
1

Mobile Networks for Computer Go

Tristan Cazenave
LAMSADE, Université Paris-Dauphine, PSL, CNRS, Paris, France

The architecture of the neural networks used in Deep Reinforcement Learning programs such as AlphaZero or Polygames has
been shown to have a great impact on the performances of the resulting playing engines. For example the use of residual networks
gave a 600 ELO increase in the strength of AlphaGo. This paper proposes to evaluate the interest of Mobile Networks for the game
of Go using supervised learning as well as the use of a policy head and a value head different from the AlphaZero heads. The
accuracy of the policy, the mean squared error of the value, the efficiency of the networks with the number of parameters, the
playing speed and strength of the trained networks are evaluated.

Index Terms—Deep Learning. Neural Networks. Board Games. Game of Go.

I. INTRODUCTION

This paper is about the efficiency of neural networks trained
to play the game of Go. Mobile Networks [1], [2] are com-
monly used in computer vision to classify images. They obtain
high accuracy for standard computer vision datasets while
keeping the number of parameters lower than other neural
networks architectures.

In computer Go and more generally in board games the
neural networks usually have more than one head. They have
at least a policy head and a value head. The policy head is
evaluated with the accuracy of predicting the moves of the
games and the value head is evaluated with the Mean Squared
Error (MSE) on the predictions of the outcomes of the games.
The current state of the art for such networks is to use residual
networks [3], [4], [5].

The architectures used for neural networks in supervised
learning and Deep Reinforcement Learning in games can
greatly change the performances of the associated game play-
ing programs. For example residual networks gave AlphaGo
Zero a 600 ELO gain in playing strength compared to standard
convolutional neural networks.

Residual networks will be compared to Mobile Networks
for computer Go. Different options for the policy head and the
value head will also be compared. The basic residual networks
used for comparison are networks following exactly the Al-
phaGo Zero and AlphaZero architectures. The improvements
due to Mobile Networks and changes in the policy head and
the value head are not specific to computer Go and can be
used without modifications for other games.

The remainder of the paper is organized as follows. The
second section presents related works in Deep Reinforcement
Learning for games. The third section describes the training
and the test sets. The fourth section details the neural networks
that are tested for the game of Go. The fifth section gives
experimental results.

II. ZERO LEARNING

Monte Carlo Tree Search (MCTS) [6], [7] made a revolution
in Artificial Intelligence applied to board games. A second

Corresponding author: T. Cazenave (email: Tris-
tan.Cazenave@dauphine.psl.eu)

revolution occurred when it was combined with Deep Rein-
forcement Learning which led to superhuman level of play in
the game of Go with the AlphaGo program [8].

Residual networks [3], combined with policy and value
heads sharing the same network and Expert Iteration [9] did
improve much on AlphaGo leading to AlphaGo Zero [4] and
zero learning. With these improvements AlphaGo Zero was
able to learn the game of Go from scratch and surpassed
AlphaGo.

Later AlphaZero successfully applied the same principles to
the games of Chess and Shogi [5].

Other researchers developed programs using zero learning
to play various games.

ELF/OpenGo [10] is an open-source implementation of
AlphaGo Zero for the game of Go. After two weeks of
training on 2 000 GPUs it reached superhuman level and beat
professional Go players.

Leela Zero [11] is an open-source program that uses a
community of contributors who donate GPU time to replicate
the AlphaZero approach. It has been applied with success to
Go and Chess.

Crazy Zero by Rémi Coulom is a zero learning framework
that has been applied to the game of Go as well as Chess,
Shogi, Gomoku, Renju, Othello and Ataxx. With limited
hardware it was able to reach superhuman level at Go using
large batches in self-play and improvements of the targets to
learn such as learning territory in Go. Learning territory in Go
increases considerably the speed of learning.

KataGo [12] is an open-source implementation of AlphaGo
Zero that improves learning in many ways. It converges to
superhuman level much faster than alternative approaches
such as Elf/OpenGo or Leela Zero. It makes use of different
optimizations such as using a low number of playouts for most
of the moves in a game so as to have more data about the value
in a shorter time. It also uses additional training target so as
to regularize the networks.

Galvanise Zero [13] is an open-source program that is linked
to General Game Playing (GGP) [14]. It uses rules of different
games represented in the Game Description Language (GDL)
[15], which makes it a truly general zero learning program able
to be applied as is to many different games. The current games
supported by Galvanise Zero are Chess, Connect6, Hex11,



2

Hex13, Hex19, Reversi8, Reversi10, Amazons, Breakthrough,
International Draughts.

Polygames [16] is a generic implementation of AlphaZero
that has been applied to many games, surpassing human play-
ers in difficult games such as Havannah and using architectural
innovations such as a fully convolutional policy head.

III. THE TRAINING AND THE TEST SETS

We use two datasets for training the networks.
The first dataset used for training comes from the Leela

Zero Go program self played games. The selected games are
the last 2 000 000 games of self play, starting at game number
19 000 000. The input data is composed of 21 19x19 planes
(color to play uses one plane, ladders use four planes: 2 for
lost ladders and 2 for unsettled ladders, liberties use 6 planes
for numbers of liberties from 1 to 6 or more, the current state
uses 2 planes, the 4 previous states use 8 planes). The output
targets are the policy (a vector of size 361 with 1.0 for the
move played, 0.0 for the other moves), the value (1.0 if White
won, 0.0 if Black won).

The second dataset is the ELF dataset. It is built from the
last 1 347 184 games played by ELF, it contains 301 813 318
states.

At the beginning of training and for each dataset 100 000
games are taken at random as a validation set and one state is
selected for each game to be included in the validation set. The
validation set for the Leela dataset only contains games from
Leela and the validation set for the ELF dataset only contains
games from ELF. The same set of states in the validation sets
are used for all networks. These games and states are never
used for training, none of the states present in the same game
as a state in the test set are used for training. We define one
epoch as 1 000 000 samples. For each sample in the training
set a random symmetry among the eight possible symmetries
is chosen.

Both datasets contain games played at superhuman level.
The Leela games are played at a better level than the ELF
games since the latest versions of Leela are stronger than ELF.

IV. NETWORKS ARCHITECTURES, TRAINING AND USE

A. Residual Networks

Residual networks improve much on convolutional networks
for the game of Go [3], [4]. In AlphaGo Zero they gave an
increase of 600 ELO in the level of play. The principle of
residual networks is to add the input of a residual block to
its output. A residual block is composed of two convolutional
layers with ReLU activations and batch normalization. For our
experiments we use for AlphaZero like networks the same
block as in AlphaGo Zero.

Another architecture optimization used in AlphaGo Zero is
to combine the policy and the value in a single network with
two heads. It also enables an increase of 600 ELO in the level
of play [4]. All the networks we test have two heads, one for
the policy and one for the value.

B. Mobile Networks

MobileNet [1] followed by MobileNetV2 [2] provide a
parameter efficient neural network architecture for computer
vision. The principle of MobileNetV2 is to have blocks as
in residual networks where the input of a block is added to
its output. But instead of usual convolutional layers in the
block they use depthwise convolutions. Moreover the number
of channels at the input and the output of the blocks (in the
trunk) is much smaller than the number of channels for the
depthwise convolutions in the block. In order to efficiently
pass from a small number of channels in the trunk to a greater
number in the block, usual convolutions with cheap 1x1 filters
are used at the entry of the block and at its output.

The Keras [17], [18] source code we used for the Mo-
bileNets models is given in the appendix.

C. Optimizing the Heads

The AlphaGo Zero policy head uses 1x1 convolutions to
project the 256 channels to two channels and then it flattens
the channels and uses a dense layer with 362 outputs for all
possible legal moves in Go. The AlphaGo Zero value head uses
1x1 convolutions to project the 256 channels to one channel
and then it flattens the channel, connects it to a dense layer
with 256 outputs and then connects these outputs to a single
output for the value [4].

We experimented with different policy and value heads. For
the policy head we tried a fully convolutional policy head. It
does not use a dense layer. Instead it uses 1x1 convolutions to
project the channels to a single channel, then it simply flattens
the channel directly giving 361 outputs, one for each possible
move except the pass move. The fully convolutional head has
already been used in Polygames [16].

For the value head we experimented with average pooling.
The use of Spatial Average Pooling in the value head has
already been shown to be an improvement for Golois [19].
It was also used in Katago [12] and in Polygames [16]. In
this paper we experiment with Global Average Pooling for
the value head. Each channel is averaged among its whole
19x19 plane leading to a vector of size equal to the number
of channels. It is then connected to a dense layer with 50
outputs. The last layer is a dense layer with one output for
the value. We use a sigmoid as the activation function for the
value since the labels are 0 or 1. The 0 and 1 labels for the
value are better than -1 and 1 used in AlphaZero since we
often use the Binary Crossentropy loss for the value.

D. Training

Training of the networks uses the Keras/Tensorflow frame-
work. We define an epoch as 1 000 000 states. The evaluation
on the test set is computed every epoch. The loss used for
the value in the AlphaZero papers is the mean squared error
(MSE). We keep this loss for the validation and the tests of
the networks in order to compare them on an equal basis. In
some of the network we train the value with the binary cross
entropy loss which seems more adapted to the learning of the
value (i.e. we want to know if the game is won or lost). We
also experiment with a weight on the value loss. The binary



3

cross entropy loss is usually greater than the mean squared
error loss, but we can make it even greater by multiplying the
loss with a constant.

The batch size is fixed to 32. The annealing schedule is to
train with a learning rate of 0.005 for the first 100 epochs.
Then to train with a learning rate of 0.0005 from 100 to 150
epochs. Then to train with a learning rate of 0.00005 from
150 to 200 epochs. It enables to fine tune the networks when
the learning stalls. This is similar to the AlphaZero annealing
schedule which also divides the learning rate by ten every
200 epochs in the beginning and every 100 epochs in the end.
Using this schedule the training of a large mobile network
approximately takes 12 days with a V100 card.

For all networks we use a L2 regularization during training
with a weight of 0.0001. We found that the validation loss and
the level of the trained network is much better when using
regularization.

E. Inputs and Labels

The inputs of the networks use the colors of the stones, the
liberties, the ladder status of the stone, the ladder status of
adjacent strings (i.e. if an adjacent string is in ladder), the last
5 states and a plane for the color to play. The total number of
planes used to encode a state is 21.

The labels are a 0 or a 1 for the value head. A 0 means
Black has won the game and a 1 means it is White. For the
policy head there is a 1 for the move played in the state
and 0 for all other moves. The output for the policy head
is different from the output used in AlphaZero since AlphaGo
Zero and AlphaZero use Expert Iteration [9] which gives as
output the number of time the moves has been tried in the
PUCT search divided by the total number of evaluations in
the PUCT search. We do not represent the pass move. When
playing games the pass move is generated if all moves are
on eyes. A possibility for representing the pass move with
a fully convolutional policy is to add another plane for the
policy which only gives the probability of playing the pass
move. This is how the pass move is evaluated in Polygames for
example. In the datasets we use the game is usually resigned
before a pass move happens.

F. Self Play Speed

A program that plays games against itself so as to generate
more training data can be strongly parallelized. Parallelizing
the different games being played can greatly speedup the over-
all reinforcement learning process. Both the forward pass of
the network and the building of the batches can be parallelized.
Parallelizing the forward passes is effectively done by building
large batches of states with one state per self played game. The
GPU is good at effectively parallelizing the forward pass on
large batches. The building of the inputs of the large batches
can also be strongly parallelized using threads.

Smaller networks are faster and enable larger batches for
self play. This is why most programs start training with small
networks and make them grow during learning.

V. EXPERIMENTAL RESULTS

We first give experiments for the Leela dataset and then
for the ELF dataset. We start with small networks, then we
detail unbounded networks, the parameter efficiency, the speed
efficiency, training on the ELF dataset, the self play speed and
we finish with a round robin tournament between different
networks.

We had problems with the AlphaZero value head: it often
did not learn even after many epochs so we replace it with
another value head using average pooling. The use of average
pooling layers for the value has been described previously
in Golois [19], KataGo [12] and Polygames [16]. The value
head we used has a global average pooling layer followed by
a dense layer of 50 neurons and another dense layer with one
output. We used the same value head for all our networks since
it gave better results than the AlphaZero value head. Even
with this value head it was necessary to launch multiple times
the training of the large AlphaZero-like networks in order to
start the convergence of the value. A possible solution to the
difficulties we encountered with learning the value function
could be to reduce the learning rate or to increase the batch
size. In further experiments we made, dividing by 10 the initial
learning rate made the training of large networks much more
stable.

A. Networks with less than one million parameters

The AlphaZero like network has 8 residual blocks of 66
filters and the AlphaZero policy and value heads. It has
988,405 parameters. During training it uses the MSE loss for
the value and the Categorical Crossentropy loss for the policy.
The network is called a0.small. The choice of 66 filters is
made in order to stay lower than 1 million parameters.

The AlphaZero-like network with a Global Average Pooling
value head has 10 residual blocks of 63 filters and the
AlphaZero policy head. It has 986 748 parameters. During
training it uses the MSE loss for the value and the Categor-
ical Crossentropy loss for the policy. The network is called
a0.small.avg.

The AlphaZero-like fully convolutional network has 13
residual blocks of 64 filters. For the policy head it does not
use a dense layer, just a 1x1 convolution to a single plane and
a flatten. The usual residual blocks used by AlphaZero can
have problems with this policy head (the policy loss initially
stays close to zero). It is better to use the Golois residual
blocks [20]: the rectifier is after the convolution, the batch
normalization is after the addition. It has 968 485 parameters.
During training it uses the Binary Crossentropy loss for the
value and the Categorical Crossentropy loss for the policy. The
network is called a0.small.avg.conv.bin.

The fourth network uses 25 MobileNet blocks with a trunk
of 64 and 200 filters inside the blocks. It uses the AlphaZero
policy head. It has 997 506 parameters. During training it uses
the MSE loss for the value and the Categorical Crossentropy
loss for the policy. The network is called mobile.small.

The fifth network uses 33 MobileNet blocks with a trunk
of 64 and 200 filters inside the blocks. It uses the fully
convolutional policy head and the Global Average Pooling



4

Fig. 1: The evolution of the policy validation accuracy for the
different networks with less than one million parameters on the Leela
dataset.

Fig. 2: The evolution of the value validation MSE loss for the different
networks with less than one million parameters on the Leela dataset.

value head. It has 970 477 parameters. During training it
uses the Binary Crossentropy loss for the value and the
Categorical Crossentropy loss for the policy. The network is
called mobile.small.conv.avg.bin.

The sixth network is the same as the fifth network except
that it has a weight of 4 on the value loss. The network is
called mobile.small.conv.avg.bin.val4.

Figure 1 gives the evolution of the accuracy for all small
networks. The AlphaZero-like networks have a lower accuracy
than the Mobile networks. The best network use MobileNet
blocks together with a fully convolutional policy head and
global average pooling for the value head. The AlphaZero-
like network has the worst results. When removing the policy
head and keeping only a 1x1 convolution the results get
better. Using MobileNets with the AlphaZero policy head is
close to the fully convolutional AlphaZero network. Training
a fully convolutional MobileNet improves much the results.
Finally putting a weight of four on the value loss of the fully
convolutional MobileNet does not hurt much the training of
the policy.

We can see in Figure 2 that the small AlphaZero-like

Fig. 3: The evolution of the policy validation accuracy for the
different unbounded networks on the Leela dataset.

network does not learn the value within 200 epochs. We tried
to launch the a0 training multiple times but did not succeed in
learning both the policy and the value with a small network on
the Leela dataset. The best value is obtained with a MobileNet
with a weight of 4 on the value loss. With a weight of 1 the
MobileNet is still the second best for the value, better than
the AlphaZero-like networks.

B. Unbounded Networks

We now experiments with large networks of sizes similar
to the sizes of the AlphaZero networks.

The AlphaZero-like networks have n residual blocks of
256 filters and the AlphaZero policy head. During training
they uses the MSE loss for the value and the Categorical
Crossentropy loss for the policy. The network are called
a0.n.256 . We test the networks with 5, 10, 15, 20, 30 and
40 MobileNet blocks.

The MobileNets networks use n MobileNet blocks with a
trunk of 128 and 512 filters inside the blocks. They use the
AlphaZero policy head. During training they use the MSE
loss for the value and the Categorical Crossentropy loss for
the policy. The networks are called mobile.avg.n.128.512. We
test the networks with 10, 20, 40 and 60 MobileNet blocks.

The MobileNets fully convolutional networks use n Mo-
bileNet blocks with a trunk of 128 and 512 filters inside the
blocks. They use the fully convolutional policy head. During
training they use the Binary Crossentropy loss for the value
and the Categorical Crossentropy loss for the policy. The
networks are called mobile.conv.avg.bin.n.128.512. We test the
networks with 10, 20, 40 and 60 MobileNet blocks.

Figure 3 gives the validation policy accuracy for the
AlphaZero-like network with 20 blocks and two Mobile net-
works with 40 blocks. These Mobile networks have much less
parameters than the AlphaZero-like network and are faster on
GPU. The Mobile networks have better accuracy and the fully
convolutional policy head is slightly better.

Figure 4 show that the validation MSE loss of the value
is also better for Mobile networks than for AlphaZero-like
networks.



5

Fig. 4: The evolution of the validation value MSE loss for the different
unbounded networks on the Leela dataset.

Fig. 5: The evolution of the policy validation accuracy with the
number of parameters on the Leela dataset.

C. Parameter Efficiency

We now give results for the validation accuracy and the
validation MSE loss according to the number of parameters
of the networks. We compare Mobile networks with fully
convolutional policy head and global average pooling value
head to AlphaZero residual networks.

Figure 5 gives the accuracy of the different networks accord-
ing to the number of parameters. The Mobile networks that are
trained have 10, 20, 40 and 60 Mobile blocks, a trunk of 128
and 512 filters inside the blocks. The AlphaZero networks have
5, 10, 15, 20, 30 and 40 residual blocks of 256 filters. Mobile
networks have a better accuracy with much fewer parameters

Figure 6 gives the MSE loss of Mobile networks and
residual network according to the number of parameters.
Mobile networks have a much better evaluation than residual
networks with much fewer parameters.

D. Speed Efficiency

We now give results for the validation accuracy and the
validation MSE loss according to the speed of the networks.
We compare Mobile networks with fully convolutional policy

Fig. 6: The evolution of the value validation MSE Loss with the
number of parameters on the Leela dataset.

Fig. 7: The evolution of the policy validation accuracy with the speed
of the networks on the Leela dataset.

Fig. 8: The evolution of the value validation MSE Loss with the
speed of the networks on the Leela dataset.



6

TABLE I: Batches per second for the tested networks.

Network Batches per second

a0.5.256 32.93
a0.10.256 28.12
a0.15.256 24.40
a0.20.256 21.57
a0.30.256 16.67
a0.40.256 15.33
mobile.conv.avg.bin.10.128.512 32.57
mobile.conv.avg.bin.20.128.512 28.08
mobile.conv.avg.bin.40.128.512 19.98
mobile.conv.avg.bin.60.128.512 15.36

Fig. 9: The evolution of the policy validation accuracy for the
different networks with less than one million parameters on the ELF
dataset.

head and global average pooling value head to AlphaZero
residual networks.

Table I gives the average number of batches per seconds
reached by the networks when playing Go. The size of the
batch is 32 since larger values did result in weaker play for
the parallel PUCT algorithm.

Figure 7 gives the accuracy of the different networks accord-
ing to the speed of the networks. We can see that for small
high speed networks on the right of the figure the accuracy is
similar but that for large low speed networks on the left the
Mobile networks outperforms the AlphaZero-like networks.

Figure 8 gives the MSE loss of Mobile networks and
residual network according to the speed of the networks.
For all networks speeds, Mobile networks are better than
AlphaZero-like networks.

E. Training on ELF self-played games

Learning the value is difficult for AlphaZero-like networks
on the Leela games. This may be due to Leela Zero resigning
long before the endgame in states difficult to evaluate. The
ELF self-played games are from a weaker engine and contains
states easier to evaluate. The same networks as in the previous
section are tested on the ELF dataset.

We can see in Figure 9 that the AlphaZero-like network is
worse than a fully convolutional MobileNet on the ELF dataset
with a network of less than 1 000 000 parameters.

Fig. 10: The evolution of the value validation MSE loss for the
different networks with less than one million parameters on the ELF
dataset.

Fig. 11: The evolution of the validation policy accuracy for the
different unbounded networks on the ELF dataset.

Figure 10 shows that small AlphaZero-like networks can
learn the value of the ELF dataset when they could not on the
Leela dataset. Nevertheless, the small Mobile networks still
better learn the value than the AlphaZero-like networks.

We can see in Figure 11 that large Mobile networks have
a better policy accuracy than large AlphaZero-like networks
even if the Mobile network tested has much fewer parameters
than the AlphaZero network.

Figure 12 show that the Mobile network we tested is slightly
better for learning the value than the 20 blocks residual
networks.

Figure 13 and Figure 14 show the parameter efficiency of
Mobile and residual networks for the policy and the value
on the ELF dataset. The policy accuracy and the value MSE
loss are better for Mobile networks than for residual networks
while using much fewer parameters. The networks used for
this experiment are the 10, 20, 40 and 60 blocks Mobile
networks and the 5, 10, 15 and 20 residual blocks networks.



7

Fig. 12: The evolution of the validation value MSE loss for the
different unbounded networks on the ELF dataset.

Fig. 13: The evolution of the policy validation accuracy with the
number of parameters on the ELF dataset.

Fig. 14: The evolution of the value validation MSE Loss with the
number of parameters on the ELF dataset.

TABLE II: Comparison of the number of forward pass per second.

Network Batch Size Hardware Forward/sec

a0.20.256 4 CPU 8.17
a0.20.256 8 CPU 11.96
a0.20.256 16 CPU 16.67
a0.20.256 32 CPU 18.38
a0.20.256 64 CPU 21.12
a0.20.256 128 CPU 25.96
a0.20.256 256 CPU 28.77
a0.20.256 512 CPU 31.83
mobile.conv.avg.bin.60.128.512 4 CPU 8.93
mobile.conv.avg.bin.60.128.512 8 CPU 11.65
mobile.conv.avg.bin.60.128.512 16 CPU 14.00
mobile.conv.avg.bin.60.128.512 32 CPU 17.16
mobile.conv.avg.bin.60.128.512 64 CPU 15.58
mobile.conv.avg.bin.60.128.512 128 CPU 20.31
mobile.conv.avg.bin.60.128.512 256 CPU 23.09
mobile.conv.avg.bin.60.128.512 512 CPU 25.19
a0.20.256 4 GPU 154.48
a0.20.256 8 GPU 347.98
a0.20.256 16 GPU 606.26
a0.20.256 32 GPU 1003.37
a0.20.256 64 GPU 1357.23
a0.20.256 128 GPU 1672.95
a0.20.256 256 GPU 1865.07
a0.20.256 512 GPU 2025.22
mobile.conv.avg.bin.60.128.512 4 GPU 196.51
mobile.conv.avg.bin.60.128.512 8 GPU 361.92
mobile.conv.avg.bin.60.128.512 16 GPU 575.12
mobile.conv.avg.bin.60.128.512 32 GPU 1043.64
mobile.conv.avg.bin.60.128.512 64 GPU 1434.10
mobile.conv.avg.bin.60.128.512 128 GPU 1734.43
mobile.conv.avg.bin.60.128.512 256 GPU 1911.81
mobile.conv.avg.bin.60.128.512 512 GPU 2003.33

F. Self Play Speed

We can see in Table II the number of forward passes per
second of the networks according to the size of the batch in
input of the networks. For small batches the 60 blocks Mobile
network is faster than the 20 blocks residual network and we
have seen that it is more accurate. For large batches residual
networks are comparable to the speed of MobileNets. The
GPU used for the experiments is a RTX 2080 Ti and the CPU
is a 64 cores computer on Linux. The version of Tensorflow
we used is 2.2.0 with cuda 10.2.89 and cudnn 7.6.5.

G. Making the networks play

I made a round robin tournament between some of the
networks in order to compare their level of play. The tourna-
ment gives each network one second per move using a RTX
2080 Ti. The MCTS algorithm used is PUCT [8]. The batch
size for PUCT is set to 32. In order to have diversity in the
games played by the same networks I randomized the choice
of moves. Each move is ranked by the number of evaluations
that are below it in the PUCT tree. If the second best move
has more than 0.8 times the number of evaluations of the
best move, it becomes a candidate for the move to be played.
The engine chooses the second best move with a probability
proportional to the number of playouts of the second best move
divided by the number of playouts of the best move plus the
number of playouts of the second best move, otherwise it plays
the best move.

The results of the tournament are given in table III. The
networks that play are networks trained on the Leela and



8

TABLE III: Round robin tournament between networks trained on
the Leela and the ELF datasets.

Network Games Winrate σ

mobile.conv.avg.bin.60.128.512 240 0.758 0.027
mobile.conv.avg.bin.40.128.512 240 0.738 0.028
mobile.conv.avg.bin.33.64.200 240 0.496 0.032
mobile.conv.avg.bin.60.128.512.elf 240 0.496 0.032
a0.20.256 240 0.425 0.032
a0.40.256 240 0.404 0.032
a0.20.256.elf 240 0.183 0.025

the ELF datasets. Mobile networks have better results than
residual networks and networks trained on the Leela dataset
have better results than networks trained on the ELF dataset.
Even a small mobile network with less than one million
parameters and 33 blocks has better results than large residual
networks.

I also made the mobile.conv.avg.bin.40.128.512 network
play on KGS. It plays instantly using the best move of the
policy. It reached a stable 5 dan ranking. It is better than
my previous residual policy network which reached a 4 dan
ranking [3].

VI. CONCLUSION

Residual networks were compared to Mobile networks with
a fully convolutional policy head and a global average pooling
value head. For the Leela dataset composed of games played
at a superhuman level by a strong engine Mobile networks
are better than residual networks both for small and for
large networks. They have a better accuracy and value error.
They are also better when compared according to the number
of parameters of the networks. A tournament between the
different networks using a fixed time per move confirmed that
Mobile networks play better than residual networks that use
many more parameters.

As future work it would be interesting to experiment with
MobileNets in an AlphaZero-like deep reinforcement learn-
ing framework for games as well as in other combinatorial
optimization problems.

ACKNOWLEDGMENT

This work was granted access to the HPC resources of
IDRIS under the allocation 2020-[AD011011826] made by
GENCI. This work was supported in part by the French
government under management of Agence Nationale de la
Recherche as part of the “Investissements d’avenir” program,
reference ANR19-P3IA-0001 (PRAIRIE 3IA Institute).

REFERENCES

[1] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient convo-
lutional neural networks for mobile vision applications,” arXiv preprint
arXiv:1704.04861, 2017.

[2] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“Mobilenetv2: Inverted residuals and linear bottlenecks,” in Proceedings
of the IEEE conference on computer vision and pattern recognition,
2018, pp. 4510–4520.

[3] T. Cazenave, “Residual networks for computer go,” IEEE Trans.
Games, vol. 10, no. 1, pp. 107–110, 2018. [Online]. Available:
https://doi.org/10.1109/TCIAIG.2017.2681042

[4] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang,
A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton et al., “Mastering
the game of go without human knowledge,” Nature, vol. 550, no. 7676,
p. 354, 2017.

[5] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez,
M. Lanctot, L. Sifre, D. Kumaran, T. Graepel, and T. Lillicrap, “A
general reinforcement learning algorithm that masters chess, shogi, and
go through self-play,” Science, vol. 362, no. 6419, pp. 1140–1144, 2018.

[6] R. Coulom, “Efficient selectivity and backup operators in Monte-Carlo
tree search,” in Computers and Games, 5th International Conference,
CG 2006, Turin, Italy, May 29-31, 2006. Revised Papers, ser. Lecture
Notes in Computer Science, H. J. van den Herik, P. Ciancarini, and
H. H. L. M. Donkers, Eds., vol. 4630. Springer, 2006, pp. 72–83.

[7] L. Kocsis and C. Szepesvári, “Bandit based Monte-Carlo planning,”
in 17th European Conference on Machine Learning (ECML’06), ser.
LNCS, vol. 4212. Springer, 2006, pp. 282–293.

[8] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den
Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanc-
tot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever,
T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis,
“Mastering the game of go with deep neural networks and tree search,”
Nature, vol. 529, no. 7587, pp. 484–489, 2016.

[9] T. Anthony, Z. Tian, and D. Barber, “Thinking fast and slow with deep
learning and tree search,” in Advances in Neural Information Processing
Systems, 2017, pp. 5360–5370.

[10] Y. Tian, Jerry Ma*, Qucheng Gong*, Shubho Sengupta*, Z. Chen,
J. Pinkerton, and C. L. Zitnick, “Elf opengo: An analysis and open
reimplementation of alphazero,” CoRR, vol. abs/1902.04522, 2019.
[Online]. Available: http://arxiv.org/abs/1902.04522

[11] G.-C. Pascutto, “Leela zero,” https://github.com/leela-zero/leela-zero,
2017.

[12] D. J. Wu, “Accelerating self-play learning in go,” CoRR, vol.
abs/1902.10565, 2019. [Online]. Available: http://arxiv.org/abs/1902.
10565

[13] R. Emslie, “Galvanise zero,” https://github.com/richemslie/galvanise
zero, 2019.

[14] J. Pitrat, “Realization of a general game-playing program,” in Informa-
tion Processing, Proceedings of IFIP Congress 1968, Edinburgh, UK,
5-10 August 1968, Volume 2 - Hardware, Applications, 1968, pp. 1570–
1574.

[15] N. Love, T. Hinrichs, and M. Genesereth, “General game playing: Game
description language specification,” 2006.

[16] T. Cazenave, Y.-C. Chen, G.-W. Chen, S.-Y. Chen, X.-D. Chiu, J. Dehos,
M. Elsa, Q. Gong, H. Hu, V. Khalidov, L. Cheng-Ling, H.-I. Lin,
Y.-J. Lin, X. Martinet, V. Mella, J. Rapin, B. Roziere, G. Synnaeve,
F. Teytaud, O. Teytaud, S.-C. Ye, Y.-J. Ye, S.-J. Yen, and S. Zagoruyko,
“Polygames: Improved zero learning,” arXiv:2001.09832, 2020.

[17] F. Chollet et al., “Keras,” 2015.
[18] F. Chollet, Deep Learning with Python. Manning, 2017.
[19] T. Cazenave, “Spatial average pooling for computer go,” in Computer

Games - 7th Workshop, CGW 2018, Held in Conjunction with the
27th International Conference on Artificial Intelligence, IJCAI 2018,
Stockholm, Sweden, July 13, 2018, Revised Selected Papers, 2018, pp.
119–126.

[20] ——, “Improved policy networks for computer go,” in Advances in
Computer Games - 15th International Conferences, ACG 2017, Leiden,
The Netherlands, July 3-5, 2017, Revised Selected Papers, 2017, pp.
90–100.

Tristan Cazenave Professor of Artificial Intelli-
gence at LAMSADE, University Paris-Dauphine,
PSL Research University and CNRS. Author of
more than a hundred scientific papers about Artificial
Intelligence in games. He started publishing com-
mercial video games at the age of 16 and defended
a PhD thesis on machine learning for computer Go
in 1996 at Sorbonne University.



9

APPENDIX
SOURCE CODE

filters = 512
trunk = 128

def bottleneck_block(x, expand=filters, squeeze=trunk):
m = layers.Conv2D(expand, (1,1),

kernel_regularizer=regularizers.l2(0.0001),
use_bias = False)(x)

m = layers.BatchNormalization()(m)
m = layers.Activation(’relu’)(m)
m = layers.DepthwiseConv2D((3,3), padding=’same’,

kernel_regularizer=regularizers.l2(0.0001),
use_bias = False)(m)

m = layers.BatchNormalization()(m)
m = layers.Activation(’relu’)(m)
m = layers.Conv2D(squeeze, (1,1),

kernel_regularizer=regularizers.l2(0.0001),
use_bias = False)(m)

m = layers.BatchNormalization()(m)
return layers.Add()([m, x])

def getModel ():
input = keras.Input(shape=(19, 19, 21), name=’board’)
x = layers.Conv2D(trunk, 1, padding=’same’,

kernel_regularizer=regularizers.l2(0.0001))(input)
x = layers.BatchNormalization()(x)
x = layers.ReLU()(x)
for i in range (blocks):

x = bottleneck_block (x, filters, trunk)
policy_head = layers.Conv2D(1, 1, activation=’relu’, padding=’same’,

use_bias = False,
kernel_regularizer=regularizers.l2(0.0001))(x)

policy_head = layers.Flatten()(policy_head)
policy_head = layers.Activation(’softmax’, name=’policy’)(policy_head)
value_head = layers.GlobalAveragePooling2D()(x)
value_head = layers.Dense(50, activation=’relu’,

kernel_regularizer=regularizers.l2(0.0001))(value_head)
value_head = layers.Dense(1, activation=’sigmoid’, name=’value’,

kernel_regularizer=regularizers.l2(0.0001))(value_head)

model = keras.Model(inputs=input, outputs=[policy_head, value_head])

return model


