intelligence (ĲCAI 2022).

1 Introduction

Search in graphs containing AND- and OR-nodes is used
as a basis of many algorithmic solutions to Artificial In-
telligence problems. In such graphs, OR-nodes typically
model choice nodes where an agent can choose a succes-
sor, while AND-nodes model an opponent. For instance,
in robust planning with nondeterministic actions, an AND-
node models the outcome of an action: a strategy must
be valid whatever the outcome [11]. Similarly, when solv-
ing a zero-sum two-player (sequential) game for a player,
OR-nodes are those at which it is her turn to play, while
AND-nodes correspond to her opponent [22]: the value of
an OR-node is 1 if and only if at least one move leads to a
node with value 1; dually, at AND-nodes, the values of the
children are conjoined. More generally, in games that can
have more than two outcomes, such as chess or checkers
[20], AND-nodes (respectively OR-nodes) correspond to a
minimum (respectively maximum) operator on the values
of their children.

A fundamental question is that of evaluating rooted
AND-OR directed acyclic graphs (DAGs), which means
computing the value of their root given a value for each of
their leaves. For instance, in games with complete informa-
tion, selecting the best move for the current turn amounts
to evaluate each of the children of the root. This problem
has been thoroughly studied in the literature [16] under the
setting of totally ordered values (Boolean or real) and the
standard AND/OR or min/max operators. Following [8],
we investigate here a more general setting, where the values
are taken from a distributive lattice (𝑉,∧,∨) (i.e. a par-
tially ordered set with least upper bound and greatest lower

bound for any two elements), and operators for AND- and
OR nodes are taken to be the meet ∧ and join ∨, respec-
tively. This setting arises naturally in many applications, in
particular in games with incomplete information. Example
of such games are Skat [13, 19, 5], Bridge [14, 9, 2], Hearts
and Spades [21].

A well-known technique for evaluating AND-OR graphs
is alpha-beta pruning, which maintains a lower bound 𝛼 (re-
spectively upper bound 𝛽) on the value of each OR-nodes
(respectively AND-nodes), and uses them to prune some
of their successors. This technique is currently used in
strong chess programs [10] combined with sophisticated
evaluation functions such as NNUE neural networks that
were first used in Shogi [17]. However, the generalisation
of alpha-beta pruning to AND-OR DAGs with partially
ordered values is nontrivial since two values from a lat-
tice are not always comparable. We build on the seminal
work by [8] and generalise it by proving the correctness of
lattice-valued alpha-beta pruning with the consideration for
heuristic functions.

Orthogonally, we investigate caching techniques for
alpha-beta pruning in lattice-valued DAGs. The question is
again nontrivial because nodes are in general revisited with
different 𝛼 and 𝛽 than during previous visits. For this, we
propose a new algorithm called ‘alpha-beta duo’. We state
its correctness and experimentally evaluate its efficiency.

The paper is organised as follows. Preliminaries are
given in Sections 2 and 3. We extend the work by [8] in
Section 4, and present alpha-beta duo in Section 5. We then
report experimental results and conclude.

2 Preliminaries

The following definitions on posets and lattices are based
on [4].

Definition 1. Let𝑉 be a set and ⪯ be a binary relation on𝑉 .
Then (𝑉, ⪯) is called a partially ordered set (poset) if ⪯ is a
partial order (i.e. reflexive, transitive, and antisymmetric).

For a poset (𝑉, ⪯) and 𝑆 ⊆ 𝑉 , an element 𝑥 ∈ 𝑉 is called
an upper bound (UB) of 𝑆 if 𝑠 ⪯ 𝑥 holds for all 𝑠 ∈ 𝑆, and
𝑥 is called a least upper bound (LUB) if in addition 𝑥 ⪯ 𝑦

holds for any UB 𝑦 of 𝑆. If 𝑆 has an LUB, then it is unique.
The greatest lower bound (GLB) of 𝑆 is defined dually. For
𝑥, 𝑦 ∈ 𝑉 , we write 𝑥 ∨ 𝑦 (‘𝑥 join 𝑦’) and 𝑥 ∧ 𝑦 (‘𝑥 meet
𝑦’) respectively for the LUB and GLB of {𝑥, 𝑦}, when they
exist.

Definition 2. A poset (𝑉, ⪯) is called a distributive lattice
if

• for all 𝑥, 𝑦 ∈ 𝑉 , 𝑥 ∨ 𝑦 and 𝑥 ∧ 𝑦 exist,

• for all 𝑥, 𝑦, 𝑧 ∈ 𝑉 , 𝑥 ∨ (𝑦 ∧ 𝑧) = (𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑧),

• for all 𝑥, 𝑦, 𝑧 ∈ 𝑉 , 𝑥 ∧ (𝑦 ∨ 𝑧) = (𝑥 ∧ 𝑦) ∨ (𝑥 ∧ 𝑧).

It is moreover said to be bounded if there are elements
⊥,⊤ ∈ 𝑉 satisfying ⊥ ⪯ 𝑥 and 𝑥 ⪯ ⊤ for any 𝑥 ∈ 𝑉 .

In the remainder of this paper, we denote by (𝑉, ⪯,∧,∨)
an arbitrary bounded distributive lattice.

Example 1. Let 𝑆 be a set and let 2𝑆 denote its powerset.
Then (2𝑆 , ⊆,∩,∪) is a bounded distributive lattice with set
inclusion ⊆ as partial order, set intersection∩ and set union
∪ respectively as meet and join, ∅ as ⊥, and 𝑆 as ⊤.

We denote any directed acyclic graph (DAG) by 𝐺 =

(𝑁,𝐶), where 𝑁 is the set of nodes, and 𝐶 : 𝑁 → 2𝑁 is
a function that yields the set of children of each node. A
root 𝑟 is a node without predecessor (i.e. for any 𝑛 ∈ 𝑁 ,
𝑟 ∉ 𝐶 (𝑛)), and a leaf is a node without child. We denote
the set of leaves of a DAG 𝐺 by 𝐿𝐺 . We only consider
rooted DAGs, which contain a (necessarily unique) root 𝑟
such that there exists a directed path to every vertex from 𝑟 .

An AND-OR DAG is a rooted DAG (𝑁,𝐶, 𝑟) equipped
with a labelling function ℓ : 𝑁 → {A,O}. Nodes labelled
by A and O are respectively called AND-nodes and OR-
nodes. Note that we do not impose nodes to be alternating.

3 Problem setting

We are interested in the problem of evaluating the root value
of an AND-OR DAG, given values for all its leaves. For-
mally, given an AND-OR DAG𝐺 = (𝑁,𝐶, 𝑟, ℓ), a bounded
distributive lattice (𝑉, ⪯,∧,∨), and an evaluation function
𝑒 : 𝐿𝐺 → 𝑉 assigning a value in 𝑉 to each leaf of 𝐺, the
goal is to compute 𝑣(𝑟), where the value 𝑣(𝑛) of 𝑛 ∈ 𝑁 is
defined recursively by:

• for a leaf node 𝑛, 𝑣(𝑛) := 𝑒(𝑛);

• for an internal AND-node 𝑛, 𝑣(𝑛) :=
∧

𝑐∈𝐶 (𝑛) 𝑣(𝑐);

• for an internal OR-node 𝑛, 𝑣(𝑛) :=
∨

𝑐∈𝐶 (𝑛) 𝑣(𝑐).

Since 𝐺 is a DAG, the function 𝑣 : 𝑁 → 𝑉 is well-defined.

Example 2. Consider the DAGs in Figure 1, where cir-
cle and square nodes represent AND-nodes and OR-nodes,
respectively. On the left, the lattice is the set of Boolean
vectors of length 4 (denoted as words), with bitwise AND
and bitwise OR as meet and join, respectively. One can
easily verify that 𝑣(𝑟) = 1100. On the right, the lattice is
the set of Boolean vectors of length 3, and 𝑣(𝑅) = 001.

Example applications

Many important problems are in fact AND-OR DAG eval-
uation in disguise. The simplest one is Boolean circuit
evaluation. Here AND- and OR-nodes model AND and
OR gates, the lattice is the Boolean algebra (i.e. 𝑉 = {0, 1}
with 0 ⪯ 1 and logical conjunction and disjunction as meet

r

0100
n

1101 1000

R
A

111

B

001
C

110 001

D

010 001

Figure 1: Two AND-OR DAGs with partially ordered val-
ues.

and join), and the evaluation function encodes the inputs of
the circuit.

Solving a game with complete information typically in-
volves computing the minimax value of a game tree, which
can be regarded as evaluating an AND-OR DAG: AND-
and OR-nodes are respectively choice nodes of player MIN
and of player MAX, the lattice is (𝑉, ≤,min,max) with𝑉 a
totally ordered set such as Z or R, and the evaluation func-
tion gives the value of terminal nodes, or a heuristic value
if the search is cut at some depth. Then the root value is the
minimax value of the game.

In games with incomplete information, nontrivial lattices
come into play. For example, [9] shows that computing the
maxmin value of a player amounts to evaluate the game
DAG with the lattice (22𝑆 , ⪯,⊓,∪) 1, where 𝑆 is a finite set
and 𝑓 ⊓ 𝑔 = {𝛼 ∩ 𝛽 | 𝛼 ∈ 𝑓 , 𝛽 ∈ 𝑔} for any 𝑓 , 𝑔 ∈ 22𝑆

(i.e. 𝑓 and 𝑔 are sets of subsets of 𝑆). We will discuss more
about this in Section 6.

4 Alpha-beta pruning under partial order

Most of the literature on alpha-beta pruning concerns only
totally ordered values, such as real numbers. Since AND-
OR DAGs with partially ordered values are useful to model
richer problems, [3] proposed alpha-beta pruning in this
new setting for multi-criteria game. [8] gave the first thor-
ough study on this subject, and proved in particular that
deep pruning is sound for rational players if and only if
the set of values is a distributive lattice. [15] showed that
deep pruning is sound for tropical algebras if rationality is
relaxed.

The form of deep 𝛼 pruning considered by [8] is given in
Figure 2 (left). If 𝑣 ⪯ 𝛼, then the subtree 𝑇 can be deeply
pruned. To show why this definition of deep pruning does
not capture every cut an alpha-beta search should perform
when values are partially ordered, consider Figure 2 (right).
The lattice is again the set of Boolean vectors of length 3,
with bitwise AND and bitwise OR as meet and join, respec-
tively. When an alpha-beta search algorithm descends to

1We abuse the notation to denote by 22𝑆 the set of subsets of 𝑆 closed
under subsets, i.e. the set of down-sets of 2𝑆 .

OR

𝛼

AND
OR

. . .
AND

𝑣 𝑇

OR

100

AND
OR

010
AND

110 𝑇

Figure 2: Deep pruning vs expected pruning.

the bottommost AND-node, the value of 𝛼 would be 110,
which is the join of the value of an already explored child
of two ancestor OR-nodes. We would like the algorithm to
prune subtree 𝑇 since the value of its parent node cannot
be better than the current value of 𝛼 (due to the sibling of
𝑇). However, deep pruning, as it is defined in the literature
such as [8], does not apply since the value of 𝛼 does not
come from a child of one single ancestor node. Note that
this phenomenon is specific to lattices that are not totally
ordered, since otherwise the meet or join (i.e. min or max)
of two values is always one of them, hence deep pruning
captures any pruning in a standard alpha-beta search.

Another question not formally addressed in the literature
is the initialisation of node values. In standard alpha-beta
search, one typically initialises the value of an OR-node
(respectively AND-node) to be 𝛼 (respectively 𝛽) [12] or
−∞ (respectively +∞) [16] (note that −∞ and +∞ translate
to ⊥ and ⊤ in our context). However, one may have access
to a heuristic evaluation of nodes, typically by evaluating a
relaxed version of the problem which is easier to solve. For
instance, a player can do no better in a game with incom-
plete information than in the same game but with complete
information. The latter being much easier to solve, the value
obtained can be used as a heuristic in the original game with
incomplete information. Ideally, initialising values with an
accurate heuristic should accelerate the search by finding
cuts earlier.

In order to fill these two gaps in the literature, we first
formalise alpha-beta search under partial order with ini-
tialisation function in Algorithm 1. We denote by ℎ the
initialisation function. In general, its value depends on the
current𝛼 and 𝛽, so we define it to yield a value ℎ(𝑛, 𝛼, 𝛽) for
any node 𝑛 and bounds 𝛼 and 𝛽. Note that since non-trivial
initial value can be used for a node 𝑛 (Line 3), a cut may
happen even before the first child of 𝑛 is explored, hence we
update 𝛼 and 𝛽 (Lines 7 and 9) and determine whether there
is a cut (Line 10) at the beginning of the main loop. This
is otherwise the same algorithm as in the literature [16, for
instance].

It can be seen that Algorithm 1 will perform the wished
pruning in the example in Figure 2 (right). By mimicking
the proof by [12], we prove that such pruning is indeed
sound, thereby extending the result by [8] to its full form,

Algorithm 1: Alpha-beta search
1 def AlphaBeta(node 𝑛, 𝛼, 𝛽):
2 𝐼 = ℎ(𝑛, 𝛼, 𝛽)
3 𝑣 ← 𝐼

4 determine the successor nodes 𝑛1, . . . , 𝑛𝑏 of 𝑛
5 for 𝑖 in {1, . . . , 𝑏}:
6 if 𝑛 is an OR-node:
7 𝛼← 𝛼 ∨ 𝑣

8 else:
9 𝛽← 𝛽 ∧ 𝑣

10 if 𝛼 ⪰ 𝛽:
11 break
12 𝑣child ← AlphaBeta(𝑛𝑖 , 𝛼, 𝛽)
13 if 𝑛 is an OR-node:
14 𝑣 ← 𝑣 ∨ 𝑣child
15 else:
16 𝑣 ← 𝑣 ∧ 𝑣child
17 return 𝑣

provided that the initialisation function ℎ satisfies a certain
admissibility condition:

Definition 3. A heuristic function ℎ is said to be admissible
for 𝐺 and 𝑉 if for any node 𝑛 in 𝐺 and any 𝛼, 𝛽 ∈ 𝑉 ,

ℎ(𝑛, 𝛼, 𝛽)


= 𝑣(𝑛) if 𝑛 is a leaf node;
⪰ 𝑣(𝑛) ∧ 𝛽 if 𝑛 is an AND-node;
⪯ 𝑣(𝑛) ∨ 𝛼 if 𝑛 is an OR-node.

Note that this condition is satisfied for the initialisation
values usually used in the literature, such as 𝛼 or −∞ for
OR-nodes (and 𝛽 or +∞ for AND-nodes). It is also satisfied
when ℎ(𝑛, 𝛼, 𝛽) overestimates 𝑣(𝑛) for internal AND-nodes
and underestimates it for internal OR-nodes.

We denote the value returned by Algorithm 1 with input
𝑛, 𝛼, 𝛽 by 𝑓 (𝑛, 𝛼, 𝛽). The correctness of Algorithm 1 is a
consequence of the following central result.

Proposition 1. If ℎ is an admissible heuristic function for
𝐺 and 𝑉 , then for any node 𝑛 of 𝐺 and any 𝛼, 𝛽 ∈ 𝑉 , we
have

𝛽 ∧
(
𝛼 ∨ 𝑓 (𝑛, 𝛼, 𝛽)

)
= 𝛽 ∧

(
𝛼 ∨ 𝑣(𝑛)

)
. (1)

Proof. The proof is based on structural induction. We
will only focus on OR nodes, since the case for AND
nodes is completely symmetric. So let 𝑛 be an OR node
and let us consider the execution of the function call
AlphaBeta(𝑛, 𝛼, 𝛽).

If 𝑛 is a leaf, then 𝑓 (𝑛, 𝛼, 𝛽) = ℎ(𝑛, 𝛼, 𝛽) = 𝑣(𝑛) since ℎ

is admissible, hence equality (1) holds trivially.
Now consider an internal OR node 𝑛. Let 𝑏 ≥ 1 be the

number of children of 𝑛 and let 𝑛1, . . . , 𝑛𝑏 be the children of
𝑛, listed in the same order as in Algorithm 1. By definition

of the value function,

𝑣(𝑛) =
𝑏∨
𝑗=1

𝑣(𝑛 𝑗).

We assume by induction that all function calls on the chil-
dren of 𝑛 satisfy equality (1).

Let 𝑘 be the index of loop during which a break happens
(i.e. a cut is found). If no break happens, then 𝑘 is taken to
be 𝑏 + 1. For 0 ≤ 𝑖 < 𝑘 , let 𝑣𝑖 and 𝛼𝑖 denote the value of 𝑣
and 𝛼 after the 𝑖th loop2. Then we have

𝑣𝑖 = 𝐼 ∨
𝑖∨
𝑗=1

𝑓 (𝑛 𝑗 , 𝛼 𝑗 , 𝛽).

In particular, 𝑣0 = 𝐼. In addition, 𝛼0 = 𝛼, and 𝛼𝑖 = 𝛼∨ 𝑣𝑖−1
for 1 < 𝑖 < 𝑘 .

To prove equality (1) for node 𝑛, we need the following
lemma:

Lemma 1. For any 0 ≤ 𝑖 < 𝑘 , we have

𝛽 ∧ (𝛼 ∨ 𝑣𝑖) = 𝛽 ∧ ©­«𝛼 ∨ 𝐼 ∨
𝑖∨
𝑗=1

𝑣(𝑛 𝑗)
ª®¬ . (2)

Proof. We prove equality (2) by an induction on 𝑖. When
𝑖 = 0, both sides of equality (2) equals 𝛽 ∧ (𝛼 ∨ 𝐼), hence
the equality holds.

For 𝑖 ≥ 1, 𝑓 (𝑛𝑖 , 𝛼𝑖 , 𝛽) satisfies equality (1) by induction
from the main proposition, which means

𝛽 ∧
(
𝛼𝑖 ∨ 𝑓 (𝑛𝑖 , 𝛼𝑖 , 𝛽)

)
= 𝛽 ∧

(
𝛼𝑖 ∨ 𝑣(𝑛𝑖)

)
. (3)

Notice that 𝛼𝑖 = 𝛼 ∨ 𝑣𝑖−1, we have

𝛽 ∧ (𝛼 ∨ 𝑣𝑖) = 𝛽 ∧
(
𝛼 ∨ 𝑣𝑖−1 ∨ 𝑓 (𝑛𝑖 , 𝛼𝑖 , 𝛽)

)
= 𝛽 ∧

(
𝛼 ∨ 𝑣𝑖−1 ∨ 𝑣(𝑛𝑖)

)
= 𝛽 ∧ ©­«𝛼 ∨ 𝐼 ∨

𝑖−1∨
𝑗=1

𝑣(𝑛 𝑗) ∨ 𝑣(𝑛𝑖)ª®¬
= 𝛽 ∧ ©­«𝛼 ∨ 𝐼 ∨

𝑖∨
𝑗=1

𝑣(𝑛 𝑗)
ª®¬ ,

where the second line is due to equality (3), the third line
is due to distributivity and equality (2) applied to 𝑣𝑖−1.
Therefore, equality (2) holds for all 0 ≤ 𝑖 < 𝑘 . □

Now we can complete the proof of Proposition 1. For
a non-leaf OR-node 𝑛 with 𝑏 ≥ 1 children, two cases are
possible:

2By after the 0th loop, we mean before the beginning of the first loop.

• No break has taken place, which means 𝑘 = 𝑏 + 1
and the algorithm has looped through all children of
𝑛. Then we have 𝑓 (𝑛, 𝛼, 𝛽) = 𝑣𝑏. Plugging 𝑖 = 𝑏 into
equality (2), we get

𝛽 ∧ (𝛼 ∨ 𝑣𝑏) = 𝛽 ∧ ©­«𝛼 ∨ 𝐼 ∨
𝑏∨
𝑗=1

𝑣(𝑛 𝑗)ª®¬
= 𝛽 ∧

(
𝛼 ∨ 𝐼 ∨ 𝑣(𝑛)

)
= 𝛽 ∧

(
𝛼 ∨ 𝑣(𝑛)

)
where the last equality is due to 𝐼 = ℎ(𝑛, 𝛼, 𝛽) ⪯
𝑣(𝑛) ∨𝛼 for an OR node since ℎ is admissible. Hence,
equality (1) holds for node 𝑛.

• A break happens during the 𝑘th loop where 1 ≤ 𝑘 ≤
𝑏, which means 𝛼𝑘 = 𝛼 ∨ 𝑣𝑘−1 ⪰ 𝛽 (Line 10 in
Algorithm 1) and 𝑓 (𝑛, 𝛼, 𝛽) = 𝑣𝑘−1. On the right
hand side of equality (1), we have

𝛽 ∧
(
𝛼 ∨ 𝑣(𝑛)

)
= 𝛽 ∧

(
𝛼 ∨ 𝐼 ∨ 𝑣(𝑛)

)
= 𝛽 ∧ ©­«𝛼 ∨ 𝐼 ∨

𝑏∨
𝑗=1

𝑣(𝑛 𝑗)
ª®¬

⪰ 𝛽 ∧ ©­«𝛼 ∨ 𝐼 ∨
𝑘−1∨
𝑗=1

𝑣(𝑛 𝑗)
ª®¬

= 𝛽 ∧ (𝛼 ∨ 𝑣𝑘−1),

where the first line is due to 𝐼 ⪯ 𝛼 ∨ 𝑣(𝑛), the second
one is by definition of 𝑣(𝑛), and the last line is due to
equality (2) applied to 𝑖 = 𝑘 − 1. Hence,

𝛽 ⪰ 𝛽 ∧
(
𝛼 ∨ 𝑣(𝑛)

)
⪰ 𝛽 ∧ (𝛼 ∨ 𝑣𝑘−1) = 𝛽,

which means all inequalities are equalities. Hence,

𝛽∧
(
𝛼∨ 𝑓 (𝑛, 𝛼, 𝛽)

)
= 𝛽∧

(
𝛼∨𝑣𝑘−1

)
= 𝛽∧

(
𝛼∨𝑣(𝑛)

)
.

which means, equality (1) holds for node 𝑛.

□

Intuitively, Proposition 1 states that the value returned by
Algorithm 1 is the exact value of 𝑛 up to a factor of 𝛼 and
𝛽. So even for partially ordered values, alpha-beta search
can be interpreted as search with a pruning window.

Now it follows that Algorithm 1 is correct in the sense
that if we use a lower and an upper bound as the initial
search window at a node, we can recover its exact value
using the returned value of the algorithm.

Corollary 1. If ℎ is admissible for 𝐺 and 𝑉 , then for any
node 𝑛 of 𝐺 and any 𝑣, 𝑣 ∈ 𝑉 satisfying 𝑣 ⪯ 𝑣(𝑛) ⪯ 𝑣,
we have 𝑣(𝑛) = 𝑣 ∧

(
𝑣 ∨ 𝑓 (𝑛, 𝑣, 𝑣)

)
. In particular, 𝑣(𝑛) =

𝑓 (𝑛,⊥,⊤).

Proof. Plug 𝛼 = 𝑣 and 𝛽 = 𝑣 into the equality in Proposi-
tion 1, and use the fact that 𝑣 ∨ 𝑣(𝑛) = 𝑣(𝑛) = 𝑣 ∧ 𝑣(𝑛). □

Importantly, contrary to the case of totally ordered values,
it is not true in general that the stronger equality 𝑣(𝑛) =
𝑓 (𝑛, 𝑣, 𝑣) holds, as the example in Figure 1 (left) shows.
Let ℎ(𝑟, ·, ·) = ⊥ = 0000 and ℎ(𝑛, ·, ·) = ⊤ = 1111, so
that ℎ is admissible. Recall that 𝑣(𝑟) = 1100. For 𝑣 =

1000 and 𝑣 = 1110, indeed 𝑣 ⪯ 𝑣(𝑟) ⪯ 𝑣. However,
𝑓 (𝑟, 𝑣, 𝑣) = 1101 ≠ 𝑣(𝑟) since an 𝛼-cut happens in the call
on 𝑛 (Line 10) after examining its first child, since at this
point 𝛼 = 𝛽 = 1100. However, since 𝛼 = 𝑣 and 𝛽 = 𝑣 yield
no constraint on the fourth component of the values, we still
have 𝑣(𝑟) = 𝑣 ∧

(
𝑣 ∨ 𝑓 (𝑟, 𝑣, 𝑣)

)
, as stated in Corollary 1.

5 Alpha-beta duo algorithm

We now come to the main contribution of our work, namely
a caching scheme for reusing previously computed values
in an alpha-beta search for partially ordered values. The
trouble of standard alpha-beta search is that the returned
value is equal to the exact value only up to a factor of 𝛼
and 𝛽. It is therefore a nontrivial question how to reuse a
previously computed value, since subsequent revisits of a
node may come with different search windows.

In alpha-beta search with cache for totally ordered val-
ues [16, for instance], one can exploit the fact that with
usual value initialisation, the value 𝑓 (𝑛, 𝛼, 𝛽) satisfies
𝑓 (𝑛, 𝛼, 𝛽) < 𝛽⇒ 𝑣(𝑛) ≤ 𝑓 (𝑛, 𝛼, 𝛽) and 𝑓 (𝑛, 𝛼, 𝛽) > 𝛼⇒
𝑣(𝑛) ≥ 𝑓 (𝑛, 𝛼, 𝛽). In particular, if 𝛼 < 𝑓 (𝑛, 𝛼, 𝛽) < 𝛽,
then 𝑓 (𝑛, 𝛼, 𝛽) = 𝑣(𝑛). Hence by comparing 𝑓 (𝑛, 𝛼, 𝛽) to
𝛼 and 𝛽, one can determine whether it is exact, a lower, or
an upper bound, and store it in the cache with an appropriate
flag.

However, this does not hold in general for partially or-
dered values, as shown on Figure 1 (right). For 𝛼 = 010 and
𝛽 = 110, a 𝛽-cut happens after evaluating the first child of
𝐶, and an 𝛼-cut after evaluating the first child of 𝐷. Hence,
the algorithm returns 010 for 𝑅, which is neither a lower nor
an upper bound of the exact value 001. In fact, these two
values are incomparable in the lattice. If 𝑅 is an internal
node in a DAG, then caching this returned value 010 may
cause an evaluation error when the algorithm revisits 𝑅.

To tackle this difficulty, we propose a new algorithm
named ‘alpha-beta duo’, which computes a pair of values
for all nodes instead of one single value. The algorithm is
presented in Algorithm 2, where Cache refers to a transpo-
sition table the entries of which are pairs of values indexed
by nodes of 𝐺, and (ℎ, ℎ) refers to a pair of initialisation
functions for which we assume the following property.

Definition 4. A pair (ℎ, ℎ) of initialisation functions is
said to be admissible for 𝐺 and 𝑉 if for any node 𝑛 in 𝐺,
ℎ(𝑛) ⪯ 𝑣(𝑛) ⪯ ℎ(𝑛) holds, and in addition, if 𝑛 is a leaf
node, ℎ(𝑛) = ℎ(𝑛) = 𝑣(𝑛) holds.

In other words, admissible ℎ and ℎ respectively underes-
timates and overestimates the value of a node. Note that ℎ
and ℎ that assign respectively ⊥ and ⊤ to all internal nodes
form an admissible pair, which can always be used if one
does not have better heuristic functions.

Algorithm 2: Alpha-beta duo search
1 def AlphaBetaDuo(node 𝑛, 𝛼, 𝛽):
2 if there is an entry for 𝑛 in the cache:
3 (𝑐, 𝑐) ← Cache(𝑛)
4 else:
5 (𝑐, 𝑐) ← (ℎ(𝑛), ℎ(𝑛))
6 if 𝑐 = 𝑐:
7 return (𝑐, 𝑐)
8 𝛼← 𝛼 ∨ 𝑐

9 𝛽← 𝛽 ∧ 𝑐

10 if 𝑛 is an OR-node:
11 (𝑣, 𝑣) ← (⊥,⊥)
12 else:
13 (𝑣, 𝑣) ← (⊤,⊤)
14 determine the children 𝑛1, . . . , 𝑛𝑏 of 𝑛
15 for 𝑖 in {1, . . . , 𝑏}:
16 if 𝛼 ⪰ 𝛽:
17 if 𝑛 is an OR-node:
18 𝑣 = 𝑐

19 else:
20 𝑣 = 𝑐

21 break
22 𝑣′, 𝑣′ ← AlphaBetaDuo(𝑛𝑖 , 𝛼, 𝛽)
23 if 𝑛 is an OR-node:
24 𝑣 ← 𝑣 ∨ 𝑣′

25 𝑣 ← 𝑣 ∨ 𝑣′

26 𝛼← 𝛼 ∨ 𝑣′

27 else:
28 𝑣 ← 𝑣 ∧ 𝑣′

29 𝑣 ← 𝑣 ∧ 𝑣′

30 𝛽← 𝛽 ∧ 𝑣′

31 𝑣 ← 𝑣 ∨ 𝑐

32 𝑣 ← 𝑣 ∧ 𝑐

33 store (𝑣, 𝑣) in the cache under an entry for 𝑛
34 return (𝑣, 𝑣)

Alpha-beta duo search works in the following manner:

• First, variables 𝑐 and 𝑐 denote respectively the best
lower and upper bound of 𝑣(𝑛) available to the algo-
rithm before this call. If 𝑛 has already been visited,
then 𝑐 and 𝑐 are retrieved from the cache. Otherwise,
they are given by the initialisation functions ℎ and ℎ.
If 𝑐 = 𝑐, (𝑐, 𝑐) is returned immediately.

• Otherwise, by symmetry consider the case when 𝑛

is an OR-node. During the main loop, 𝑣 and 𝑣 are
respectively the cumulative lower and upper bound of

𝑣(𝑛) (notice that they are both initialised to ⊥ for an
OR-node). If a cut ever happens, it means not all
children of 𝑛 have been evaluated, hence 𝑣 is not a
valid upper bound of 𝑣(𝑛). Then we take 𝑣 to be 𝑐,
the best upper bound previously known. On the other
hand, 𝑣, which is the join of lower bounds of children
of 𝑛 that have been evaluated, is a valid lower bound
so we keep it.

• Finally, after the main loop, 𝑣 and 𝑣 are the lower and
upper bounds of 𝑣(𝑛) computed by the current call.
Hence they are combined with the previously known
bounds 𝑐 and 𝑐 to yield to best currently known bounds
on 𝑣(𝑛) and they are cached.

We now prove that alpha-beta duo is correct. For this,
we first need the following notion.

Definition 5. A cache Cache is said to be coherent for 𝐺

and 𝑉 if for any node 𝑛 in 𝐺, if there is an entry for 𝑛 in the
cache, then Cache(𝑛) = (𝑐, 𝑐) where 𝑐 ⪯ 𝑣(𝑛) ⪯ 𝑐, and in
addition, if 𝑛 is a leaf node, then 𝑐(𝑛) = 𝑐(𝑛) = 𝑣(𝑛).

Obviously, an empty cache is coherent for any 𝐺 and 𝑉 .
In the following, we denote the pair of values returned by

Algorithm 2 with input 𝑛, 𝛼, 𝛽 by (𝑓 (𝑛, 𝛼, 𝛽), 𝑓 (𝑛, 𝛼, 𝛽)).
We first show that if the cache is initially coherent, then it
remains coherent after the execution, and that any interval
stored in it cannot become looser.

Proposition 2. If (ℎ, ℎ) is admissible and Cache is initially
coherent for 𝐺 and 𝑉 , then for any node 𝑛 in 𝐺 and any
𝛼, 𝛽 ∈ 𝑉 , we have

𝑓 (𝑛, 𝛼, 𝛽) ⪯ 𝑣(𝑛) ⪯ 𝑓 (𝑛, 𝛼, 𝛽). (4)

Moreover, if there is an entry (𝑐, 𝑐) in the cache for 𝑛 before
the call, then 𝑐 ⪯ 𝑓 (𝑛, 𝛼, 𝛽) and 𝑓 (𝑛, 𝛼, 𝛽) ⪯ 𝑐.

Proof. 𝑐 ⪯ 𝑓 (𝑛, 𝛼, 𝛽) and 𝑓 (𝑛, 𝛼, 𝛽) ⪯ 𝑐 are direct conse-
quence of Line 31 and 32.

The proof of inequality (4) is based on structural induc-
tion. We will only focus on OR nodes since the case for
AND nodes is completely symmetric. So let 𝑛 be an OR
node and let us consider the execution of the function call
AlphaBetaDuo(𝑛, 𝛼, 𝛽).

If 𝑛 is a leaf node, then whether or not there is an entry for
𝑛 in the cache, on Line 6 we have 𝑐 = 𝑐 = 𝑣(𝑛) since (ℎ, ℎ)
is admissible and Cache is coherent. Hence the function
returns immediately, so inequality (4) holds and the cache
remains coherent.

Otherwise, 𝑛 is an internal OR-node. Again, whether
or not there is an entry for 𝑛 in the cache, on Line 6 and
forward we have 𝑐 ⪯ 𝑣(𝑛) ⪯ 𝑐, since (ℎ, ℎ) is admissible
and Cache is coherent.

Let 𝑏 ≥ 1 be the number of children of 𝑛. We assume by
induction that all function calls on the children of 𝑛 satisfy

inequality (4) and maintain the coherence of the cache.
Let 𝑘 be the index of loop during which a break happens
(if no break happens, then 𝑘 is taken to be 𝑏 + 1). For
1 ≤ 𝑖 ≤ 𝑘 − 1, let 𝑣𝑖 and 𝑣𝑖 denote the values returned by
the function call on the child 𝑛𝑖 during the 𝑖th loop. Then by
induction assumption, inequality (4) yields 𝑣𝑖 ⪯ 𝑣(𝑛𝑖) ⪯ 𝑣𝑖

for 1 ≤ 𝑖 ≤ 𝑘 − 1.
Hence after the loop (i.e. just before Line 31),

𝑣 =

𝑘−1∨
𝑖=1

𝑣𝑖 ⪯
𝑘−1∨
𝑖=1

𝑣(𝑛𝑖) ⪯
𝑏∨
𝑖=1

𝑣(𝑛𝑖) = 𝑣(𝑛).

As for 𝑣, we have two cases.

• No break happens, i.e. 𝑘 = 𝑏 + 1. Then

𝑣 =

𝑏∨
𝑖=1

𝑣𝑖 ⪰
𝑏∨
𝑖=1

𝑣(𝑛𝑖) = 𝑣(𝑛).

• Otherwise, a break happens, and 𝑣 = 𝑐 ⪰ 𝑣(𝑛).

So in both cases, 𝑣 ⪰ 𝑣(𝑛).
Therefore, after the final updates on Line 31 and 32, we

have 𝑣 ⪯ 𝑣(𝑛) ⪯ 𝑣. As a result, the returned values of the
function call AlphaBetaDuo(𝑛, 𝛼, 𝛽) satisfy inequality (4).
And the cache remains coherent after the function call. □

We can now prove results parallel to those in Section 4.

Proposition 3. If (ℎ, ℎ) is admissible and Cache is initially
coherent for 𝐺 and 𝑉 , then for any node 𝑛 in 𝐺 and any
𝛼, 𝛽 ∈ 𝑉 we have

𝛽 ∧
(
𝛼 ∨ 𝑓 (𝑛, 𝛼, 𝛽)

)
= 𝛽 ∧

(
𝛼 ∨ 𝑓 (𝑛, 𝛼, 𝛽)

)
. (5)

Proof. Again, we will only focus on OR nodes since the
case for AND nodes is symmetric.

If 𝑛 is a leaf node, then 𝑓 (𝑛, 𝛼, 𝛽) = 𝑓 (𝑛, 𝛼, 𝛽) = 𝑣(𝑛)
since (ℎ, ℎ) is admissible and Cache is coherent. Hence
equality (5) holds.

Otherwise, let 𝑏 ≥ 1 be the number of children of 𝑛. We
assume by induction that all function calls on the children
of 𝑛 satisfy inequality (5). Let 𝑘 be the index of loop during
which a break happens (if no break happens, then 𝑘 is taken
to be 𝑏 + 1). For 1 ≤ 𝑗 < 𝑘 , let 𝑣 𝑗 and 𝑣 𝑗 denote the values
returned by the function call on 𝑛 𝑗 during the 𝑗 th loop. For
0 ≤ 𝑖 < 𝑘 , let 𝑣

𝑖
, 𝑣𝑖 , and 𝛼𝑖 denote the value of 𝑣, 𝑣, and 𝛼

after the 𝑖th loop. Then for 0 ≤ 𝑖 < 𝑘 , we have 𝑣
𝑖
=

∨𝑖
𝑗=1 𝑣

𝑗 ,
𝑣𝑖 =

∨𝑖
𝑗=1 𝑣

𝑗 , and 𝛼𝑖 = 𝛼∨𝑐∨𝑣
𝑖
. In particular, 𝑣0 = 𝑣0 = ⊥

and 𝛼0 = 𝛼 ∨ 𝑐. For 1 ≤ 𝑗 < 𝑘 , since function call on the
child 𝑛 𝑗 has the form AlphaBetaDuo(𝑛 𝑗 , 𝛼 𝑗 , 𝛽 ∧ 𝑐), by
equality (5), we have

𝛽 ∧ 𝑐 ∧
(
𝛼 𝑗 ∨ 𝑣 𝑗

)
= 𝛽 ∧ 𝑐 ∧

(
𝛼 𝑗 ∨ 𝑣 𝑗

)
.

Hence by distributivity, we have

𝛽 ∧ 𝑐 ∧
𝑘−1∨
𝑗=1

(
𝛼 𝑗 ∨ 𝑣 𝑗

)
= 𝛽 ∧ 𝑐 ∧

𝑘−1∨
𝑗=1

(
𝛼 𝑗 ∨ 𝑣 𝑗

)
. (6)

We distinguish two cases.

• No break happens (i.e. 𝑘 = 𝑏 + 1). Then

𝑓 (𝑛, 𝛼, 𝛽) = 𝑐 ∨ 𝑣
𝑏
= 𝑐 ∨

𝑏∨
𝑗=1

𝑣 𝑗 ,

𝑓 (𝑛, 𝛼, 𝛽) = 𝑐 ∧ 𝑣𝑏 = 𝑐 ∧
𝑏∨
𝑗=1

𝑣 𝑗 .

First notice that the distributivity of the lattice implies
that for any 𝑥, 𝑦, 𝑧 ∈ 𝑉 ,

𝑥 ∨ (𝑦 ∧ 𝑧) = (𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑧) = 𝑥 ∨
(
𝑦 ∧ (𝑥 ∨ 𝑧)

)
,

(7)
𝑥 ∧ (𝑦 ∨ 𝑧) = (𝑥 ∧ 𝑦) ∨ (𝑥 ∧ 𝑧) = 𝑥 ∧

(
𝑦 ∨ (𝑥 ∧ 𝑧)

)
.

(8)

Applying equalities (7) and (8), one has

𝛽 ∧
(
𝛼 ∨ 𝑓 (𝑛, 𝛼, 𝛽)

)
= 𝛽 ∧ ©­«𝛼 ∨

(
𝑐 ∧

𝑏∨
𝑗=1

𝑣 𝑗

)ª®¬
= 𝛽 ∧ ©­«𝛼 ∨

(
𝑐 ∧

(
𝛼 ∨

𝑏∨
𝑗=1

𝑣 𝑗

))ª®¬
= 𝛽 ∧ ©­«𝛼 ∨

(
𝛽 ∧ 𝑐 ∧

(
𝛼 ∨

𝑏∨
𝑗=1

𝑣 𝑗

))ª®¬ .
We will first focus on the term 𝛽 ∧ 𝑐 ∧ (𝛼 ∨∨𝑏

𝑗=1 𝑣
𝑗).

Our goal is to massage it into a form to which the
induction assumption (6) can apply.
Recall that for 𝑗 ≤ 𝑏, 𝛼 𝑗 = 𝛼0 ∨ 𝑣

𝑗
= 𝛼0 ∨

∨ 𝑗

𝑙=1 𝑣
𝑙 .

Hence,

𝑏∨
𝑗=1
(𝛼 𝑗 ∨ 𝑣 𝑗) =

𝑏∨
𝑗=1

(
𝛼0 ∨

𝑗∨
𝑙=1

𝑣𝑙 ∨ 𝑣 𝑗

)
= 𝛼0 ∨

𝑏∨
𝑗=1

𝑗∨
𝑙=1

𝑣𝑙 ∨
𝑏∨
𝑗=1

𝑣 𝑗

= 𝛼0 ∨
𝑏∨
𝑗=1

𝑣 𝑗 ∨
𝑏∨
𝑗=1

𝑣 𝑗

= 𝛼0 ∨
𝑏∨
𝑗=1

𝑣 𝑗 ,

where in the last equality we use the fact that by Propo-
sition 2, we have 𝑣 𝑗 ⪯ 𝑣 𝑗 for any 𝑗 ≤ 𝑏. Similarly, we
have
𝑏∨
𝑗=1
(𝛼 𝑗 ∨ 𝑣 𝑗) =

𝑏∨
𝑗=1

(
𝛼0 ∨

𝑗∨
𝑙=1

𝑣𝑙 ∨ 𝑣 𝑗

)
= 𝛼0 ∨

𝑏∨
𝑗=1

𝑣 𝑗 .

Hence, by 𝛼0 = 𝛼∨𝑐 ⪰ 𝛼, the two previous equalities,
distributivity, and the induction assumption (6),

𝛽 ∧ 𝑐 ∧
(
𝛼 ∨

𝑏∨
𝑗=1

𝑣 𝑗

)
⪯ 𝛽 ∧ 𝑐 ∧

(
𝛼0 ∨

𝑏∨
𝑗=1

𝑣 𝑗

)
= 𝛽 ∧ 𝑐 ∧

𝑏∨
𝑗=1
(𝛼 𝑗 ∨ 𝑣 𝑗)

= 𝛽 ∧ 𝑐 ∧
𝑏∨
𝑗=1
(𝛼 𝑗 ∨ 𝑣 𝑗)

= 𝛽 ∧ 𝑐 ∧
(
𝛼0 ∨

𝑏∨
𝑗=1

𝑣 𝑗

)
⪯ 𝛽 ∧

(
𝛼0 ∨

𝑏∨
𝑗=1

𝑣 𝑗

)
.

Therefore, applying again equalities (7) and (8) yields

𝛽 ∧
(
𝛼 ∨ 𝑓 (𝑛, 𝛼, 𝛽)

)
= 𝛽 ∧ ©­«𝛼 ∨

(
𝛽 ∧ 𝑐 ∧

(
𝛼 ∨

𝑏∨
𝑗=1

𝑣 𝑗

))ª®¬
⪯ 𝛽 ∧ ©­«𝛼 ∨

(
𝛽 ∧

(
𝛼0 ∨

𝑏∨
𝑗=1

𝑣 𝑗

))ª®¬
= 𝛽 ∧ ©­«𝛼 ∨ 𝛼0 ∨

𝑏∨
𝑗=1

𝑣 𝑗ª®¬
= 𝛽 ∧ ©­«𝛼 ∨ 𝑐 ∨

𝑏∨
𝑗=1

𝑣 𝑗ª®¬
= 𝛽 ∧

(
𝛼 ∨ 𝑓 (𝑛, 𝛼, 𝛽)

)
.

• A break happens (i.e. 1 ≤ 𝑘 ≤ 𝑏). Then 𝑓 (𝑛, 𝛼, 𝛽) =
𝑐 and 𝑓 (𝑛, 𝛼, 𝛽) = 𝑐 ∨ 𝑣

𝑘−1. Since a break happens
during the 𝑘th loop, according to Line 16 in Algo-
rithm 2 we have 𝛽 ∧ 𝑐 ⪯ 𝛼𝑘−1 = 𝛼 ∨ 𝑐 ∨ 𝑣

𝑘−1. Hence
by distributivity,

𝛽 ∧
(
𝛼 ∨ 𝑓 (𝑛, 𝛼, 𝛽)

)
= 𝛽 ∧ (𝛼 ∨ 𝑐)
= 𝛽 ∧

(
𝛼 ∨ (𝛽 ∧ 𝑐)

)
⪯ 𝛽 ∧

(
𝛼 ∨ (𝛼 ∨ 𝑐 ∨ 𝑣

𝑘−1)
)

= 𝛽 ∧
(
𝛼 ∨ 𝑓 (𝑛, 𝛼, 𝛽)

)
.

Therefore, no matter a break happens or not, we have

𝛽 ∧
(
𝛼 ∨ 𝑓 (𝑛, 𝛼, 𝛽)

)
⪯ 𝛽 ∧

(
𝛼 ∨ 𝑓 (𝑛, 𝛼, 𝛽)

)
.

On the other hand, by Proposition 2, 𝑓 (𝑛, 𝛼, 𝛽) ⪰
𝑓 (𝑛, 𝛼, 𝛽), which means

𝛽 ∧
(
𝛼 ∨ 𝑓 (𝑛, 𝛼, 𝛽)

)
⪰ 𝛽 ∧

(
𝛼 ∨ 𝑓 (𝑛, 𝛼, 𝛽)

)
.

As a consequence, equality (5) holds. □

Corollary 2. If (ℎ, ℎ) is admissible and Cache is initially
coherent for 𝐺 and 𝑉 , then for any node 𝑛 in 𝐺 and any
𝑣, 𝑣 ∈ 𝑉 satisfying 𝑣 ⪯ 𝑣(𝑛) ⪯ 𝑣, we have 𝑣(𝑛) = 𝑣 ∧

(
𝑣 ∨

𝑓 (𝑛, 𝑣, 𝑣)
)
= 𝑣 ∧

(
𝑣 ∨ 𝑓 (𝑛, 𝑣, 𝑣)

)
. In particular, 𝑣(𝑛) =

𝑓 (𝑛,⊥,⊤) = 𝑓 (𝑛,⊥,⊤).

Proof. By Proposition 2, 𝑓 (𝑛, 𝑣, 𝑣) ⪯ 𝑣(𝑛) ⪯ 𝑓 (𝑛, 𝑣, 𝑣).
Using 𝑣 ∧

(
𝑣 ∨ 𝑣(𝑛)

)
= 𝑣(𝑛), we get

𝑣 ∧
(
𝑣 ∨ 𝑓 (𝑛, 𝑣, 𝑣)

)
⪯ 𝑣(𝑛) ⪯ 𝑣 ∧

(
𝑣 ∨ 𝑓 (𝑛, 𝑣, 𝑣)

)
.

These inequalities are in fact equalities since from Proposi-
tion 3 we have 𝑣∧

(
𝑣∨ 𝑓 (𝑛, 𝑣, 𝑣)

)
= 𝑣∧

(
𝑣∨ 𝑓 (𝑛, 𝑣, 𝑣)

)
. □

6 Experiments

To assess the efficiency of alpha-beta duo (hereafter ‘ABD’),
we ran experiments comparing it to three other algorithms:

• alpha-beta without cache (Algorithm 1, ‘AB’ for
short);

• an alpha-beta search which only caches the value com-
puted for a node if no cut is found during the search in
the subtree rooted at this node (hereafter ‘ABC’);

• a minimax search algorithm without alpha-beta prun-
ing, but with a cache (hereafter ‘MMC’).

The code of ABD was slightly optimized by refining the
values computed on Lines 31 and 32 with the corresponding
bounds of all fully explored children. It is easy to show that
this preserves the correctness of the algorithm.

For all experiments, we measured the number of nodes
of the DAG visited at least once, the total number of node
visits (equivalently, the total number of recursive calls),
and the time taken for solving the problem. Intuitively, we
expect ABD to be better than ABC, ABC to be better than
MMC (because MMC does not use alpha-beta pruning),
and MMC to be better than AB (because the latter does not
cache its results and hence, recomputes several times for
the same node).

We used two synthetic sets of benchmarks. The first
(hereafter ‘random’) consists of random DAGs of the same
kind as the one in Figure 1. Random DAGs with parameters
𝑑 (depth), 𝑏 (branching factor), and 𝑣 (number of variables)
are generated in the following manner:

• 𝑑 layers 0, 1, . . . , 𝑑 − 1 are built: layer 𝑖 consists
of 3min(𝑖, 3𝑑

2 −𝑖) nodes (which yields diamond-shapes
DAGs);

• from each node 𝑛, a set of 𝑏 nodes is randomly chosen
from nodes in the next layer to be 𝐶 (𝑛);

• each internal node is labelled AND or OR at random;

• the value of each terminal node is a uniformly drawn
subset of {1, . . . , 𝑣}, or equivalently a random Boolean
vector of length 𝑣.

We also consider strictly alternating DAGs, in which all
nodes in layer 𝑖 are OR-nodes (respectively AND-nodes)
if 𝑖 is even (respectively odd). In particular, the root is an
OR-node.

The second set of benchmarks consists of a simplified
version of the card game Bridge that we call ‘racing’. There
are two players, MIN and MAX. Each has a hand of ℎ

cards drawn uniformly from the deck {1, . . . , 𝑑} where 𝑑 ≥
2ℎ. Players only see their own hand. MIN begins the
game. During each trick, the player who begins plays a
card from her hand, the other sees it and plays a card in
turn. The player who played the highest card wins this trick
and starts the next one. No new card is ever drawn from
the deck. The game ends when the players have no more
cards or when one has won in total 𝑔 tricks. MAX wins if
she is the first one to reach 𝑔 tricks. For the benchmark,
each instance with parameter ℎ, 𝑑, and 𝑔 consists of a
randomly drawn hand with ℎ cards for MAX and a randomly
drawn card that is supposed to be played by MIN during
the first trick. Notice that when 𝑑 > 2ℎ, each player has
incomplete information. We use evaluation of AND-OR
DAGs to compute optimal strategies for MAX against the
best defence adversary model defined in [6].

In games with incomplete information where 𝑆 is the
set of all possible hidden configurations, [6, 7] define the
maxmin value of player MAX to be the set of all subsets
𝑆′ of 𝑆 such that there is a uniform strategy winning in
any configuration of 𝑆′. [9] shows that computing this
value amounts to evaluate the game DAG with the lattice
(22𝑆 , ⪯,⊓,∪). Intuitively, using ∪ at OR-nodes models the
fact that player MAX can choose any child as her strategy,
and ⊓ at AND-nodes models the fact that a strategy must be
robust to all adversarial strategies, hence a strategy wins in
𝑠 ∈ 𝑆 if and only if it wins in 𝑠 whatever action her opponent
chooses.

In the same setting of games with incomplete informa-
tion, one can also be interested in non-uniform strategies
which allow player MAX’s actions to depend on the hidden
information. This can be useful for computing heuristic
values of for the game with incomplete information. It can
be seen that the set of all configurations for which there
is a non-uniform winning strategy can be computed as the
value of the game DAG with the lattice (2𝑆 , ⊆,∩,∪).

Hence, for both benchmarks, we consider the two lattices
(22𝑆 ,⊓,∪) and (2𝑆 ,∩,∪). In ‘random’, 𝑆 = {1, . . . , 𝑣},
while in ‘racing’ 𝑆 is the set of all possible hands of player
MIN.

For space reasons, we only give the most representative
results, in terms of computation time. For each parame-
ter setting and each algorithm, we averaged over 10 runs.
Figure 3 shows two examples where, as can be expected,
it is more efficient to cache bounds, even more to perform
cuts, and still more to compute and store two bounds per
node. On the top plot, the gain of using ABD is expo-
nential: with the branching factor increasing, ABD gets a
better advantage of computing and caching two bounds. On
the bottom plot, ABC and AB (not represented) are expo-
nentially worse, and ABD is better than MMC when the
branching factor is high.

Figure 3: Experimental results on random (top) and racing
(bottom). Top: 𝑑 = 15, 𝑣 = 10 (varying 𝑏), alternating
DAGs. Bottom: 𝑑 = 20, 𝑔 = 5 (varying ℎ). The lattice is
2𝑆 in both cases.

Now Figure 4 shows two examples where it turns out that
it is not always better to use alpha-beta pruning with cache.

On the top plot, not caching results at all turns out to
be better: the overhead due to the additional operations
from the lattice 22𝑆 (which are necessary to maintain the
cache) seems to compensate the advantage of ABC or ABD
in terms of number of visited nodes and recursive calls
(the curves are reversed for this metrics, not shown here).

Figure 4: Experimental results on random (top) and racing
(bottom). Top: 𝑑 = 15, 𝑏 = 4 (varying 𝑣), alternating
DAGs, lattice 22𝑆 . Bottom: ℎ = 7, 𝑔 = 5 (varying 𝑑),
lattice 2𝑆 .

On the bottom plot, it turns out that sometimes alpha-beta
pruning even degrades performance. Again, this is due to
the overhead of manipulating values from a large lattice (for
a fixed hand size, the lattice grows exponentially with the
deck size).

To complete these results, let us mention that in most
experiments, the numbers of nodes explored and visited by
each method are ordered as expected, with ratios varying
from linear to exponential. In particular, for these metrics,
ABD is most of the time better, and often much better, than
the other three algorithms.

Summarising, ABD seems to provide a real gain in
(brute) performance for DAGs with high branching fac-
tors. Contrastingly, when ∧ and ∨ from the lattice are too
expensive to compute (as is the case in some large lattices),
it may sometimes be better not to use cache and alpha-
beta pruning together, due to the overhead to maintain the
coherence of the cache.

7 Conclusion

We investigated alpha-beta search for AND-OR DAGs with
values from a lattice, which has direct applications such
as solving games with incomplete information. We have
extended previous formal analyses, in particular to the use of

heuristic as initialisation functions. Then we have proposed
a new algorithm named ‘alpha-beta duo’, which caches both
a lower and an upper bound of the value of each visited node,
and we have formally proved its correctness. Experiments
show that it is more efficient than other algorithms in terms
of number of visited nodes and recursive calls. As for time
efficiency, alpha-beta duo turns out to be more efficient than
other algorithms for DAGs with large branching factors and
reasonably-sized lattices. As an interesting conclusion, our
experiments also put forth that in other cases, it may be
better not to use a cache with alpha-beta pruning.

Our future work includes algorithmic optimisations for
alpha-beta search with cache applied to games with incom-
plete information. We will also investigate the use of effi-
cient knowledge representations [1, 18] to accelerate lattice
operations in such context. Another perspective is to apply
our work to games with multiple criteria instead of scalar
outcomes.

References

[1] Meghyn Bienvenu, Hélène Fargier, and Pierre Mar-
quis. Knowledge Compilation in the Modal Logic S5.
In Proc. 24th AAAI Conference on Artificial Intelli-
gence (AAAI 2010), pages 261–266, 2010.

[2] Tristan Cazenave and Véronique Ventos. The 𝛼𝜇

search algorithm for the game of bridge. In Proc.
Monte Carlo Search International Workshop, pages
1–16. Springer, 2020.

[3] Pallab Dasgupta, P. P. Chakrabarti, and S. C. De
Sarkar. Searching game trees under a partial order.
Artif. Intell., 82(1-2):237–257, 1996.

[4] Brian A. Davey and Hilary A. Priestley. Introduction
to Lattices and Order. Cambridge University Press,
2nd edition, 2002.

[5] Stefan Edelkamp. Representing and reducing uncer-
tainty for enumerating the belief space to improve
endgame play in skat. In Proc. 24th European Con-
ference on Artificial Intelligence (ECAI 2020), pages
395–402. IOS Press, 2020.

[6] Ian Frank and David A. Basin. Search in games with
incomplete information: A case study using bridge
card play. Artif. Intell., 100(1-2):87–123, 1998.

[7] Ian Frank and David A. Basin. A theoretical and em-
pirical investigation of search in imperfect information
games. Theor. Comput. Sci., 252(1-2):217–256, 2001.

[8] M Ginsberg and Alan Jaffray. Alpha-beta pruning
under partial orders. In Richard Nowakowski, editor,

More Games of No Chance, number 42 in Mathemat-
ical Sciences Research Institute Publications, pages
37–48. Cambridge University Press, 2002.

[9] Matthew L. Ginsberg. GIB: imperfect information in
a computationally challenging game. J. Artif. Intell.
Res., 14:303–358, 2001.

[10] Guy Haworth and Nelson Hernandez. The 20th top
chess engine championship, TCEC20. ICGA Journal,
43(1):62–73, 2021.

[11] Peter Kissmann and Stefan Edelkamp. Solving fully-
observable non-deterministic planning problems via
translation into a general game. In Bärbel Mertsching,
Marcus Hund, and Muhammad Zaheer Aziz, editors,
Proc. 32nd Annual German Conference on Artificial
Intelligence (KI 2009), pages 1–8. Springer, 2009.

[12] Donald E. Knuth and Ronald W. Moore. An analysis
of alpha-beta pruning. Artif. Intell., 6(4):293–326,
1975.

[13] Sebastian Kupferschmid and Malte Helmert. A skat
player based on monte-carlo simulation. In Proc. 5th
International Conference on Computers and Games
(CG 2006), pages 135–147. Springer, 2006.

[14] David NL Levy. The million pound bridge program.
Heuristic Programming in Artificial Intelligence: The
First Computer Olympiad, pages 95–103, 1989.

[15] Jean-Vincent Loddo and Luca Saiu. How to correctly
prune tropical trees. In Serge Autexier, Jacques Cal-
met, David Delahaye, Patrick D. F. Ion, Laurence
Rideau, Renaud Rioboo, and Alan P. Sexton, edi-
tors, Proc. 10th International Conference on Intelli-
gent Computer Mathematics, volume 6167 of Lecture
Notes in Computer Science, pages 101–115. Springer,
2010.

[16] T. A. Marsland. A review of game-tree pruning. J.
Int. Comput. Games Assoc., 9(1):3–19, 1986.

[17] Yu Nasu. Efficiently updatable neural-network-based
evaluation functions for computer shogi. The 28th
World Computer Shogi Championship Appeal Docu-
ment, 2018.

[18] Alexandre Niveau and Bruno Zanuttini. Efficient Rep-
resentations for the Modal Logic S5. In Proc. 25th In-
ternational Joint Conference on Artificial Intelligence
(ĲCAI 2016), 2016.

[19] Douglas Rebstock, Christopher Solinas, Michael
Buro, and Nathan R Sturtevant. Policy based infer-
ence in trick-taking card games. In Proc. 2019 IEEE
Conference on Games (CoG 2019), pages 1–8. IEEE,
2019.

[20] Jonathan Schaeffer, Neil Burch, Yngvi Björnsson, Ak-
ihiro Kishimoto, Martin Müller, Robert Lake, Paul
Lu, and Steve Sutphen. Checkers is solved. Science,
317(5844):1518–1522, 2007.

[21] Nathan R Sturtevant and Adam M White. Feature
construction for reinforcement learning in hearts. In
Proc. 5th International Conference on Computers and
Games (CG 2006), pages 122–134. Springer, 2006.

[22] H Jaap Van Den Herik, Jos WHM Uiterwĳk, and Jack
Van Rĳswĳck. Games solved: Now and in the future.
Artif. Intell., 134(1-2):277–311, 2002.

	Introduction
	Preliminaries
	Problem setting
	Alpha-beta pruning under partial order
	Alpha-beta duo algorithm
	Experiments
	Conclusion

