
Distributed Nested Rollout Policy for Same
Game

Benjamin Negrevergne1 and Tristan Cazenave1

PSL Université Paris-Dauphine, LAMSADE UMR CNRS 7243, Place du Maréchal de
Lattre de Tassigny, 75775 Paris Cedex 16, France

Abstract. Nested Rollout Policy Adaptation (NRPA) is a Monte Carlo
search heuristic for puzzles and other optimisation problems. It achieves
state of the art performance on several games including SameGame. In
this paper, we design several parallel and distributed NRPA-based search
techniques, and we provide number of experimental insights about their
execution. Finally, we use our best implementation to discover 15 better
playouts for 20 standard SameGame boards.

1 Introduction

SameGame is a popular puzzle game whose goal is to clear a rectangular area
filled with coloured blocks (See Figure 1). When the player clears a block, all the
consecutive blocks with the same color are also cleared, and the score is increased
by the square of the number of blocks cleared minus two, creating an incentive
for the player to clear larger coloured areas. After clearing one or more blocks,
gaps are filled by the effect of gravity, creating new arrangements of coloured
blocks. Finally, a bonus of one thousand is given for clearing the entire area.

Fig. 1. Example of the initial state of a SameGame problem

The number of possible moves and the computational complexity of Same-
Game (discussed in [1]) has made it a challenging candidate problem for solving
techniques. State of the art solving techniques for SameGame use a Monte Carlo
search strategy to learn a successful playout policy. For example, Nested Monte
Carlo Search (NMCS) [3] biases its playouts using lower level playouts. At the
lowest level, NMCS adopts a uniform random playout policy.

Combining NMCS with online learning of playout strategies has been pro-
posed and has given good results on many optimisation problems [13]. Online
learning of a playout policy in the context of nested searches has been further
developed for puzzles and optimisation with Nested Rollout Policy Adaptation
(NRPA) [14]. NRPA has discovered new world records in Morpion, Solitaire and
crosswords puzzles. Furthermore, Stefan Edelkamp and co-workers have applied
the NRPA algorithm to multiple problems including the Traveling Salesman
with Time Windows (TSPTW) problem [5, 7]. Other applications deal with 3D
Packing with Object Orientation [9], the physical travelling salesman problem
[10], the Multiple Sequence Alignment problem [11] or Logistics [8].

The principle of NRPA is to adapt the playout policy so as to learn the
best sequence of moves found so far at each level. As with most Monte Carlo
search algorithms, NRPA is computationally intensive, and the quality of the
solution is closely tied with the time available to run the algorithm: the longer it
runs, the better the solution. Furthermore, discovering better solutions becomes
increasingly challenging as it gets closer to the optimal solution. To cope with
this problem, we design several parallelization strategies for NRPA. We then run
thorough experiments on SameGame to understand the performances of NRPA
in a distributed context. The main insight in this paper is that one should use
hybrid parallelization strategies to balance exploration of the search space with
exploitation of the intermediary results. Finally, we used our distributed imple-
mentation to discover better solutions for several standard SameGame boards.
Using only two hours of computation, our algorithm is able to discover better
solutions for 15 out of 20 problems (better or equal on 17 out of 20).

2 Nested Rollout Policy Adaptation (NRPA)

NRPA currently holds world records for several puzzle games including Mor-
pion, Solitaire and crossword puzzles. The Playout Policy Adaptation algorithms,
which is closely related to NRPA, was also used to improve MCTS-based Go pro-
grams [12] and a number of other game playing programs, resulting in a number
of great successes [4]. To achieve these results, NRPA efficiently combines mul-
tiple levels of nested searches with online policy learning [14].

In NRPA, a policy is a set of weights, one weight for each possible move in
the game. The policy is initialised with random weights and is then used by the
playout algorithm as a bias to search for a solution: moves with higher weights
are more likely to be sampled. The search is repeated N times and after each
iteration, the sequence of moves that has led to the best score is then used to
update the policy. To update the policy we increase the weights of the moves

occurring in the best sequence and decrease the weights of the others legal moves.
To further improve the quality of the policy, this procedure is nested multiple
times as described in Algorithm 1.

The playout algorithm is given in Algorithm 2, it performs Gibbs sampling
to choose a legal move with a probability proportional to the exponential of its
weight. Finally, the policy adaptation algorithm is given in Algorithm 3. For
each move in the sequence. The Adapt() function increases the weight of the
corresponding move by α, and decreases the weights of the other possible moves
by a value proportional to the exponential of their weight. Empirical evaluation
has shown that 1.0 is a good value for α.

Algorithm 1 The NRPA algorithm.

1:NRPA (level, policy) /* All variables are passed by value */
2: if level == 0 then
3: (score, sequence)← playout (initial-state, policy)
4: return (score, sequence)
5: else
6: best-score ← −∞
7: best-sequence ← [] /* The best sequence of moves found so far */
8: for N iterations do
9: (score, sequence)← NRPA(level − 1, policy)

10: if score ≥ best-score then
11: best-score← score
12: best-sequence← sequence
13: end if
14: policy ← Adapt(policy, best-sequence, 1.0)
15: end for
16: return (best-score, best-sequence)
17: end if

Algorithm 2 The playout algorithm

1:playout (state, policy)
2: sequence ←[]
3: while state 6= terminal-state do
4: z ← 0.0
5: for m in legal-moves(state) /* All moves that are legal from state */ do
6: z ← z + exp(policy[code(m)]) /* code() converts m to an integer repr. */
7: end for
8: choose move with probability exp(policy[code(move)])

z

9: state ← play(state, move)
10: sequence ← sequence+move
11: end while
12: return (score(state), sequence)

Algorithm 3 The Adapt algorithm

1:Adapt (policy, sequence, α)
2: new-policy ← policy /* This copy is optional since arguments passed by value*/
3: state← initial-state
4: for move in sequence do
5: new-policy[code(move)] ← new-policy[code(move)] + α
6: z ← 0.0
7: for m in legal-moves(state) do
8: z ← z + exp(policy[code(m)])
9: end for

10: for m in legal-moves(state) do

11: new-policy[code(m)] ← new-policy[code(m)] - α ∗ exp(policy[code(m)])
z

12: end for
13: state ← play(state, move)
14: end for
15: return new-policy

2.1 Solving SameGame with NRPA

To solve SameGame with NRPA we have to find an adequate representation for
the board state and the moves in order to specify score(state) and play(state,move)
according to rules of the game described in the introduction.

The game state is easily represented with a 2D array of integers with as many
lines and columns as the board itself. Integers are then used to code the colour
of the cell, or empty cells. Representing the moves is more challenging. There are
so many possible moves in SameGame that it is not possible to code them with a
simple function without exceeding storage capacities. Naive hashing techniques
quickly lead to hash collisions.

We deal with this problem by using Zobrist hashing [15], which is popular in
computer games such as Go and Chess [2]. It uses a 64 bits random integer for
each possible colour of each cell of the board. The code for a move is the XOR of
the random numbers associated to the cells of the move. A transposition table is
used to store the codes and their associated weights. The index of a move in the
transposition table is its 16 lower bits. For each entry of the transposition table,
a list of move codes and weights is stored. Note that this is not the only way
to represent moves. Alternative representations that include the surrounding of
the blocks removed, or that merge similar moves with slightly different block
configuration can also be considered.

Using the technique described above, we were able to implement the code(move)
function, as well as play(state,move) and score(state). The rest of the NRPA
code is generic and does not have to be specialised for SameGame. The per-
formance of this sequential implementation of NRPA is discussed later in the
experimental section (Section 4).

3 Executing NRPA on large scale computing platforms

In this section, we discuss various strategies for solving NRPA on medium scale
parallel architectures (e.g. multi-cores computing platforms) and large scale ar-
chitectures (e.g. cluster of computers).

Parallelizing NRPA is a challenging problem because each node in the NRPA
call tree (i.e. the tree formed by the recursive NRPA calls) has sequential de-
pendency with the previous node in the tree. To illustrate, we represent the
sequential NRPA call tree in Figure 2. As we can see in this figure, each node
needs to wait for the completion of the previous sibling node in order to per-
form the call to Adapt(). To decompose the search tree into independent tasks,
we need to break some of theses dependencies. One important consequence, is
that the parallel NRPA algorithm will not be strictly equivalent its sequen-
tial counterpart, and will produce different results. In this section, we propose
various ways of breaking the sequential dependencies: root parallelization, node
parallelization/leaf parallelization and hybrid parallelization and we discuss their
benefits.

adapt() adapt()

adapt() adapt()

Fig. 2. Sequential NRPA call tree.

3.1 Root parallelization

As any other randomised optimisation algorithm, NRPA can benefit from par-
allel architectures by running one independent instance of the main procedure
on each available core. When all the instances have returned a solution, the best
solution among them is returned to the user.

Conceptually, this parallelization strategy is equivalent to removing the se-
quential dependencies between the nodes that are directly below the root (i.e.
removing the long, red arrows in Figure 2). As a consequence no communication
is needed between the sibling nodes and they can be executed in parallel. Be-
cause we remove the dependencies between the top-most nodes of the call tree,
we call this strategy root parallelization.

Root parallelization has number of remarkable properties. First, it can be
implemented using an unmodified version of the sequential algorithm and a sim-
ple wrapper procedure, to collect the solutions and return the best one. Second,

almost no communication is needed between the simultaneous NRPA jobs (only
at the end, to collect the solutions). This guarantees that the resulting algo-
rithm will scale well, even on clusters or grids with limited network bandwidth.
Finally, not sharing intermediary results will maximise the exploration of the
search space, which is useful to avoid overfitting the policy to a local minimum.
However, this comes at the cost of exploitation, since the best sequences found
by one NRPA job will not be used to improve the policies of the other NRPA
jobs.

It is important to remark that with this strategy, the exploration vs. exploita-
tion ratio keeps increasing as we increase the number of simultaneous NRPA
jobs. As we will show later, when the number of cores is very large, increasing
exploitation can be desirable.

3.2 Node and leaf parallelization

To keep the exploration vs. exploitation ratio balanced on large computing plat-
forms, we need a parallel implementation of NRPA that can exchange interme-
diary results (i.e. intermediary best sequences).

We implement an alternative NRPA procedure that spawns M threads to
execute the N children NRPA calls (with M ≤ N). The parallel NRPA is only
called at a certain depth controlled by a user-defined parameter L. If the level
is not L, the original sequential NRPA procedure is called. To achieve this, we
replace Line 9 in Algorithm 1 by the following code.

if level == L then
(score, sequence)←NRPA-Par(level − 1, policy)

else
(score, sequence)←NRPA(level − 1, policy)

end if

Since inner calls to NRPA are called more frequently than outer calls, low-
ering L will increase the frequency at which the best sequences are exchanged
between parallel NRPA calls, thus increasing the exploitation at the cost of more
communication. If L is equal to the depth of the call tree, we refer to this strategy
as leaf parallelization, or node parallelization otherwise.

Exchanging the intermediary best sequences and updating the current policy
can also be done in two different ways: either the policy is shared and updated
by all threads, this is the shared policy strategy or the policy is local to each
thread, this is the thread-local strategy.

Shared policy strategy: In this strategy, we run M simultaneous lower level calls
sharing the same parent policy. When all the calls have completed, we update the
parent policy with the best sequence that was found so far. To compensate for
the lower number of calls to Adapt() (N/M instead of N), we set α = M (instead

α = 1.0 in the sequential version). The shared policy strategy is described in
Algorithm 4.

Algorithm 4 Parallel NRPA call with shared policy.

1:NRPA-Par1 (level, policy)
2: best-score ← −∞
3: num-iter ← N/M
4: for i ∈ 1 . . . num-iter do
5: for j ∈ 1 . . .M do
6: (scorej , sequencej)← spawn NRPA(level − 1, policy)
7: end for
8: wait /* Thread barrier */
9: for j ∈ 1 . . .M do

10: if (scorej ≥ best-score) then
11: best-score← scorej
12: best-sequence← sequencej
13: end if
14: policy ← Adapt(policy, best-sequence,M)
15: end for
16: end for
17: return (best-score, best-sequence)

Thread-local policy strategy: In this strategy, we create M thread-local copies of
the policy and run updates in parallel on each local copy. At the end of each
call, the parent policy is replaced by the best local policy if it has achieved a
better score. The thread local strategy is described in Algorithm 5.

3.3 Hybrid search strategy

As discussed earlier, the root parallelization can scale on large clusters, but
reduces the exploitation of intermediary results. Node and leaf parallelization
can exchange intermediary results at the cost of more intensive synchronisation
and communication. Therefore, they are more fitted to run on a single cluster
node with shared memory.

For clusters with multi-core nodes (most frequent configuration nowadays)
it is natural to combine the two approaches. On a K-node cluster with M cores
each, we will run K parallel NRPA jobs (root parallelization) with M threads
each (node parallelization). The best score in the K jobs will be reported.

4 Experiments

In this section, we first study the performance of the different parallelization
strategies discussed in the previous section. We compare the parallelization

Algorithm 5 Parallel NRPA call with thread local policy.

1:NRPA-Par2 (level, policy-ref) /* Policy is passed by reference */
2: best-score←∞
3: for i ∈ 1 . . .M do
4: (scorei, sequencei, policyi)← spawn NRPA-Sub(level, policy, best-score)
5: end for
6: wait /* Thread barrier */
7: max← argmaxi scorei
8: policy-ref ← policymax /* Update parent policy */
9: return (scoremax, sequencemax)

1:NRPA-Sub (level, policy, best-score)
2: local-policy ← policy
3: local-best-score← best-score
4: num-iter ← N/M
5: for i ∈ 1 . . . num-iter do
6: (score, sequence)← NRPA(level − 1, local-policy)
7: if score ≥ local-best-score then
8: local-best-score← score
9: local-best-sequence← sequence

10: end if
11: local-policy ← Adapt(local-policy, best-sequence, α)
12: end for
13: return (local-policy, local-best-score, local-best-sequence)

strategies by looking at their score after a fixed number of iterations, or af-
ter a fixed duration, for problem one of the SameGame test suite. In Section 4.1
we look at the performance of parallel NRPA on a single cluster node (parallel
setting), and in Section 4.2 we look at the performance of NRPA on a cluster
with 10 nodes (distributed setting). Finally, we use the best performing NRPA
implementation to beat the state of the art at 20 NRPA instances described
in [6].

Program source code: The Nrpa source code is implemented in C++. The source
code used for this experiments is available online at https://github.com/

bnegreve/nrpa.

Hardware description: All cluster nodes used in these experiments are based on
2 × 8-cores Intel Xeon CPU1 (16 cores per node). In addition, the Xeon CPUs
have 2-way hyperthreading2 providing hardware support for 32 threads per node.
For distributed executions in Section 4.2 and 4.3, we use 10 of such nodes, which
makes a total of 160 cores.

Parameters description: For each implementation, vary 2 parameters: level:
the level L in the call tree at which the parallel call are performed and threads:
the number of threads used inside a single NRPA job. In the distributed setting,
we also vary the number of simultaneous NRPA jobs.

Statistical significance of the results: All data points are averaged over at least
20 runs or more if necessary. Since the standard deviation among each NRPA
run is generally high and since few points at SameGame can make a difference,
we compute 95% confidence intervals and make sure that all our interpretations
are based on significant results. To improve chart readability, we only show the
confidence intervals when they are the most relevant (as in Section 4.2).

4.1 Parallel NRPA

In this section, we discuss the performance of the two parallel implementations
of NRPA described in Section 3.2. Experiments in this section are run on a single
cluster node with 16 cores (parallel setting). In this first experiment, the depth
of the NRPA call tree is set to 4.

In a first set of experiments, we are interested in measuring the cost of
decomposing the NRPA search procedure into independent tasks. As
discussed earlier, the search procedures implemented in the parallel NRPA al-
gorithms are not strictly equivalent to their sequential counterpart. In the se-
quential NRPA implementation, each iteration depends on the previous one,
to execute NRPA in parallel, we had to break some of these dependencies. To

1 CPU: Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz
2 https://en.wikipedia.org/wiki/Hyper-threading

measure the cost of doing so, we first observe the score obtained by different im-
plementations (sequential, parallel) at the same iteration (i.e. regardless of the
execution times). The result of these experiments are presented in Figure 3 (left)
and Figure 3 (right) for parallelization strategy 1 (shared policy) and 2 (thread-
local policy) respectively. Note that for a single run, the score can only increase
with time. However, the average score can occasionally drop if the best perform-
ing run finishes early (as in Figure 3 right).

Looking at these plots can provide a number of insights. First, we can see that
the cost of decomposing the search procedure is indeed significant. The sequential
NRPA always reaches the best score at the end of a complete execution.

Moreover, we can also see that the higher level is, the lower the score. This
suggests that breaking the sequential dependencies in the outermost calls (calls
that are closer to the root) has a stronger negative impact on the score. Thus,
leaf or deep-node parallelization should be preferred.

In a second set of experiments, we look at the score achieved by each
implementation after a 500 seconds. The result of these experiments are
presented in Figure 4 (left) and Figure 4 (right) for parallelization strategy 1
and 2 respectively.

As expected the sequential NRPA is outperformed by a number of parallel
execution strategies. The best results are obtained with the first parallelization
strategy, with level=1.

This is also the only implementation that benefits from using 32 threads.
Since the execution times are similar, this suggests that increasing the explo-
ration vs. exploitation ratio in the deep NRPA calls can be beneficial.

The second strategy achieves similar results after 500 seconds using either
level = 1 or level = 2. However, this strategy is penalised when using 32
cores. Further experiments show that this is mostly due to increased synchroni-
sation overhead.

The best settings for the two parallelization strategies generate similar re-
sults. However, strategy 1 is better for parallelizing innermost NRPA (leaf paral-
lelization) whereas the second strategy can also be used to parallelize the NPRA
calls at a higher level (node parallelization).

4.2 Distributed NRPA

In this section we look at the performance of 3 distributed implementations
of NRPA. We run NRPA on a 10-node cluster with various number of jobs.
The results of this experiments are presented in Figure 5. The first strategy
uses 160 independent NRPA jobs running on all 160 cores of the cluster (Root-
parallelization). The second and the third strategies use the hybrid distribu-
tion strategy described in Section 3.3. Hybrid-parallelization-1 uses a com-
bination of root-parallelization and and leaf-parallelization implemented with
shared policy strategy, whereas Hybrid parallelization-2 uses a combination
of root-parallelization and leaf-parallelization implemented with the thread-local
policy strategy.

 2400

 2600

 2800

 3000

 3200

 0 10 20 30 40 50

A
v
e

ra
g

e
 s

co
re

Iteration #

Parallelization strategy 1, iteration # vs. score

sequential
threads=16-level=1
threads=16-level=2
threads=32-level=1
threads=32-level=2

2400

2600

2800

3000

3200

0 10 20 30 40 50
A

v
e

ra
g

e
 s

co
re

Iteration #

Parallelization strategy 2, iteration # vs. score

sequential
threads=16-level=1
threads=16-level=2
threads=32-level=1
threads=32-level=2

Fig. 3. Iteration based comparison for parallelization strategy 1 (shared policy) on the
left and strategy 2 thread-local policy on the right.

 2400

 2600

 2800

 3000

 3200

 0 100 200 300 400 500 600

A
v
e

ra
g

e
 s

co
re

Time (s)

Parallelization strategy 1, time vs. score

sequential
threads=16-level=1
threads=16-level=2
threads=32-level=1
threads=32-level=2

 2400

 2600

 2800

 3000

 3200

 0 100 200 300 400 500 600

A
v
e

ra
g

e
 s

co
re

Time (s)

Parallelization strategy 2, time vs. score

sequential
threads=16-level=1
threads=16-level=2
threads=32-level=1
threads=32-level=2

Fig. 4. Time based comparison for parallelization strategy 1 (shared policy) on the left
and strategy 2 thread-local policy on the right.

 3000

 3050

 3100

 3150

 100 200 300 400 500

A
v
e

ra
g

e
 s

co
re

Time (s)

Average score with 95% confidence intervals

Hybrid-parallelization-1
Hybrid-parallelization-2

Root-parallelization
 3000

 3050

 3100

 3150

 3200

 3250

 3300

 3350

 3400

 3450

 3500

 3550

 3600

 3650

 100 200 300 400 500

A
v
e

ra
g

e
 s

co
re

Time (s)

Average score with 95% confidence intervals

Hybrid-parallelization-1
Hybrid-parallelization-2

Root-parallelization

Fig. 5. Average score obtained with 3 different parallelization strategies on Board 1
(left) and Board 3 (right).

Root-parallelization achieves good performance in the early stage of the runs.
Thanks to the large number of simultaneous NRPA instances, it is able to quickly
find reasonably good solutions for SameGame. (High exploration, low exploita-
tion ratio). As we spend more time improving existing solutions, Hybrid paral-
lelization outperforms the root parallelization. Using this result, we can further
speculate that pure root parallelization will not perform well with an even larger
number of nodes since the exploration vs. exploitation ratio will continue to grow.
With hybrid parallelization strategies, we were able to keep this ratio balanced,
ultimately resulting in better scores.

Hybrid-parallelization-1 is based on the shared policy strategy running at the
lowest level of the NRPA call tree (level = 1). It is the most communication
intensive strategy but its behaviour is close to the sequential NRPA implemen-
tation. In this experiment, we can see that Hybrid-parallelization-1 performs
significantly better than more scalable strategies such as Hybrid-parallelization-
2 which is based on local policy NRPA implementation. We can conclude that
the penalty for breaking the dependencies (mentioned in Section 3) has an im-
portant impact on the score and should be avoided when possible.

4.3 Beating Same game

In this last section, we use Hybrid-parallelization-1 to solve 20 standard SameGame
boards following the experimental protocol described in [6]. We run each our
algorithm (Dist-NRPA) with a timeout of 2 hours and report the score at ter-
mination. Each solving was only performed once. The results are reported in
Table 1. As can be seen in Table 1, the distributed NRPA implementation is
able to discover new best score on 15 boards, and tied on two of the 20 available
boards.

Table 1. Scores at SameGame. The number in parenthesis represents the depth of the
call tree.

Problem NMCS(4) NRPA(4) Diversity-NRPA(4) Dist-NRPA (5)

1 3121 3179 3145 3185
2 3813 3985 3985 3985
3 3085 3635 3937 3747
4 3697 3913 3879 3925
5 4055 4309 4319 4335
6 4459 4809 4697 4809
7 2949 2651 2795 2923
8 3999 3879 3967 4061
9 4695 4807 4813 4829

10 3223 2831 3219 3193
11 3147 3317 3395 3455
12 3201 3315 3559 3567
13 3197 3399 3159 3591
14 2799 3097 3107 3135
15 3677 3559 3761 3885
16 4979 5025 5307 5375
17 4919 5043 4983 5067
18 5201 5407 5429 5481
19 4883 5065 5163 5299
20 4835 4805 5087 5203

Total 77934 80030 81706 83050

5 Conclusions

We have proposed several parallel and distributed implementations of the NRPA
algorithm, and evaluated their performance at solving the SameGame algorithm.
We also have demonstrated how using hybrid parallelization strategies to keep
the exploration vs. exploitation ratio balanced can lead to better performances
than standard root parallelization. Finally, we have used our best implementa-
tion to discover 15 new best score for well known SameGame boards in a single
run of less than two hours for each problem. For comparison, the competitor re-
ports running for more than half a day. Further work will include running larger
scale experiments and evaluating the performance of the distributed NRPA im-
plementation on other known problems.

6 Acknowledgements

Experiments presented in this paper were carried out using the Grid’5000 testbed,
supported by a scientific interest group hosted by Inria and including CNRS,
RENATER and several Universities as well as other organisations. (see https:

//www.grid5000.fr).

References

1. Biedl, T.C., Demaine, E.D., Demaine, M.L., Fleischer, R., Jacobsen, L., Munro,
J.I.: The complexity of clickomania. More games of no chance 42, 389 (2002)

2. Breuker, D.M.: Memory versus Search in Games. Ph.D. thesis, Universiteit Maas-
tricht (1998)

3. Cazenave, T.: Nested Monte-Carlo Search. In: Boutilier, C. (ed.) IJCAI. pp. 456–
461 (2009)

4. Cazenave, T.: Playout policy adaptation with move features. Theor. Comput. Sci.
644, 43–52 (2016), http://dx.doi.org/10.1016/j.tcs.2016.06.024

5. Cazenave, T., Teytaud, F.: Application of the nested rollout policy adaptation
algorithm to the traveling salesman problem with time windows. In: Learning and
Intelligent Optimization - 6th International Conference, LION 6, Paris, France,
January 16-20, 2012, Revised Selected Papers. pp. 42–54 (2012)

6. Edelkamp, S., Cazenave, T.: Improved diversity in nested rollout policy adapta-
tion. In: Joint German/Austrian Conference on Artificial Intelligence (Künstliche
Intelligenz). pp. 43–55. Springer (2016)

7. Edelkamp, S., Gath, M., Cazenave, T., Teytaud, F.: Algorithm and knowledge
engineering for the tsptw problem. In: Computational Intelligence in Scheduling
(SCIS), 2013 IEEE Symposium on. pp. 44–51. IEEE (2013)

8. Edelkamp, S., Gath, M., Greulich, C., Humann, M., Herzog, O., Lawo, M.: Monte-
carlo tree search for logistics. In: Commercial Transport, pp. 427–440. Springer
International Publishing (2016)

9. Edelkamp, S., Gath, M., Rohde, M.: Monte-carlo tree search for 3d packing with
object orientation. In: KI 2014: Advances in Artificial Intelligence, pp. 285–296.
Springer International Publishing (2014)

10. Edelkamp, S., Greulich, C.: Solving physical traveling salesman problems with
policy adaptation. In: Computational Intelligence and Games (CIG), 2014 IEEE
Conference on. pp. 1–8. IEEE (2014)

11. Edelkamp, S., Tang, Z.: Monte-carlo tree search for the multiple sequence alignment
problem. In: Eighth Annual Symposium on Combinatorial Search (2015)

12. Graf, T., Platzner, M.: Adaptive playouts in monte-carlo tree search with policy-
gradient reinforcement learning. In: Advances in Computer Games - 14th Interna-
tional Conference, ACG 2015, Leiden, The Netherlands, July 1-3, 2015, Revised
Selected Papers. pp. 1–11 (2015)

13. Rimmel, A., Teytaud, F., Cazenave, T.: Optimization of the Nested Monte-Carlo
algorithm on the traveling salesman problem with time windows. In: Applications
of Evolutionary Computation - EvoApplications 2011: EvoCOMNET, EvoFIN,
EvoHOT, EvoMUSART, EvoSTIM, and EvoTRANSLOG, Torino, Italy, April 27-
29, 2011, Proceedings, Part II. Lecture Notes in Computer Science, vol. 6625, pp.
501–510. Springer (2011), http://dx.doi.org/10.1007/978-3-642-20520-0_51

14. Rosin, C.D.: Nested rollout policy adaptation for Monte Carlo Tree Search. In:
IJCAI. pp. 649–654 (2011)

15. Zobrist, A.L.: A new hashing method with application for game playing. ICCA
journal 13(2), 69–73 (1970)

