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Abstract

Dealing with multi-objective combinatorial optimization, this article proposes a new multi-objective set-based meta-

heuristic named Perturbed Decomposition Algorithm (PDA). Combining ideas from decomposition methods, local

search and data perturbation, PDA provides a 2-phase modular framework for finding an approximation of the Pareto

front. The first phase decomposes the search into a number of linearly aggregated problems of the original multi-

objective problem. The second phase conducts an iterative process: aggregated problems are first perturbed then

selected and optimized by an efficient single-objective local search solver. Resulting solutions will serve as a starting

point of a multi-objective local search procedure, called Pareto Local Search. After presenting a literature review of

meta-heuristics on the multi-objective symmetric Traveling Salesman Problem (TSP), we conduct experiments on sev-

eral instances of the bi-objective and tri-objective TSP. The experiments show that our proposed algorithm outperforms

the best current methods on this problem.

Keywords: Multi-objective combinatorial optimization, Multi-objective Traveling Salesman Problem,

Meta-heuristics, Pareto Local search, Decomposition algorithm, Data perturbation

1. Introduction

In multi-objective (MO) combinatorial optimization, several criteria are taken into account. When the preferences

of the decision maker are not known, a far challenge is to generate the set of non-dominated points, so that no im-

provement on any objective is possible without sacrificing on at least another objective. Even for moderately-sized

problems, it is usually computationally prohibitive to identify this set for two major reasons. First, the decision version5

of most MO combinatorial optimization (MOCO) problems is NP-complete, even if the underlying single-objective

version is in P . Second, most MOCO problems are intractable in the sense that the number of non-dominated points

can be exponential in the size of the instance (see [1] for more details on MO optimization).

To handle these difficulties, researchers have been interested in developing heuristic algorithms, such as meta-

heuristics. In particular, MO local search (LS) algorithms are among the most successful meta-heuristics for tackling10

MOCO problems. The currently best performing LS meta-heuristics for MOCO problems typically involve different

algorithmic components that are combined into an upper-level framework.

This article presents the Perturbed Decomposition Algorithm (PDA) algorithm. The framework of PDA combines

single-objective LS and MO LS techniques, MO decomposition [2] and data perturbation [3]. To validate our approach,

we conduct experiments on several instances of the bi-objective and tri-objective symmetric Traveling Salesman Prob-15

lem (MOTSP) of different types and sizes.
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The paper is organized as follows. Section 2 first recalls the formal definition of a MOCO problem and fundamental

definitions. Then, we introduce basic techniques of local search algorithms both in the single-objective and MO

cases, and propose a literature review of meta-heuristics on the MO Traveling Salesman Problem (MOTSP). Section 3

describes the proposed algorithm, PDA and its three algorithmic components. Section 4 is devoted to the presentation20

of the MOTSP, the benchmark instances, a sensitivity analysis of PDA on the data perturbation, and the computational

experiments with a comparison between PDA and the best current methods on MOTSP. Section 5 concludes on the

contributions and perspectives of PDA.

2. Preliminaries

We first recall basic definitions of multi-objective optimization (Section 2.1), then the main concepts of single-25

objective local search (Section 2.2) and its extension to the MO case (Section 2.3), and finally present a review of

meta-heuristics applied to MOTSP (Section 2.4).

2.1. Multi-objective combinatorial optimization

Let E be a finite set of q elements E := {e1, ...eq}, defining a combinatorial structure. Let cj : E → R j = 1, ..., p

be the p cost functions that map each element of E with a vector of p costs, and c = (c1, ...cp) be the MO cost function.30

Considering the minimization sum version, a MOCO problem is defined as:

min f(x) = (f1(x), ..., fp(x))

subject to x ∈ X
(1)

where X ⊂ 2E = {0, 1}q is the feasible set and the p potentially conflicting objective functions fj : X → R are

such that fj (x) =
∑
e∈x

cj (e) for each j = 1, ..., p.

Let Z⊂ Rp be the objective space and ZX := f(X) = {z ∈ Z : zj = fj(x) for j = 1,...,p and x ∈ X} the35

outcome set, mapping each feasible solution x to a point z = f(x) of the objective space Z.

Let z, z′ ∈ Z be two points in the objective space. We say that z dominates z′, denoted by z ≤ z′ , if zj ≤ z′j for

each j=1,...,p and there exists i ∈ {1, ..., p} such that zi < z′i.

We say that z weakly dominates z′, denoted by z 5 z′, if zj ≤ z′j for each j=1,...,p.40

A point z ∈ ZX is called non-dominated if and only if there is no other point ẑ ∈ ZX such that ẑ ≤ z. A feasible

solution x ∈ X is called efficient if its image in the objective space is non-dominated.

The set of all non-dominated points Znd is called non-dominated set or Pareto front. The set of all efficient solu-45

tions Xe is called the efficient set.

The ideal point is the point z∗ = (z∗1 , ..., z
∗
p) which has the best values for each objective, i.e. such that z∗j :=

min
x∈X

fj (x) j = 1, ..., p.

50

Two common aggregation procedures are the weighted sum and the augmented weighted Tchebychev aggregations.
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Let λ = (λ1, ..., λp) be a weighting vector (called weight). The weighted sum problem is given by:


min ws(x, λ) =

p∑
j=1

λjfj(x)

subject to x ∈ X
(2)

The resulting aggregated problem is a single-objective instance of the original MO problem.

Supported efficient solutions are optimal solutions of a weighted sum problem for some vector λ > 0. The images

in objective space of the supported efficient solutions correspond to the non-dominated points which are located on55

the convex hull of ZX . Non-supported efficient solutions are efficient solutions that are not optimal solutions for any

weighted sum problem with λ > 0. Non-supported non-dominated points are located in the interior of the convex hull

of ZX .

Let λ = (λ1, ..., λp) ≥ 0 be a weight. The weighted augmented Tchebychev problem is given by:60


min wat(x, λ, z∗) = max

j=1,...,p
λj(fj(x)− z∗j ) + ε

p∑
j=1

λj(fj(x)− z∗j )

subject to x ∈ X
(3)

where ε > 0 is a fixed small positive real. It is well known that any optimal solution of (3) is an efficient solution.

In order to sample the non-dominated set, it may be useful to generate a set of weights and solve a given aggregation

procedure for each of these weights.

A technique to produce a number of equally dispersed weights is the Maximally Dispersed Set of weights (MDS)

- also called set of normalized weights - of Steuer [4]. Given a parameter h ∈ N∗, this technique provides the set of65

weights Λ given by:


Λ = {λ = (λ1, ..., λp) :

p∑
j=1

λj = 1, λj ∈ { 0
h ,

1
h ...,

h
h}, j = 1, ..., p}

such that min
λa,λb∈Λ:λa 6=λb

p∑
j=1

∣∣λaj − λbj∣∣ = 2
h

(4)

where |Λ| = (h+p−1
h ). We will refer several times to the MDS later in the paper.

2.2. Single-objective local search

Let d : (X , X) → N+ be a distance measure between two feasible solutions. For any k ≥ 1, we define the

k-neighborhood structure Nk : X → 2X as Nk (x) = {y ∈ X : d(x, y) ≤ k}. Nk (x) assigns to x ∈ X the set of its70

neighbors. Changing from x ∈ X to y ∈ Nk (x) is called a neighborhood move.

For some optimization problems, all feasible solutions contain the same number of elementary components from

E, and Nk is called a k-exchange neighborhood structure. This is true for the TSP, where a solution x ∈ X , which

represents a Hamiltonian cycle in a complete graph of n cities, is composed of n edges. In this context, let y ∈ X be

another feasible solution, then y ∈ Nk(x) if y is an Hamiltonian cycle obtained from x by exchanging at most k edges.75

The most elementary neighborhood structure for the TSP is the so-called 2-edge-exchange neighborhood.

Given a single-objective minimization problem with objective function g : X → R and a k-neighborhood structure

Nk (k ≥ 1), a local search routine explores, at each step, the neighborhood of the current solution x ∈ X so as to find

a neighbor y ∈ Nk (x) such that g (y) < g (x). It stops in a local optimum, for which no improving neighbor can be

found.80
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Stochastic local search (SLS) is a general concept of local search algorithm restarting the local search routine by

use of a stochastic process.

A perturbation move, called kick in this article, is a technique with the aim of escaping from a local optimum. Let

x ∈ X be a local optimum according to Nk (k ≥ 1). A kick consists in applying a random move from x in a larger

size neighborhood Nl (l > k). The perturbation neighborhood size l has to be sufficiently large to lead to a different85

attraction basin than the one generated by Nk from x.

An iterated local search (ILS) algorithm [5, 6] is an SLS. It builds a sequence of locally optimal solutions by

iteratively applying a kick to the current locally optimal solution and restarting a local search routine from this modified

solution.

2.3. Multi-objective local search90

In MOCO, we search for a set of solutions rather than a single one. Therefore, a LS adapted to solve MOCO

problems should manage sets of solutions, instead of a unique solution. Single-objective local search techniques have

been adapted to MO spaces. We define the neighborhood of a set of feasible solutions as the union of the neighborhoods

of each solution.

Pareto Local Search (PLS) [7, 8, 9] is the MO extension of the local search routine. Given a neighborhood structure,95

PLS starts from a set of solutions and iteratively improves this set by memorizing neighbors whose images are not

weakly dominated by any points found so far. PLS stops when all neighbors are non-efficient, and is stuck in a locally

efficient set.

To our knowledge, two different versions of PLS have been published. The only difference between the two

versions is that the neighborhood is explored either from the whole set of solutions (first version), or from a single100

solution (second version) [10].

The first version, called PLS1 in this article, has been introduced by Talbi et al. [7]. Starting from a set of solutions,

PLS1 explores the neighborhood of each solution, and retains in an auxiliary set all the neighbors whose images are

not weakly dominated by any points found so far. A new iteration starts from this auxiliary set and PLS1 continues this

process until no more new non-weakly dominated neighbors have been identified. The use of the auxiliary set prevents105

the exploration of the neighborhood of an already visited solution. Initially, PLS1 has been applied to the MO Flow

Shop Scheduling Problem [7] and later to the bi-objective TSP [8].

The second version, called PLS2 in this article, has been introduced by Paquete et al. [9]. Starting from a current

set of solutions S, PLS2 first selects at random a non-visited solution, explores its neighborhood and add in S all the

neighbors whose images are not weakly dominated by any points in S. PLS2 stops when all the solutions have been110

visited.

A comparison study between PLS1 and PLS2 on bi-objective TSP instances has been conducted in [11]. When PLS

is launched from a randomly generated solution, then PLS2 obtains better results than PLS1. On the contrary, when

PLS is launched from a good initial set of solutions, then PLS1 leads to an approximation of slightly better quality than

PLS2 with a comparable computational time.115

The method we propose, PDA, will conduct PLS from a good initial set of solutions. Therefore, PLS1 will be used

as PLS in this article. An improved version of the original PLS1 is used in PDA and detailed in Section 3.4.

SLS for MO spaces are called Stochastic Pareto Local Search (SPLS) [12, 13].

Iterated PLS (IPLS) [14, 15] is a SPLS starting from an initial set of solutions, which iteratively performs a PLS.

At the end of each PLS, some of the current potentially efficient solutions are selected and perturbed with a kick, so as120

4



to form a new starting set. This technique can escape from a locally efficient set.

2.4. Literature review of meta-heuristics on the MOTSP

This section reports a non-exhaustive literature review of meta-heuristics approaches on MOTSP. Some methods

are more detailed than others because they will be used to compare with our approach, PDA.

To our knowledge, Jaszkiewicz is the first author having published approximations of Pareto sets of bi-objective125

TSP instances. In [16], he proposed an improved version of the MO Genetic local search (MOGLS) initially proposed

by Ishibushi and Murata [17, 18], who applied it on MO Flow Shop Scheduling Problems.

Then Paquete and Stützle present in [19] their Two-Phase Local Search (TPLS) and Pareto Double TPLS (PD-

TPLS) methods. TPLS and PD-TPLS first produce a set of weights using the MDS method (see Section 2.1) then

solve the related weighted sum problems using a domain-specific ILS method. PD-TPLS adds an additional step by130

searching for the potentially efficient solutions in the neighborhood of the solutions previously found. In [20], Dubois-

Lacoste et al. analyze and improve the anytime behavior of TPLS. To our knowledge, TPLS and PD-TPLS have been

tested only on bi-objective instances and it is shown in [19] that the PD-TPLS method gives better results than the

MOGLS method.

Jaszkiewicz and Zielniewicz have experimented on bi-objective instances the Pareto Memetic Algorithm [21]135

(PMA) and found better results than MOGLS.

The next year, Kumar and Singh [22] present a memetic algorithm and find comparable results to MOGLS and

PD-TPLS.

Paquete and Stützle generalize the PD-TPLS method in [23] by describing a generic class of MO SLS algorithms,

composed of different algorithmic components. They investigate the importance and behavior of those components140

by experiments on bi-objective and tri-objective TSP instances. They propose an algorithm, called PD-TPLS-l in this

paper, obtained by an experimental optimization of the components configuration. Using PD-TPLS-l, the authors find

better results than MOGLS in the tri-objective case.

Lust and Teghem designed a bi-objective SLS method, the Two phase Pareto Local Search (2PPLS) [11] and its

variants 2PPLS+P [11], 2PPLS-SpeedP1 [24]. The main idea of 2PPLS is that PLS is a powerful tool to generate145

potentially efficient solutions. However, instead of starting the method with randomly generated solutions (thus of

poor quality) as done in previous works (see [25] for example), the first phase of 2PPLS generates a set of high

quality solutions covering well the Pareto front by approximating the supported efficient solution set using the standard

dichotomic scheme [26, 27]. PLS is used in the second phase to generate a more accurate approximation of the Pareto

front. The authors experimentally show that this first phase drastically increases the final quality and convergence speed150

of PLS. Experiments show that 2PPLS and its variants outperform MOGLS and PMA on tested bi-objective instances.

The Evolutionary MO Simulated Annealing Algorithm (EMOSA) [28] of Li and Landa-Silva is compared to other

MOSA-like algorithms and obtains better results on all bi-objective and tri-objective tested instances. However, con-

trary to the most efficient methods presented in this section, EMOSA does not use essential TSP-specific LS speed-up

techniques, such as fixed radius candidate lists [29], don’t look bits [30] and a neighborhood greater than a 2-exchange155

one for ILS. See [19, 23] for a comparison between the use of a 2-exchange and a 3-exchange neighborhoods in a MO

SLS, and [24] for SPLS speed-up techniques. Therefore, EMOSA is not a competitive algorithm compared to the best

current methods on MOTSP, both in bi-objective and tri-objective instances, making the comparison not relevant with

our proposed approach, PDA.
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Various MO Ant Colony Optimization (MOACO) algorithms have been proposed in recent years (see [31, 32]160

among others). López-Ibáñez and Stützle [33] propose a framework that suffices to describe most MOACO algorithms

proposed so far. The authors tested different optimized configurations of this framework on Euclidean bi-objective TSP,

and found better MOACO algorithms than those available in the literature. However, as EMOSA, results of MOACO

are not comparable to the best current methods on MOTSP.

Liefooghe et al. [10] present a comparison between different strategies of neighborhood exploration for Dominance-165

based Multiobjective Local Search algorithms (DMLS), which is a generalization of PLS. Experiments have been

conducted on bi-objective and tri-objective TSP instances.

Murata et al. [34] introduced the concept of cellular structure for MO genetic algorithms. This concept has

been generalized and renamed decomposition by Zhang and Li [2] with their MO Evolutionary Algorithm based on

Decomposition (MOEA/D) method. MOEA/D decomposes a MOCO problem into a fixed number of equally dispersed170

aggregated problems and optimizes them simultaneously in a collaborative way. Each of these problems is defined

by a weight λ giving a unique search direction, and maintains a best-so-far solution (incumbent) according to the

corresponding chosen aggregated function (e.g. ws(·, λ), wat(·, λ, z∗), etc.) for the entire duration of the run.

The Multi-objective Memetic algorithm based on decomposition (MoMad) [35] of Ke et al. is a recent method

combining decomposition and PLS. As a decomposition method, MoMad is an iterative algorithm which first decom-175

poses the MOCO problem into several aggregated problems (called decomposition phase in this article). For MOTSP,

the chosen aggregated function is the weighted sum ws. As in 2PPLS, an ILS is applied on each single-objective prob-

lem in order to initialize the incumbents with high quality potentially efficient solutions covering well the Pareto front.

Then the iterative phase begins. At each iteration, MoMad conducts a PLS. When the PLS stops, it applies again an

ILS from each incumbent. The potentially efficient solutions generated compose a starting set for the next PLS. Note180

that incumbents are regularly updated in a collaborative way, by comparison with the other ones.

This iterative mechanism of restarting PLS is not new and has already been used in [14, 15] with the notion of

IPLS. However, MoMad hybridizes IPLS with the decomposition methodology. Recent experiments (see [35]) on

several bi-objective instances of different types and sizes have shown that MoMad outperforms the 2PPLS method on

tested instances.185

MOEA/D-ACO [36] combines the MOEA/D method with a MOACO algorithm. In [35], the authors show that

MOEA/D-ACO is outperformed by both 2PPLS and MoMad on bi-objective instances.

To summarize MoMad is the best known method on bi-objective TSP instances. Besides, few works have been

proposed to efficiently tackle tri-objective TSP instances. Among these, PD-TPLS-l is the best known algorithm for

tri-objective instances. Because MoMad shows very good results on the bi-objective case, we will compare:190

• PDA and MoMad [35] on bi-objective instances.

• PDA, MoMad [35] and PD-TPLS-l [23] on tri-objective instances.

3. The Perturbed Decomposition Algorithm

This section describes the method presented in the present work, the Perturbed Decomposition Algorithm (PDA).

Section 3.1 presents the general framework of PDA, while the following subsections describe the main components.195

Algorithms related to each component of PDA are depicted in pseudo-code. The symbols ↓, ↑, and l specify the

parameter transmission, respectively in, out and in-out.
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3.1. General framework

PDA combines ideas from decomposition (see [2] for more details), SPLS algorithms and data perturbation (see

[37, 38, 3] for more details). Basically, PDA first decomposes the search into a number of single-objective problems,200

called sub-problems. Then it iteratively runs ILS on perturbed sub-problems to provide a starting solution set for PLS.

Algorithm 1 reports the main steps of PDA. A general description follows.

The initialization of PDA (Step 1) begins by the decomposition step (Step 1.1). It produces a set ofK sub-problems

Π = (π1, ..., πK) where K depends on the value of the decomposition parameter h ∈ N∗, chosen by the user (see

Section 3.2).205

For each k = 1, ...,K, a sub-problem πk ∈ Π is a tuple (λk, ck, xk, rk) composed of four elements:

• A unique weight λk = (λk1 , ..., λ
k
j ).

• A single-objective cost function ck : E → R such that ck(e) =
∑p
j=1 λ

k
j cj(e) for all e ∈ E, where c : E −→ Rp

is the MO cost function related to the addressed MOCO problem. So ck defines the costs of the weighted-sum

problem ws(·, λk).210

• An incumbent xk := arg min{ws
(
x, λk

)
: x ∈ A} where A is the set of potentially efficient solutions found

so far, called archive. xk is initialized by a domain-dependent heuristic. ILS will start from xk and optimize the

single-objective problem related to ck.

• A cumulative number rk, counting the number of potentially efficient solutions found by ILS from πk.

Each sub-problem provides a unique search direction and we claim that focusing optimization on the same directions215

during the entire duration of the run, as Decomposition algorithms [2] like MoMad usually do, may neglect other

attractive areas of the search space.

The idea of PDA to prevent this issue, is to slightly modify the search direction of all sub-problems with data

perturbation [37, 3]. Data perturbation adds a random noise to a single-objective cost function related to a weighted

sum problem (see Section 3.3). By adding such a noise in a cost function, we produce a stochastic change to the220

sub-problem search direction, which remains a single-objective version of the MOCO problem. Thus, ILS still can

optimize such problem.

This leads to the second part of the initialization (Step 1.2) which consists of perturbing the cost function ck of

each sub-problem πk ∈ Π k = 1, ...,K. The data perturbation uses a parameter d ≥ 0 chosen by the user, which

controls the maximum variation of the random noise applied to a cost function.225

The main loop of PDA (Step 2) corresponds to an IPLS. PDA maintains the starting set of PLS Ppls, initialized

with the solutions of the archiveA. It stops when a stopping criterion given by the user (maximum computational time,

number of iterations,...) is met.

For each iteration of the main loop (Steps 2.1-2.3):

• First, we have to generate a new starting set of solutions for PLS (Step 2.1). To do so, we run ILS from the230

incumbent xk of the sub-problem πk ∈ Π using the perturbed cost function ck, for each k = 1, ...,K (Step

2.1.a).

Note that the ILS procedure used by PDA returns all the local optima found during the search, instead of the

best one like previous works did [23, 11, 24, 35]. Indeed, ILS is capable of finding a number of potentially

efficient solutions during its optimization process. Step 2.1.b adds these solutions to both the starting set of235
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PLS Ppls and the archive A, using the UpdateSolutionSet procedure; and updates the incumbents with

the UpdateIncumbents procedure. Given a solution x ∈ X and the set of sub-problems Π = (π1, ..., πK),

the UpdateIncumbents procedure replaces the incumbent xk of πk by x if ws
(
x, λk

)
< ws

(
xk, λk

)
for all

k = 1, ...,K.

Besides, the cumulative number rk is updated with the number of potentially efficient solutions found by ILS,240

for each k = 1, ...,K.

• Because data perturbation is a stochastic procedure, it can produce single-objective problems whose optimal

solutions are not efficient for the addressed MOCO problem, or very difficult to optimize with an ILS. To over-

come this issue, we identify the sub-problem for which ILS is the least efficient for finding potentially efficient

solutions, i.e. the sub-problem with the lowest rk value, k = 1, ...,K; and perturb again its single-objective cost245

function (Step 2.2). We call this technique a sub-problem reset.

• Finally, at the end of an iteration, PDA conducts a PLS (Step 2.3, see Section 3.4 for more details) starting from

the set Ppls provided in Step 2.1. Ppls is emptied in order not to run PLS from the same solutions at the next

iteration.

3.2. Decomposition250

The purpose of the decomposition (Algorithm 2) is to decompose a MOCO problem into a number of equally

dispersed weighted sum problems and optimizes each once with ILS.

First, it generates the set of weights Λ = (λ1, ..., λK) such that |Λ| = K = (h+p−1
h ) following the MDS method-

ology (see Section 2.1) where h is a parameter fixed by the user. Let c : E −→ Rp be the MO cost function related

to the addressed MOCO. For each weight λk ∈ Λ, we build the single-objective cost function ck : E −→ R such that255

ck(e) =
∑p
j=1 λ

k
j cj(e) for all e ∈ E. The function ck defines the costs of the weighted-sum problem ws(·, λk).

Then, ILS optimizes the problem ws
(
·, λk

)
and returns a set of solutions P k. The starting solution for ILS is

generated by a domain-dependent heuristic. We put as incumbent of the new sub-problem πk = (λk, ck, xk, rk), the

solution xk minimizing ws(x, λk) for all x ∈ P k. The archive A is updated with the solutions of P k and the attribute

rk is initialized to 0. Finally, sub-problem πk is added to the set Π of sub-problems.260

3.3. Data perturbation

Data perturbation (also called noising method) [37, 3, 38] has been introduced in MO optimization by Lust and

Teghem [11]. In our article, data perturbation needs only one parameter, whereas the one of Lust and Teghem [11]

needs three parameters.

The principle of data perturbation used in PDA is to add a random noise into the output of the single-objective265

cost function of a sub-problem. Given a sub-problem πk = (λk, ck, xk, rk), the MO cost function c, and the data

perturbation parameter d ≥ 0 controlling the maximum variation of the noise; Algorithm 3 computes for each e ∈ E

its perturbed cost value ck(e) = ν ×
∑p
j=1 λ

k
j cj(e), where ν is a real number taken from a uniform distribution in the

range [1−d, 1+d]. The higher d, the larger the perturbation is. Finally, attribute rk counting the number of potentially

efficient solutions found by ILS from πk is reset, i.e. its value is set to 0.270
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Algorithm 1: Perturbed Decomposition Algorithm
Input : a MOCO problem, a stopping criterion, decomposition parameter h, data perturbation parameter d

Output: set A of potentially efficient solutions

Step 1) Initialization :

Step 1.1) Decomposition :

Let c : E −→ Rp be the MO cost function related to the MOCO problem

Π←Decomposition(c↓, h↓, Al) s.t. Π =
(
π1, ..., πK

)
Let Ppls be the starting set of PLS

Ppls ← A

Step 1.2) Initial perturbations :

For each πk ∈ Π :

DataPerturbation(πkl, c↓, d↓)

End of For

Step 2) Main loop :

While stopping criterion is not satisfied do :

Step 2.1) Search for a new solutions for PLS :

For each πk = (λk, ck, xk, rk) ∈ Π :

Step 2.1.a) Iterated Local Search :

P ←ILS(ck↓, xk↓)

Step 2.1.b) Upgrades :

For each x ∈ P :

UpdateIncumbents(x↓, Πl)

If UpdateSolutionSet(x↓, Al)

Then UpdateSolutionSet(x↓, Pplsl)

End of For

rk ← rk + |P ∩A|

End of For

Step 2.2) Reset the least efficient sub-problem :

πw ← arg min{ri : πi = (λi, ci, xi, ri) ∈ Π}

DataPerturbation(πwl, c↓, d↓)

Step 2.3) Pareto local search :

PLS(Ppls↓, Al, Πl)

Ppls ← ∅

End of While
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Algorithm 2: Decomposition
Input : multi-objective cost function c, decomposition parameter h, archive A

Output: set of sub-problems Π

1 Λ←MDS(h↓)

2 foreach λk ∈ Λ do

3 foreach e ∈ E do

4 ck(e)←
p∑
j=1

λkj cj(e)

5 P k ←ILS(ck↓)

6 xk ← min
x∈Pk

{ws(x, λk)}

7 foreach x ∈ P k do

8 UpdateSolutionSet(x↓, Al)

9 rk ← 0

10 πk ← (λk, ck, xk, rk)

11 Π← Π ∪ {πk}

Algorithm 3: DataPerturbation
Input : sub-problem πk, multi-objective cost function c, data perturbation parameter d

Output: ∅

1 foreach e ∈ E do

2 ν ← U(1− d, 1 + d)

3 ck(e)← ν×
p∑
j=1

λkj cj(e)

4 rk ← 0
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3.4. Pareto Local Search

Algorithm 4 (Step 2.3) presents an improved version of the original PLS1 [7]. Given a neighborhood function

Npls, PLS explores the neighborhood of a starting set P of potentially efficient solutions. Each potentially efficient

neighbor found (Line 4) is inserted into a temporary set Pnext and serves to update sub-problem incumbents (Line 5).

When the neighborhood of all solutions of the starting set P has been explored, a new PLS is conducted on Pnext275

(Line 10). PLS stops when Pnext is empty. During the process, P is static and A can be updated with potentially

efficient neighbors. Thus it may happen that the image of a newly generated neighbor y entering A dominates the

image of a solution x in P . So x is proven to be non-efficient and we stop the exploration of its neighborhood. Two

cases appear:

(i) Just before the exploration of the neighborhood of x, if x is no longer in A (this can be verified in O(1)), it means280

that a point in A dominates the image of x. Then we skip the exploration of the neighborhood of x (Line 2).

(ii) We stop the exploration of the neighborhood of x if the image of a neighbor y dominates the image of x (Line 7).

Therefore, contrary to previous works [35, 11], we never explore the neighborhood of a solution proven to be non-

efficient. This simple proposed speed-up technique limits the computational resources allocated to PLS and transfers

them to ILS.285

Algorithm 4: PLS
Input : starting set of solutions P , archive A, set of sub-problems Π =

(
π1, ..., πK

)
Output: ∅

1 Pnext ← ∅

2 foreach x ∈ P ∩A do

3 foreach y ∈ Npls (x) : f (x) � f (y) do

4 if UpdateSolutionSet(y↓, Al) then

5 UpdateIncumbents(y↓, Πl)

6 UpdateSolutionSet(y↓, Pnextl)

7 if f (y) ≤ f (x) then

8 break

9 if Pnext 6= ∅ then

10 PLS(Pnext↓, Al, Πl)

4. Computational experiments

Computational experiments are conducted on bi-objective and tri-objective instances of the MOTSP. We first recall

the formal definition of the MOTSP, present the benchmark, introduce the quality indicators used to evaluate the quality

of our results, specify the parameter settings, and analyze the sensitivity of PDA on the data perturbation. Then, we

compare the results of PDA and MoMad on bi-objective instances; and the results of PDA, MoMad and PD-TPLS-l on290

tri-objective instances.
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4.1. Definition of the MOTSP

In the single-objective version of the TSP, a traveling salesman has to visit a set of cities without passing more than

once through each city and returns to the starting city. The goal is to find a tour such that the total cost is minimized.

In MOTSP, the traveling salesman has to minimize several (potentially conflicting) costs. More formally, we define the295

MOTSP as follows. Given a complete graphG = (V,E) with V = {v1, ..., vn} the set of n nodes and E := {e1, ...eq}

corresponding to the set of edges such that q = n(n−1)
2 , the MOTSP is defined by (1), where X represents the set of

Hamiltonian cycles onG. We are interested here in the bi-objective and tri-objective TSP, that is p = 2, 3. The MOTSP

is intractable and its decision version is NP-hard, even if p = 2 [1].

4.2. Benchmark instances300

The benchmark is composed of 46 instances of different types and sizes: 25 from the literature (19 bi-objective,

6 tri-objective), and 21 additional tri-objective ones we have generated with the same construction processes as in the

literature. Four types of instances are considered:

• Euclidean instances: an instance is composed of p single-objective Euclidean instances. For each objective, the

costs between the edges correspond to the Euclidean distance between two cities in a plane.305

In the bi-objective case, the ten following Euclidean instances are used: three instances published in [25]: eu-

clidAB100, euclidAB300 and euclidAB500. Two instances generated on the basis of TSPLIB instances [39]:

kroAB100, kroAB200. And finally five other instances generated in [11]: kroAB300, kroAB400, kroAB500,

kroAB750, kroAB1000.310

In the tri-objective case, we have generated ten Euclidean instances of different sizes (30, 40, 50 and 200). The

instances are: euclidA-3-30, euclidB-3-30, euclidC-3-30, euclidA-3-40, euclidB-3-40, euclidC-3-40, euclidA-3-

50, euclidB-3-50, euclidC-3-50 and euclidG-3-200. Like the bi-objective “kro” instances presented above, the

coordinates of each city are integers that are uniformly and independently generated in the range [0,3163]. Two315

additional instances of size 100 and 300 published in [25], are considered: euclidABC100 and euclidABC300.

• Clustered instances: an instance is composed of p single-objective clustered instances. For each objective, the

cities are randomly clustered in a plane, and the costs between the edges correspond to the Euclidean distance.

320

In the bi-objective case, we consider three clustered instances generated in [11]: ClusteredAB100, ClusteredAB300

and ClusteredAB500.

In the tri-objective case, the three following clustered instances are used: two instances of sizes 100 and 300

provided by Lust1 (ClusterAB100, ClusterAB300), and one instance of size 200 (clusterD-3-200), we have gen-325

erated ourselves with the DIMACS TSP instance generator2. We do not consider clustered instances of smaller

size because clusters of cities are not well defined when n < 100.

1http://www-desir.lip6.fr/~lustt/Research.html#Main
2http://dimacs.rutgers.edu/Challenges/TSP/
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• Random instances: the costs between the edges are randomly generated from a uniform distribution.

330

In the bi-objective case, we use three random instances published in [25]: rdAB100, rdAB300 and rdAB500.

In the tri-objective case, we have generated ten random instances of different sizes (30, 40 50 and 200): rdA-3-

30, rdB-3-30, rdC-3-30, rdA-3-40, rdB-3-40, rdC-3-40, rdA-3-50, rdB-3-50, rdC-3-50 and rdE-3-200. Like the

random bi-objective instances presented above, each component of the cost vector assigned to an edge (between335

two cities) is chosen as an integer value taken from a uniform distribution in the range [0,4473]. Two additional

instances of size 100 and 300 published in [25], are considered: rdABC100 and rdABC300.

• Mixed instances (only for the bi-objective case): the first cost corresponds to the Euclidean distance between two

cities in a plane and the second cost is randomly generated from a uniform distribution. Three mixed instances340

also published in [25] are used: mixedAB100, mixedAB300 and mixedAB500.

4.3. Multi-objective quality indicators and statistical test

In single-objective optimization, it is quite easy to measure the quality of a solution. It is a more difficult task

in the MO case, because MO outputs are represented by sets of trade-off solutions, potentially incomparable in term

of Pareto dominance. Consequently, we use several indicators, called quality indicators, to measure the quality of an345

approximation of the Pareto front.

This section presents three of the most used quality indicators to compare approximation sets in MOCO: the hy-

pervolume difference indicator IH− [40], the ε-indicator Iε [41] and the R2 indicator IR2 [42].

The computation of these indicators implies to know the exact Pareto front Znd, which is generally unknown for

a given instance. Thus we approximate it by merging all the approximations generated during the experimental phase350

and keeping only the non-dominated ones, forming the approximation of the Pareto front Z̃nd. Let z̃∗ ∈ Z be the

approximation of z∗, based on Z̃nd.

Hypervolume difference indicator I−H [40] (to minimize). Given an approximation set A and a reference point z̄ ∈ Z

which is weakly dominated by every point ofA, the hypervolume value ofAwith regard to z̄ measures the hypervolume

of the region of the objective space which is weakly dominated by A and weakly dominates z̄. More formally, the355

hypervolume indicator IH is such that IH (A, z̄) =
´
Z
dom(A, z̄)dz where dom(A, z̄) = {z ∈ Z : ∃z′ ∈ A : z′ 5

z 5 z̄}.

In the present work we use the hypervolume difference indicator I−H . Given an approximation set A and the

reference point z̄, the indicator value is defined as:

I−H(A, Z̃nd, z̄) = IH(Z̃nd, z̄)− IH(A, z̄)

I−H(A, Z̃nd, z̄) defines the hypervolume of the subspace that is weakly dominated by Z̃nd but not by A. In contrast360

to the original hypervolume indicator, the lower I−H (A), the better the quality of A is. We use the algorithm of Fonseca

and al. [43, 44] to compute the hypervolume. Source code is available online 3.

3http://iridia.ulb.ac.be/∼manuel/hypervolume
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Before using I−H , a normalization is necessary in order to allow the different objectives to contribute equally to

indicator value. A standard linear normalization procedure will apply the following transformation:

z
′

j ←
zj−zminj

zmaxj −zminj
+ 1 for j = 1, ..., p (5)

where zmin = (zmin1 , ..., zminp ) ∈ Z and zmax = (zmax1 , ..., zmaxp ) ∈ Z, such that zminj and zmaxj are respectively365

the estimated minimum and maximum values that the jth objective can take, for each j = 1, ..., p. The computation

of zminj and zmaxj is based on the values of the points of all provided approximation sets. Note that without the +1 in

(5), extreme points will not contribute to the hypervolume value. After normalization, the coordinates of points fall in

the range [1, 2].

As advised by Fonseca et al. [44, 43] in their hypervolume computation algorithm, we use z̄ = zmax + 0.1 ×370

(zmax − zmin) as the reference point for computing the hypervolume. After the normalization step, z̄ = (2.1, 2.1).

ε indicator Iε [41] (to minimize). Given an approximation set A and the approximation of the Pareto front Z̃nd, the

unary ε indicator Iε gives the factor by which A is worse than Z̃nd with respect to all objectives, defined as:

Iε(A, Z̃nd) = inf
ε∈R
{∀z′ ∈ Z̃nd, ∃z ∈ A : zj ≤ (1 + ε)z′j}

The lower Iε(A, Z̃nd), the better the approximation set A is comparing to Z̃nd.

R2 indicator IR2 [42] (to minimize). Given an approximation setA and a set of weights Λ, the unary R2 indicator IR2375

value of A is defined as:

IR2(A,Λ, Z̃nd, z̃
∗) =

∑
λ∈Λ

(
min
x∈A

wat(x, λ, z̃∗)− min
x∈Z̃nd

wat(x, λ, z̃∗)
)

|Λ|

The lower IR2(A,Λ, Z̃nd, z̃
∗), the better the approximation set A is comparing to Z̃nd. As indicated in [45],

the set Λ is made using the MDS method (see Section 2 for details) with a parameter h which should be suffi-

ciently large to cover well Z̃nd. In order to have a number of weights proportional to the size of Z̃nd, we set

h := arg inf{(h
′+p−1
h′ ) ≥ 1

10 |Z̃nd| : h′ ∈ N}. As suggested by Fonseca et al. [45], normalization is not manda-380

tory for this indicator.

Note that for all indicators used in the present work, the value of the approximation of the non-dominated set Z̃nd

is 0.

Mann-Whitney statistical test. In order to statistically compare the results of the different algorithms, the Mann-385

Whitney non-parametric statistical test [46] has been applied. For a specific indicator on a given instance, this test

assesses whether two algorithms are comparable. If the Mann-Whitney test is satisfied, it means there is no statistical

difference between the values of the quality indicator obtained by the two algorithms. Otherwise mean values are

simply compared.

As three hypotheses are tested simultaneously (one for each indicator, given an instance), the levels of risk of the390

tests have been adjusted with the Holm sequential rejective method (see [47] for more details). The starting level of

risk of the Mann-Whitney test has been fixed to 1%.
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4.4. Parameter settings of MoMad and PD-TPLS-l

The MoMad parameters have been fixed as follows, as indicated in [35]:

• During the decomposition phase, MoMad uses the MDS method (see Section 2.1) to generate its set of weights.395

For bi-objective instances, the number of sub-problems is set to min (n, 600). MoMad has not been tested for

tri-objective instances, so we have experimentally fixed the number of sub-problems to (h+3−1
h ) where h =

min (n, 60) is the parameter of the MDS method, for all tri-objective instances. So for instances of size 30, 40,

50, the respective number of sub-problems is 496, 861, 1326. For larger instances, the number of sub-problems

is 1891.400

For each generated weight, MoMad optimizes the corresponding weighted sum problem by running an improved

version of the Lin-Kernighan (LK) heuristic [48]: the chained LK of Applegate et al [49]. It uses a variable k-

edge-neighborhood and is one of the best ILS for the single-objective TSP. The source code of the chained LK

is available trough the Concorde package4.

• The maximum number of iterations for PLS is set to 10.405

• The number of iterations is fixed to 500 for all bi-objective instances and for tri-objective instances of size

n ≤ 50. For larger-sized tri-objective instances (n ≥ 100), the number of iterations is fixed to 1000.

PD-TPLS-l also uses MDS to generate its set of weights, and we set the number of weights to (150+3−1
150 ) = 11, 476

for all instances, in order to avoid the clustering effect described in [23] and briefly discussed in Section 4.7.2. For

each generated weight, PD-TPLS-l optimizes the corresponding weighted sum problem by calling the chained LK as410

suggested in [23], instead of the 3-opt first improvement used in the original method. Internal tests have shown that

PD-TPLS-l using the chained LK gives better results.

4.5. Parameter settings of PDA

For the decomposition phase, we choose as ILS the chained LK. We use the default parameters of the chained LK,

but modify the algorithm to integrate it into our own implementation and to memorize all the generated local optima415

with distinct fitness values, where the fitness function is the function optimized by the chained LK.

The neighborhood function of PLS Npls chosen is the 2-edge-exchange neighborhood, as suggested in [50]. A

candidate edge list is associated toNpls: it consists of all edges composing at least one solution of the set of potentially

efficient solutions A.

During the main loop of PDA, we choose as ILS a 3-opt first improvement with biased random double-bridge kicks420

and same candidate edge list as in PLS. We use the implementation of Paquete5.

To have approximately the same amount of computational resources between the compared methods, and thus

making a comparison as fair as possible:

• The number K of sub-problems in PDA is the same as in MoMad.

• The stopping criterion used by PDA for a given instance corresponds to the minimum between the average425

computational time spent by MoMad and the one of PD-TPLS-l on this instance.

The value of the data perturbation parameter d is fixed in the next subsection.

4http://www.tsp.gatech.edu/concorde
5http://www.sls-book.net/implementations.html
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4.5.1. Sensitivity analysis of PDA on the data perturbation

PDA introduces data perturbation to the framework of Decomposition algorithms [2]. The aim of this section is

to analyze the influence of data perturbation on PDA’s results. To this aim, we have generated 12 new Euclidean and430

random, bi-objective and tri-objective TSP test instances of different sizes (see Section 4.2 for instance generation):

• In the bi-objective case:

– 3 Euclidean instances: euclidT-2-100, euclidT-2-300, euclidT-2-500;

– 3 random instances: rdT-2-100, rdT-2-300, rdT-2-500.

• In the tri-objective case:435

– 3 Euclidean instances: euclidT-3-30, euclidT-3-50, euclidT-3-100;

– 3 random instances: rdT-3-30, rdT-3-50, rdT-3-100.

For each instance, we compare 5 different alternative values of the data perturbation parameter d: 0% (no data pertur-

bation), 2.5%, 5%, 7.5% and 10%. For a given instance, PDA has been run 10 times for each value of d. The average

I−H values related to each alternative have been compared in function of the running time, controlled by the number of440

iterations varying from 0 to 1500. I−H values have been computed every 300 iterations.

Results are shown in Figure 1 for bi-objective instances and Figure 2 for tri-objective instances. Each curve cor-

responds to a unique value of data perturbation. First, one can note that the running time of all alternatives are quite

similar. We remark that the increase of the number of iterations brings a significant improvement of the quality indicator

value.445
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Figure 1: Influence of the data perturbation d on I−H (to min.) in function of the running time, for bi-objective Euclidean (left) and random (right)

instances.

In the bi-objective case, it appears that PDA with small values of d performs better on Euclidean instances, par-

ticularly for d = 2.5%, 5% (the red and green curves). When the size of the instance increases, the differences of

performance without data perturbation (d = 0%) and with the best values of perturbation (d = 2.5%, 5%) decreases.

However, for euclid-T-500, d = 2.5% is still a bit better than d = 0%. For random instances, larger values of d seem

to be more efficient, and differences of performances with and without data perturbation are more pronounced. PDA450

with d = 5% obtains good and stable results on the three random instances.
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Figure 2: Influence of the data perturbation d on I−H (to min.) in function of the running time, for tri-objective Euclidean (left) and random (right)

instances.

In the tri-objective case, large values of d perform better for instances of size less than 50 for both Euclidean and

random instances. When n ≥ 50, smaller values of d are more efficient for both types of instances, while d = 2.5%, 5%

bring better results than d = 0% for Euclidean instances. For random instances of size n ≥ 50, d = 2.5%, 5% give

similar results than d = 0%.455

We can notice that the efficiency of data perturbation is strongly dependent on the instance characteristics (size,

number of objectives, cost functions). Globally, data perturbation has a positive impact on the optimization process

over the tested instances and meets our expectations, described in Section 3.1. Indeed, in a great majority of instances,

when PLS is stuck in a locally efficient set, ILS is more efficient in proposing new starting solutions for PLS, by

optimizing perturbed weighted sum problems instead of non perturbed ones. In fact, searching for optima of perturbed460

weighted sum problems enables the exploration of regions of the search space which were neglected without data

perturbation, and thus escape more easily from locally efficient set.

To summarize this sensitivity analysis, small but strictly positive values of data perturbation are recommended for

MOTSP, whereas greater values seem to lead to unstable results from an instance to another.
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4.5.2. Final parameter settings465

The value of the data perturbation parameter d has been fixed to 5% for both bi-objective and tri-objective instances.

Indeed, choosing d = 5% represents a good compromise between Euclidean and random instances in the bi-objective

case, and performs well in the tri-objective case when the size of the instance increases. Table 1 reports the chosen

parameter values for PDA.

Parameter Value

Number of sub-problems K Same values as MoMad

ILS - decomposition phase Chained LK

ILS - iterative phase 3-opt first improvement

Data perturbation d 5%

PLS’s neighborhood function Npls 2-edge-exchange

Stopping criterion Min(MoMad time, PD-TPLS-l time)

Table 1: Final parameter settings of PDA.

4.6. Experimental design470

For all bi-objective instances and small-sized (n ≤ 50) tri-objective instances, the sets of points of the three

algorithms (PDA, MoMad and PD-TPLS-l) are managed as regular unbounded archives.

For tri-objective instances with n ≥ 100, the sets of points of the three algorithms are managed by the well-known

ε-archive concept introduced by Laumanns et al. [51]. They propose to place a hyper-grid that discretizes the objective

space into regions called boxes. A box can contain at most one point. Given a tolerance ε > 0, the principle of475

the ε-archive is to maintain a set of well-distributed points in the objective space, and to bound the size of this set.

The tolerance parameter ε controls the dispersion of the points and implicitly determines the maximal size of the

approximation. The larger ε is, the larger the dispersion of the points is and the smaller the size of the approximation

is. See [51] for a more detailed description of an ε-archive, the guarantees on the good distribution of points in the

ε-archive and the guarantees on the bound on its size. For all concerned instances, ε is fixed to 1%.480

The three algorithms have been run 20 times on the instances presented in Section 4.2 and compared using the Iε,

I−H and IR2 indicators. All experiments presented were performed on a 3.4 GHz computer with 16Gb RAM on a Linux

OS. All algorithms are written in C/C++.

4.7. Experimental results

4.7.1. Results on bi-objective instances485

Tables 2 and 3 compare PDA and MoMad, by reporting for the 19 bi-objective TSP benchmark instances the

average values and standard deviation of Iε, I−H and IR2, the average size |A| of the approximation sets returned for

each algorithm, the size |Z̃nd| of the approximation of the non-dominated set, the number of examined solutions, and

the average time spent by the two algorithms. Numbers in bold indicate a better average value.

PDA has better average values on Iε, I−H and IR2 than MoMad on all tested bi-objective instances. Furthermore,490

the Mann-Whitney test indicates that PDA is better than MoMad for each instance and quality indicator used. While
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the computational time of PDA and MoMad are similar, the number of examined solutions is generally larger for PDA

than for MoMad.

The Iε, I−H and IR2 values of the approximation sets produced by the two algorithms are plotted in Figure 3 for

three Euclidean “kro” instances, and in Figure 4 for three random instances.495

Instance Algorithm
Iε I−H

IR2 |A| |Z̃nd|
Nb. of exam. Time

(10-3) (10-4) sol. (106) (s)

ClusterAB100
MoMad 4.06 ± 0.50 1.60 ± 0.09 5.46 ± 0.65 2,454

3,036
2.85 14

PDA 1.64 ± 0.28 0.20 ± 0.04 0.72 ± 0.15 2,762 2.36 14

ClusterAB300
MoMad 6.19 ± 0.48 3.42 ± 0.30 21.0 ± 0.95 15,931

21,616
113 209

PDA 1.99 ± 0.54 0.39 ± 0.06 3.62 ± 0.64 18,488 203 209

ClusterAB500
MoMad 7.05 ± 1.02 0.86 ± 0.03 15.6 ± 0.26 40,936

54,239
440 677

PDA 1.30 ± 0.47 0.22 ± 0.04 4.94 ± 0.73 45,706 577 678

euclidAB100
MoMad 3.64 ± 0.40 2.01 ± 0.14 8.56 ± 0.76 1,400

1,812
1.46 10

PDA 2.05 ± 0.04 0.30 ± 0.03 1.23 ± 0.18 1,612 1.29 10

euclidAB300
MoMad 1.28 ± <0.01 0.72 ± 0.01 10.4 ± 0.20 14,436

18,519
62.9 164

PDA 0.83 ± 0.13 0.20 ± 0.02 3.31 ± 0.35 16,334 66.7 164

euclidAB500
MoMad 1.17 ± 0.03 0.78 ± <0.01 19.3 ± 0.23 34,148

44,878
338 605

PDA 0.90 ± 0.11 0.38 ± 0.04 9.82 ± 0.73 37,984 392 606

kroAB100
MoMad 3.94 ± 0.29 1.74 ± 0.12 9.79 ± 0.66 2,569

3,332
2.78 11

PDA 2.03 ± 0.50 0.21 ± 0.02 1.15 ± 0.13 3,015 2.44 11

kroAB200
MoMad 3.54 ± 0.03 0.98 ± 0.02 9.70 ± 0.30 6,649

8,913
16.8 59

PDA 1.17 ± 0.20 0.15 ± 0.02 1.51 ± 0.20 7,880 15.8 59

kroAB300
MoMad 1.82 ± 0.15 0.63 ± 0.01 7.48 ± 0.14 14,880

19,027
69.1 169

PDA 0.87 ± 0.13 0.15 ± 0.02 2.04 ± 0.25 16,963 69.6 169

kroAB400
MoMad 2.07 ± <0.01 0.82 ± 0.01 12.0 ± 0.17 21,793

30,388
152 346

PDA 1.11 ± 0.225 0.27 ± 0.04 5.09 ± 0.42 25,027 178 346

kroAB500
MoMad 2.18 ± <0.01 0.84 ± <0.01 18.5 ± 0.19 33,436

46,095
339 632

PDA 1.07 ± 0.21 0.39 ± 0.03 11.0 ± 0.75 37,863 430 632

kroAB750
MoMad 1.64 ± 0.92 0.86 ± <0.01 30.2 ± 0.24 60,415

84,042
1,151 1,417

PDA 1.17 ± 0.28 0.55 ± 0.04 21.0 ± 1.06 66,365 1,462 1,417

kroAB1000
MoMad 2.61 ± <0.01 1.05 ± <0.01 44.6 ± 0.21 98,476

127,073
2,663 2,465

PDA 1.63 ± 0.40 0.78 ± 0.05 34.8 ± 1.55 105,174 3,264 2,466

Table 2: Comparison between PDA and MoMad results on Euclidean and clustered bi-objective instances.
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Figure 3: Iε (left), I−H (middle) and IR2 (right) comparison between MoMad and PDA on kroAB100 (1st line), kroAB500 (2nd line), and kroAB1000

(3rd line) instances

Instance Algorithm
Iε I−H

IR2 |A| |Z̃nd|
Nb. of exam. Time

(10-3) (10-4) sol. (106) (s)

mixedAB100
MoMad 15.2 ± 1.29 5.14 ± 0.19 21.8 ± 1.51 983

1,846
1.20 11

PDA 4.64 ± 0.68 0.64 ± 0.06 1.38 ± 0.27 1,461 1.23 11

mixedAB300
MoMad 25.0 ± 0.39 2.56 ± 0.02 37.5 ± 0.51 5,786

12,093
28.0 185

PDA 9.93 ± 1.06 1.29 ± 0.06 16.7 ± 0.98 7,477 32.6 185

mixedAB500
MoMad 14.9 ± 0.27 1.97 ± <0.01 55.8 ± 0.38 14,008

26,028
145 721

PDA 11.6 ± 1.18 1.42 ± 0.05 38.4 ± 1.25 16,692 182 721

rdAB100
MoMad 22.0 ± 3.14 8.62 ± 0.36 44.3 ± 1.89 641

1,707
0.80 12

PDA 6.34 ± 1.03 1.14 ± 0.12 4.90 ± 0.60 1,161 1.04 12

rdAB300
MoMad 34.5 ± 1.00 5.52 ± 0.04 82.6 ± 0.66 2,079

8,617
9.37 205

PDA 13.0 ± 1.12 3.18 ± 0.10 50.5 ± 1.56 3,231 12.7 205

rdAB500
MoMad 29.0 ± 0.97 4.02 ± 0.01 13.3 ± 0.60 3,518

11,188
29.9 750

PDA 18.0 ± 1.95 2.82 ± 0.06 10.0 ± 1.80 4,822 38.4 750

Table 3: Comparison between PDA and MoMad results on random and mixed bi-objective instances.

Standard deviation of indicator values is globally larger for PDA compared to MoMad. The variations of indicator

values for our method on a given instance, is due to the use of data perturbation which induces an additional level of

stochasticity (in addition to the use of Chained LK and the 3-opt first improvement ILS) compared with MoMad, which

is a Decomposition algorithm without data perturbation.

21



 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

MoMad PDA

E
p

si
lo

n

rdAB100

 0
 0.0001
 0.0002
 0.0003
 0.0004
 0.0005
 0.0006
 0.0007
 0.0008
 0.0009

 0.001

MoMad PDA

H
y
p

e
rv

o
lu

m
e
 D

iff
e
re

n
ce

rdAB100

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

MoMad PDA

R
2

rdAB100

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

MoMad PDA

E
p

si
lo

n

rdAB300

 0
 0.0001
 0.0002
 0.0003
 0.0004
 0.0005
 0.0006
 0.0007
 0.0008
 0.0009

 0.001

MoMad PDA
H

y
p

e
rv

o
lu

m
e
 D

iff
e
re

n
ce

rdAB100

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

MoMad PDA

R
2

rdAB100

 0.014

 0.016

 0.018

 0.02

 0.022

 0.024

 0.026

 0.028

 0.03

MoMad PDA

E
p

si
lo

n

rdAB500

 0.00026

 0.00028

 0.0003

 0.00032

 0.00034

 0.00036

 0.00038

 0.0004

 0.00042

MoMad PDA

H
y
p

e
rv

o
lu

m
e
 D

iff
e
re

n
ce

rdAB500

 95

 100

 105

 110

 115

 120

 125

 130

 135

MoMad PDA

R
2

rdAB500

Figure 4: Iε (left), I−H (middle) and IR2 (right) comparison between MoMad and PDA on rdAB100(1st line), rdAB300(2nd line) and rdAB500(3rd

line) instances.

However, it is important to note that for all I−H , Iε and IR2 collected values, the best value found by MoMad never500

reaches the worst one found by our method for all the tested instances, except for Iε on euclidAB750.

Finally, we can observe that PDA has better performance on random, mixed and clustered instances than on Eu-

clidean “kro” and “euclid” instances. We will discuss this point in Section 4.7.3.

4.7.2. Results on tri-objective instances

Tables 4 and 5 compare PDA, MoMad and PD-TPLS-l results on the 27 tri-objective TSP benchmark instances.505

PDA obtains better results than MoMad and PD-TPLS-l on all tested instances. As for the bi-objective case, the

Mann-Whitney test has been applied for tri-objective instances and states that PDA is better than both MoMad and

PD-TPLS-l, for each instance and quality indicator used.

The Iε, I−H , and IR2 values of the approximation sets produced by PDA, MoMad and PD-TPLS-l are plotted in

Figure 5 for three Euclidean instances, and in Figure 6 for three random instances.510
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Instance Algorithm
Iε I−H

IR2 |A| |Z̃nd|
Nb. of exam. Time

(10-2) (10-4) sol. (106) (s)

ClusterABC100

MoMad 1.47 ± 0.08 18.5 ± 0.13 36.3 ± 0.34 15,933

80,360

78 905

PDA 1.20 ± 0.05 12.8 ± 0.09 25.8 ± 0.24 16,343 43 905

PD-TPLS-l 2.34 ± 0.11 17.1 ± 0.09 38.5 ± 0.37 14,088 2,366 1,439

clusterD-3-200

MoMad 2.04 ± 0.02 27.2 ± 0.07 85.6 ± 0.40 24,170

251,917

322 2,041

PDA 1.20 ± 0.03 14.6 ± 0.06 50.2 ± 0.32 25,387 163 2,041

PD-TPLS-l 2.59 ± 0.38 18.4 ± 0.14 61.7 ± 0.49 22,677 5,066 2,228

ClusterABC300

MoMad 3.76 ± 0.27 36.5 ± 0.15 172 ± 0.70 28,064

342,642

730 3,614

PDA 2.07 ± 0.08 16.6 ± 0.27 90.1 ± 0.58 30,791 367 3,614

PD-TPLS-l 3.11 ± 0.11 19.9 ± 0.38 106 ± 0.63 26,297 7,788 3,633

euclidA-3-30

MoMad 0.99 ± 0.09 0.47 ± 0.05 0.37 ± 0.04 12,111

12,820

4.81 22

PDA 0.86 ± 0.03 0.30 ± 0.03 0.16 ± 0.05 12,197 4.32 22

PD-TPLS-l 2.84 ± 0.03 26.8 ± 0.35 15.2 ± 0.15 5,060 251 178

euclidB-3-30

MoMad 0.86 ± 0.05 0.52 ± 0.07 0.45 ± 0.10 10,695

11,426

4.38 22

PDA 0.85 ± 0.05 0.31 ± 0.06 0.21 ± 0.06 10,819 3.91 22

PD-TPLS-l 2.34 ± 0 26.3 ± 0.17 16.6 ± 0.25 4,666 256 179

euclidC-3-30

MoMad 0.82 ± 0.01 0.36 ± 0.05 0.34 ± 0.10 15,748

16,437

5.91 23

PDA 0.78 ± 0.14 0.28 ± 0.06 0.17 ± 0.04 15,863 5.26 23

PD-TPLS-l 2.18 ± 0 26.0 ± 0.11 15.1 ± 0.05 5,627 244 168

euclidA-3-40

MoMad 1.07 ± 0.03 1.49 ± 0.09 1.61 ± 0.15 39,636

46,413

26.2 91

PDA 0.79 ± 0.07 0.43 ± 0.04 0.41 ± 0.08 42,061 23.8 91

PD-TPLS-l 2.03 ± 0 21.3 ± 0.12 16.6 ± 0.13 14,234 619 408

euclidB-3-40

MoMad 0.92 ± 0.09 0.59 ± 0.07 0.66 ± 0.13 34,919

37,206

21.4 85

PDA 0.65 ± 0.09 0.16 ± 0.02 0.13 ± 0.01 35,623 18.8 85

PD-TPLS-l 2.54 ± 0 21.5 ± 0.15 17.4 ± 0.17 12,352 628 406

euclidC-3-40

MoMad 0.94 ± 0.04 1.17 ± 0.04 1.06 ± 0.08 32,189

36,694

21.6 81

PDA 0.72 ± 0.06 0.31 ± 0.02 0.25 ± 0.03 33,946 19.2 81

PD-TPLS-l 2.18 ± 0 21.3 ± 0.18 16.6 ± 0.13 11,942 615 380

euclidA-3-50

MoMad 0.79 ± 0.08 1.10 ± 0.07 1.37 ± 0.12 91,192

102,970

83.2 224

PDA 0.55 ± 0.04 0.20 ± 0.02 0.17 ± 0.03 96,292 72.5 224

PD-TPLS-l 1.80 ± 0.03 20.1 ± 0.16 21.7 ± 0.20 25,290 1,058 738

euclidB-3-50

MoMad 0.69 ± 0.04 1.58 ± 0.03 2.16 ± 0.10 106,154

125,686

98.8 228

PDA 0.50 ± 0.01 0.37 ± 0.02 0.40 ± 0.03 113,181 86.8 228

PD-TPLS-l 1.97 ± 0.08 20.8 ± 0.20 20.1 ± 0.39 27,493 1,047 751

euclidC-3-50

MoMad 0.64 ± 0.03 1.22 ± 0.05 1.43 ± 0.10 109,375

126,855

107 258

PDA 0.50 ± 0.04 0.27 ± 0.02 0.29 ± 0.02 116,378 88.5 258

PD-TPLS-l 2.13 ± 0.13 18.4 ± 0.11 19.2 ± 0.24 31,783 1,023 721

euclidABC100

MoMad 1.33 ± 0.04 22.2 ± 0.15 41.5 ± 0.48 12,196

59,811

52.7 784

PDA 1.14 ± 0.03 15.8 ± 0.14 30.4 ± 0.45 12,687 29.9 784

PD-TPLS-l 2.63 ± 0.24 22.2 ± 0.18 41.5 ± 0.49 11,124 2,455 982

euclidG-3-200

MoMad 1.81 ± 0.11 30.7 ± 0.12 113 ± 0.73 19,720

225,617

231 1,859

PDA 1.16 ± 0.04 17.7 ± 0.06 69.5 ± 0.68 20,800 121 1,859

PD-TPLS-l 2.23 ± 0.13 21.7 ± 0.13 82.0 ± 0.98 18,923 4,927 2,005

euclidABC300

MoMad 2.13 ± 0.05 33.3 ± 0.09 175 ± 0.87 18,451

252,373

399 3,092

PDA 1.20 ± 0.04 16.6 ± 0.13 100 ± 1.44 20,347 197 2,668

PD-TPLS-l 2.28 ± 0.18 19.9 ± 0.15 114 ± 1.26 18,146 7,052 2,667

Table 4: Comparison between PDA, MoMad and PD-TPLS-l results on clustered and Euclidean tri-objective instances.
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One can remark that PD-TPLS-l is outperformed by both PDA and MoMad for instances of size n ≤ 50. In spite of

a number of weighted sum optimizations much larger than PDA and MoMad, PD-TPLS-l stagnates and never reaches

the performances of its competitors on these instances. Besides, the computational time of PD-TPLS-l explodes with

the size of the instance. These two points can be explained: first, PD-TPLS-l conducts only one iteration of PLS,

contrary to PDA and MoMad which continue PLS after the first iteration, so the final quality of the latter will be better.515

Second, the neighborhood of the PLS used by PD-TPLS-l is a 3-edge-exchange, much larger than the 2-edge-exchange

used by PDA and MoMad and thus consuming more computational resources when n increases. This is confirmed

by the number of solutions examined by PD-TPLS-l, which is at least 10 times larger than the number of solutions

examined by PDA or MoMad. Finally, PD-TPLS-l uses a big-sized candidate list containing useless candidates (see

[19] for technical details about the candidate list used), much less efficient than the one used by PDA. These remarks520

point out the difficulty of designing an efficient PLS using a neighborhood larger than the 2-exchange in the MOTSP.

On the other hand, for instances of size n ≥ 100, PD-TPLS-l performs similarly or better than MoMad, but is

still outperformed by PDA. In fact, MoMad is impacted by the clustering effect described in [23]. MoMad solves a

limited number of weighted sum problems. For each one, an optima is memorized. The regions near these solutions

are explored by PLS, but the other regions are neglected. For bi-objective instances, or small tri-objective instances,525

the number of considered weighted sum problems is sufficiently large so that neglected regions are small. But for

larger tri-objective instances, the number of considered weighted sum problems becomes insufficient so that neglected

regions are much larger. PD-TPLS-l avoids this clustering effect by optimizing a lot of weighted sum problems and

launching its MO LS from the corresponding local optima.

Although PDA solves the same number of sub-problems as MoMad, data perturbation circumvents this clustering530

effect and even brings much better results than PD-TPLS-l for large tri-objective instances. The bad results of PD-

TPLS-l compared to PDA also indicate that multiplying the search directions by optimizing (non perturbed) weighted

sum problems, is not a good alternative to approximate the non-dominated set of the MOTSP. Lust and Teghem [11]

pointed out the same issue on bi-objective instances.

Contrary to the bi-objective case, PDA examines much less solutions than MoMad. Several differences between535

PDA and MoMad can explain these results:

1. During the decomposition phase, PDA memorizes all the local optima with distinct fitness values generated by

the LK heuristic, whereas MoMad does not. Given that a LK run generates n + 1 local optima, and PDA and

MoMad call the same number of LK runs, PDA will examine in the worst case n+ 1 times more solutions than

MoMad during the decomposition phase.540

2. Contrary to the MoMad’s PLS, the PDA’s PLS does not explore the neighborhood of a solution proven to be

inefficient. Therefore, given a starting set of solutions, the PDA’s PLS will examine less solutions than the

MoMad’s PLS.

3. PDA finds more potentially efficient solutions than MoMad for all tested instances, as indicated in tables 2, 3, 4

and 5. Thus PLS may explore the neighborhood of more solutions than MoMad.545

Table 6 highlights, for two instances of different sizes and number of objectives, the number of solutions examined

by the two main algorithmic components shared by MoMad, PDA and PD-TPLS-l: the single objective local search

component (ILS) and the MO local search component (PLS). Not surprisingly, for the three methods, the largest

proportion of solutions are examined by PLS. However, the proportion of solutions examined by PLS in PDA is lower

than in MoMad. Therefore, as expected in Section 3.4, PDA saves computational resources thanks to its PLS and550
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Figure 5: Iε (left), I−H (middle) and IR2 (right) comparison between MoMad, PDA and PD-TPLS-l on euclidA-3-50 (1st line), euclidABC100 (2nd

line), euclidABC300 (3rd line) instances.
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Figure 6: Iε (left), I−H (middle) and IR2 (right) comparison between MoMad, PDA and PD-TPLS-l on rdA-3-50 (1st line), rdABC100 (2nd line),

rdABC300 (3rd line) instances.
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Instance Algorithm
Iε I−H

IR2 |A| |Z̃nd|
Nb. of exam. Time

(10-2) (10-4) sol. (106) (s)

rdA-3-30

MoMad 2.39 ± 1.37 4.01 ± 0.26 3.02 ± 0.17 12,249

15,215

6.53 24

PDA 1.54 ± 1.43 1.11 ± 0.06 0.97 ± 0.11 12,865 5.49 24

PD-TPLS-l 3.29 ± 0 33.9 ± 0.23 26.4 ± 0.31 5,690 264 168

rdB-3-30

MoMad 2.32 ± 0.23 3.77 ± 0.24 3.35 ± 0.32 12,374

15,651

6.42 25

PDA 1.59 ± 0.05 0.80 ± 0.04 0.69 ± 0.14 13,298 5.57 25

PD-TPLS-l 3.69 ± 0.02 26.9 ± 0.17 31.1 ± 0.39 5,645 257 253

rdC-3-30

MoMad 1.85 ± 0.23 2.99 ± 0.10 3.33 ± 0.19 11,720

14,695

5.88 23

PDA 1.52 ± 0.16 1.04 ± 0.05 0.91 ± 0.13 12,429 4.95 23

PD-TPLS-l 3.62 ± 0.03 27.0 ± 0.24 26.3 ± 0.17 5,318 245 267

rdA-3-40

MoMad 2.24 ± 0.25 9.16 ± 0.24 10.7 ± 0.28 23,804

39,101

21.6 85

PDA 1.60 ± 0.08 1.05 ± 0.02 1.44 ± 0.11 30,378 20.4 85

PD-TPLS-l 3.79 ± 0.18 30.8 ± 0.17 36.1 ± 0.29 10,624 606 349

rdB-3-40

MoMad 2.16 ± 0.09 7.64 ± 0.14 7.91 ± 0.33 24,088

37,859

22.1 81

PDA 1.41 ± 0.12 0.96 ± 0.02 1.08 ± 0.09 30,343 20.4 81

PD-TPLS-l 3.05 ± 0.06 28.4 ± 0.15 35.0 ± 0.17 10,236 615 575

rdC-3-40

MoMad 2.13 ± 0.07 8.75 ± 0.19 10.0 ± 0.38 29,586

47,796

27.0 86

PDA 1.23 ± 0.13 1.15 ± 0.04 1.36 ± 0.12 37,098 26.1 86

PD-TPLS-l 3.31 ± 0 28.7 ± 0.14 36.2 ± 0.26 12,281 627 611

rdA-3-50

MoMad 1.85 ± 0.11 11.5 ± 0.11 14.2 ± 0.22 53,634

108,039

74.8 210

PDA 1.08 ± 0.06 1.50 ± 0.05 2.20 ± 0.09 74,105 67.0 210

PD-TPLS-l 2.83 ± 0.20 27.3 ± 0.18 41.1 ± 0.38 22,293 897 784

rdB-3-50

MoMad 2.14 ± 0.12 12.2 ± 0.15 16.4 ± 0.38 39,589

81,522

54.1 197

PDA 1.20 ± 0.08 1.29 ± 0.05 1.78 ± 0.09 58,846 52.3 197

PD-TPLS-l 3.01 ± 0.06 28.9 ± 0.13 47.1 ± 0.35 17,478 920 943

rdC-3-50

MoMad 1.96 ± 0.15 10.2 ± 0.09 15.9 ± 0.26 49,902

97,807

67.3 194

PDA 1.19 ± 0.08 1.33 ± 0.04 1.93 ± 0.08 69,584 60.5 194

PD-TPLS-l 3.32 ± 0.27 25.6 ± 0.19 46.3 ± 0.40 20,651 916 889

rdABC100

MoMad 3.89 ± 0.25 26.8 ± 0.14 67.5 ± 0.47 26,218

179,330

119 979

PDA 1.51 ± 0.06 9.51 ± 0.07 28.3 ± 0.21 34,334 64.5 891

PD-TPLS-l 3.53 ± 0.30 21.8 ± 0.16 67.4 ± 0.57 22,667 1,951 892

rdE-3-200

MoMad 8.34 ± 0.08 37.8 ± 0.15 180 ± 0.58 43,397

713,669

489 2,421

PDA 2.36 ± 0.22 13.6 ± 0.10 86.4 ± 0.47 53,705 261 2,007

PD-TPLS-l 5.21 ± 0.37 21.7 ± 0.16 121 ± 0.81 42,747 3,846 2,007

rdABC300

MoMad 10.3 ± 0.17 43.3 ± 0.13 280 ± 0.60 50,365

970,441

958 4,083

PDA 4.18 ± 0.17 12.2 ± 0.06 121 ± 0.71 68,526 578 3,225

PD-TPLS-l 7.06 ± 0.45 21.7 ± 0.17 176 ± 1.00 49,981 5,948 3,225

Table 5: Comparison between PDA, MoMad and PD-TPLS-l results on random tri-objective instances.

26



transfers them to ILS, especially in the tri-objective case.

Instance p n Algorithm

ILS PLS Total

Nb. of exam. Proportion of Nb. of exam. Proportion of
(106)

sol. (106) exam. sol. (%) sol. (106) exam. sol. (%)

euclidAB500 2 500
MoMad 0.25 0.07 337.6 99.93 337.9

PDA 0.88 0.22 391.2 99.78 392.1

euclidABC100 3 100

MoMad 1.89 3.59 50.8 96.41 52.7

PDA 3.82 12.78 26.1 87.22 29.9

PD-TPLS-l 0.01 <0.01 2454.69 >99.99 2454.7

Table 6: Number of solutions examined by the different algorithmic components of MoMad, PDA and PD-TPLS-l on the bi-objective instance

euclidAB500 and on the tri-objective instance euclidABC100.

Note that the size of Z̃nd strongly grows with n, reaching approximately one million points for the instance rd-

ABC300 (Table 5). For instances of size n ≥ 100, the approximation sets found by the methods are much smaller than

Z̃nd. This is due to the use of the ε-archives, which bounds the size of the approximation while preserving the diversity

of the points. Indeed, results of PDA are still of good quality. One can consider the instance rdABC300, for which555

PDA has its worst Iε results. On this instance, the approximation obtained by PDA is worst than Z̃nd by only a factor

of 4.18% (in average), indicating that PDA generates well dispersed approximation sets over Z̃nd.

4.7.3. Further comments on the results

In this section, we are wondering how PDA explores the feasible set X to obtain such good results in comparison

to MoMad and PD-TPLS-l. For this purpose, let us define the notion of cluster for the MOTSP. A cluster is a set560

of solutions that are reachable from each other by applying an elementary move [52]. In this article, we consider as

elementary move the 2-edge-exchange move. Intuitively, a local search routine like PLS starting from a solution of

the cluster and using the exhaustive 2-edge-exchange neighborhood function, may reach any of the solutions inside the

cluster.

As described in Section 2.3, the idea of IPLS is to run a PLS over some solutions to find the potentially efficient565

solutions sharing the same clusters. When PLS has explored all the reachable clusters, and thus is stuck in a locally

efficient set, some solutions of the current set are perturbed in order to discover new clusters.

However, as pointed out by Paquete and Stützle in their study on clusters [52], the degree of clustering of solutions

depends on the MOCO problem and the instance type. Therefore, algorithms using PLS may have more difficulties on

instances with weakly clustered solutions, in the sense that they will be stuck faster in a locally efficient set.570

In such instances, we claim that data perturbation can be useful to discover more quickly new clusters, and thus

escaping more efficiently from locally efficient sets. To illustrate this, we have calculated the number of non unary

clusters found by the different methods (PDA, MoMad and PD-TPLS-l) on several bi-objective and tri-objective in-

stances. Results are reported in Tables 7 and 8. We can see that PDA finds every time a larger number of clusters than

the two other methods, which do not use data perturbation. Furthermore, we have shown in the previous section that575

the solutions found by PDA, and thus the clusters found, are of better quality than its competitors for all instances.

This shows the usefulness of data perturbation: by modifying in a non linear way the search directions, PDA has

access to clusters hardly attainable with the other methods.
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We can notice that the performances of PDA shown in the previous section are strongly correlated with the addi-

tional number of clusters found by our method than its competitors. For example, given the ClusterAB500 instance,580

Table 2 reports that the average quality of the approximations found by PDA when compared with MoMad is at least

3 times better according to the indicators used; whereas the number of clusters found by PDA reported in Table 7 is

1.7 larger than MoMad. On the other hand, the results of PDA on the euclidA-3-30 instance (reported in Table 4) are

slightly better than those of MoMad, whereas the number of clusters found by the former is just a little bit larger than

the latter.585

Instance Algorithm
Nb. of

clusters

ClusterAB100
MoMad 312

PDA 451

ClusterAB300
MoMad 1,339

PDA 2,486

ClusterAB500
MoMad 3,006

PDA 4,967

Instance Algorithm
Nb. of

clusters

kroAB100
MoMad 291

PDA 463

kroAB300
MoMad 1,192

PDA 2,078

kroAB500
MoMad 2354

PDA 4,037

Instance Algorithm
Nb. of

clusters

rdAB100
MoMad 147

PDA 174

rdAB300
MoMad 431

PDA 696

rdAB500
MoMad 663

PDA 1,089

Table 7: Average number of clusters for clustered (left table), Euclidean (middle table) and random (right table) bi-objective instances.

Instance Algorithm
Nb.of

clusters

euclidA-3-30

MoMad 1,386

PDA 1,447

PD-TPLS-l 521

euclidA-3-40

MoMad 5,220

PDA 6,156

PD-TPLS-l 1,665

euclidA-3-50

MoMad 10,235

PDA 11,434

PD-TPLS-l 2,907

Instance Algorithm
Nb. of

clusters

rdA-3-30

MoMad 2,461

PDA 2,561

PD-TPLS-l 794

rdA-3-40

MoMad 5,017

PDA 6,487

PD-TPLS-l 1,333

rdA-3-50

MoMad 11,074

PDA 16,551

PD-TPLS-l 2,541

Table 8: Average number of clusters for Euclidean (left table) and random (right table) tri-objective instances.

5. Conclusion

In the present work, we introduced a new efficient component in Decomposition algorithms: the data perturbation

[37, 3]. We showed that by using data perturbation combined with PLS and the Decomposition framework, we can

obtain very good results on MOTSP, both on the bi-objective and tri-objective cases.

PDA has been compared to two other state-of-the-art algorithms: MoMad [35] and PD-TPLS-l [23]. On bi-590

objective instances, our method performs better than MoMad. On tri-objective instances, PDA obtains better results

than both MoMad and PD-TPLS-l.

These good results are explained by the fact that PDA has a better exploration strategy of the feasible set X to find

efficient solutions, by finding more clusters of solutions of better quality than methods not using data perturbation.
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The main drawback of PDA is its input parameters: the maximum range of data perturbation and the number of sub-595

problems have to be fixed by the user. We analyzed the effect of different values of maximum range of data perturbation

on the final quality of our method. Future researches will concern an adaptive way to find a good compromise on the

number of sub-problems.

Considering the perspective of PDA, we first make a focus on the MOTSP. It would be interesting to use the Chained

Lin-Kernighan heuristic [49] as single-objective ILS solver in the main loop, instead of the 3-opt first improvement600

currently used; and finding efficient speed-up techniques to run efficiently a 3-edge-exchange neighborhood for PLS

instead of a 2-edge-exchange.

PDA could be adapted to other MOCO problems, such as the MO Quadratic Assignment Problem, where the

solutions seems to be less clustered than for the MOTSP [52]; and for which data perturbation might be even more

useful.605
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