Specialization of Admissible Path-finding Heuristics

Tristan Cazenave

Laboratoire d'Intelli gence Artificiell e,
Département Informatique, Université Paris 8,
2 ruedelaliberté,
93526Saint Denis, France
cazeave@ai.univ-pariss.fr

Abstract. Automatic program generation wsing logic programming can be
used to improve eisting problem solving programs. An important class of
problems in Al are optimal path-finding problems. These problems are usu-
aly solved wsing the IDA* algorithm with an admisgble heuristic. An heu-
risticis admissbleif it never overestimates the st of solving a problem. An
admisgble heuristic is better than another one if it always gives higher re-
sults, the better the heuristic, the fewer nodes are developed for solving the
problem. We propase ametalogic programming framework that spedalizes
heuristics on abstrad representation o problems. The spedalized heuristics
are improvements on the original heuristic. Some experiments in simple pat-
finding problems like the 9-puzzle give encouraging results.

1 Introduction

Problems like the 9-puzzle, the Rubik's cube [12] or Sokoban [9] are path-finding
problems. They belong to a general class of problems related to heuristic single-
agent seach techniques. These problems are solved building a dedsion treein order
to find the best of several aternative by seaching. They are related to perception
problems, theorem proving, roba control, pattern recogrtion, knowledge based
systems and some combinatorial optimizaion problems.

Finding a solution path is easy for the puzzle and the Rubik’s cube, using maao-
moves. However, finding the shortest path to the desired state is much harder. The
algorithm of choice for this kind d problems is Iterative Degeening A* (IDA%*).
IDA* has to compute an admissble heuristic & ead noce. An heuristic is admiss-
ble if it never overestimates the distance to the desired state. The hard problem
when writing an oggimal path-finding problem solver is to find a good admissble
heuristic. A commonly used heuristic is the Manhattan dstance

We propose alogic program spedalizaion framework that operates on an ab-
strad domain theory in order to improve eisting heuristics. This framework is
based on the Introsped system that has already been used to generate powerful
game programs using logic metaprogramming. To generate programs, Introsped

uses a theory of the problem to be solved expressd in Prolog, and some
metaknowledge on the problem used to remove useless generated programs, and to
improve the dficiency of the useful generated programs.

The second sedion describes our path-finding problem solver. The third sedion
uncovers a way to spedalize path-finding reuristics with Introsped and gves ex-
perimental results.

2 An Optimal Path-finding Problem Solver

We use the 9-puzzle to test our system. The goal state of the 9-puzzle is repre-
sented onthe left of figure 1. On the right of the same figure, a randamly generated
problem is given. Our problem are generated by daying 100randam moves from
the goal state. A* computes two functions at eat nock of its ach: gand h Theg
function gvesthe st of the moves already played, in the cae of the 9-puzzleit is
the number of moves. The h function gves an underestimation d the st of the
remaining moves to read the goal state. A commonly used heuristic is the Manhat-
tan heuristic. It consists in computing for ead tile the minimal number of moves
necessary to move it to its goal location, with the hypahesis that the tile can move
on dher tiles.

1 2 3 8 2 4
8 4 3 4 1
7 6 5 6 S

Fig. 1. The goal state, and arandamly generated state 20 moves away from the goal state

In ou example, we therefore have h=1+0+1+3+2+3+1+1=12 with the Manhattan
heuristic. At ead noce afunction f=g+h is computed that represent the minimal
cost of the path gang throughthat node. IDA* is an iterative degpening A*. It be-
gins with developing a tree of maximum depth 1, if the solution is nat found it
develops a treeof maximum depth 2, and so on, increasing the maximum depth after
ead ursuccessul tree seach. The alvantage of IDA* on A* is that it uses an
amount of memory that increases linealy with the depth of the problem, whereas
A* has exporential requirements and canna solve complex problems. Another ad-
vantage of IDA* is that information can be obtained from previous saches to
sped it up [18]. Moreover IDA* is not much more time @nsuming than A*, be-

cause the st of the last treeseach is usually much higher than the mst of the pre-
vious tree seacheg[10,11]. When wsing IDA*, the tree seach can be ait before the
maximum depth is readed, whenever f gets greaer than the maximum depth.
Therefore, an admissble heuristic that always give greder values than the Manhat-
tan heuristic is interesting, because it will enable IDA* to stopits sach soorer. The
length of the red optimal path of our example is 20 and IDA* finds it in 33219
nodes using ou spedalized heuristics.

3 Specialization of an admissible heuristic

In this ®dion we explain hav the Manhattan heuristic can be spedalized to gve
higher estimations. We follow with a description d the spedalizaion programs of
Introsped and we give experimental results for the 9-puzzle.

The gplication d spedalizaion techniques to problem solving is not new. For
example, S. Minton has used Prodigy/EBL to generate control rules [14], given the
traces of Prodigy problem solving. O. Etzioni [6] further refined the methoddogy by
usingakind d partial evaluation that gives better results than EBL/G [15], but that
isformally equivalent [20]. Anather system, Introsped uses logic metaprogramming
and partial deduction to generate control rules for many games [2,3,4,17]. However,
we ae not aware of any application d these techniques on the spedalizaion o
heuristics for path-finding problems.

3.1 Some opportunitiesto specialize the heuristic

The ideabehind the spedalization is that some moves toward the solutionincrease h
instead of deaeasingit. If we want to generate by logic program spedalization the
cases when it happens, we have to define situation where it is always the cae. Fig-
ure 2 gves sch asituation:

2 1

Fig. 2. A corflict between two tiles

Suppose that these situation heppensin the upper left corner. Tile 2" is at the goal
location d tile'1', and vice-versa. The Manhattan heuristic gives 1 for eat of these
tiles, resulting in 2 for the two tiles. However, if we consider the two til es together,
it is clea that the minimal number of moves to move them to their goal location is
greaer than 2 either tile 1 is moved first, and it moves to ancther location than tile
2's, increasing by ore the Manhattan heuristic and by ore the number of moves,
either tile 2 is moved first and the same increasing hdds. Therefore, we define for
these two tiles the value Dh=2, correspondng to the dired conflict between them.

Dhis added to the result of the Manhattan heuristic in order to improve it. In a more
general way, we can define adired conflict between two tiles with the foll owing
logicd rule:

conflict(0,T1,T2,2):-
tile_on_location(L1,T1),
tile_on_location(L2,T2),
all_neighbors_increase_except(T1,L1,L2),
all_neighbors_increase_except(T2,L2,L1).

The significaion d the agument of the head predicate ae oonflict (Regresson,
Tilel, Tile2, Dh), and the predicate all_neighbas incresse_except (T1,L1,L2) indi-
caes that the Manhattan heuristic increases for all the neighbas of tile T1 onloca
tionL1, except for location L2 where it deaeases.

The spedalized heuristic consists in computing all the passble Dh for eadh pair
of tiles, and then in counting the maximal Dh for ead tile, taking into acoount no
more than ore Dh for ead tile, so that the spedalized heuristic is gill admissble.
The resulting set of Dh is then summed, and the result is added to the h resulting
from the Manhattan heuristic.

2 ? 1

Fig. 3. A regressed conflict between two tiles

A spedalizaion d this conflict can be obtained by urmoving an abstrad move,
that keeps the heuristic admissble. We obtain the stuation in figure 3, where Dh is
gtill 2. This gedalizaion can be performed automaticadly by Introsped, which
generates the mrrespondng program.

3.2 Logic Program Specialization with I ntrospect

Introsped is a logic metaprogramming system [1] that uses unfolding to spedalize
logic program in a similar way to ather partial evaluators [19,7,13,16,8]. However,
it differs from previous g/stems because it uses domain dependent information so as
to gude the program generation. This domain dependent knowledge onsists of
clauses of impaossbility that examine the unfolded clauses to find inconsistencies in
them. A trivial and danain independent inconsistency is for example that an un-
folded clause mntainsthe aom '-1>-1". A more domain-dependent set of impassble

atoms is for example: ' number_neighbors (L,N), number_neighbors
(L,N1)" arein an urfolded clause and the andtions '‘constant(N), Co n-
stant(N1), N=\=N1' are verified. Clauses of imposshility are used to dscard

uselessgenerated programs. Other domain dependent knowledge such as the statisti-
cd number of bindings of variablesin some predicatesis also used to generate dfi-

cient programs. Moreover, the termination d unfolding can be tail ored to a particu-
lar problem rather than using the same strategy for every program. The goal of the
program generation is to express the same knowledge in a different way so that
similar computations are shared, and that uselesscomputations are avoided.

The domain theory used to spedalize ax admissble heuristic is particular in the
sense that it is not a theory of the red moves played in the problem. It is rather a
theory of the abstrad moves that can be played. The astrad moves ke the almis-
sibility of the heuristic because they always underestimate the number of red moves
necessary to perform the adion. In the 9-puzzle, an abstrad move cnsists in mov-
ing atile on any o its neighbas, providing that the neighba does not contain the
other corflictingtile. In pradice, atile cax oy move on ore of its neighba if it is
empty.

The dause used to generate the program by spedalization is a reaursive one that
defines conflict regresson, P being the depth of regresson d the cnflict between
Tland T2

conflict(P,T1,T2,Dh):-
PlisP-1,P1>-1,
abstract_moves(T1,T2,L),
moves_increase_h_or_conflict(P1,T2,L).

The end d the unfolding rocessis assured becaise the maximum depth of regres-
sionisfixed in advance The &strad moves are defined by clauses of the type:

abstract_moves(T1,T2,[M1,M2]):-
tile_on_location(L1,T1),
tile_on_location(L2,T2),
number_neighbors(L,2),
neighbor(L,M1), M1\==L2,
neighbor(L,M2), M1\==M2, M2\==L2.

Once the program is unfolded, the condtions of the unfolded clauses are ordered
using damain dependent knowledge. They are then colleded together in a tree of
condtions. This treeis compiled into C, so as to be linked to the problem solver.
This is one of the reasons why the gproach works: instead of computing many
times the same things, the spedalized program shares the cmputationsin the treeof
conditions.

3.3 Resaults

Our test set contains 100 randamly generated 9-puzzle problems. All of them are
optimally solved with 24 moves or less During poblem solving we cmpute the
number of nodes developed by IDA* on eat problem. The number of nodesis only
an approximation d the red efficiency of a problem solver. However, it is inde-
pendent of a particular implementation and it gives insights on the possble im-
provements due to spedali zation on dher more difficult problems.

The first number is the number of nodes using orly the Manhattan heuristic, the
second ore using the dired corflict heuristic and the third ore using bah the direa
and the regressed conflict heuristic.

6000000

5000000 N

4000000
3000000 \\
2000000

1000000

Nodes

0
1 2 3

Nodes 5237441 2448508 1887999

Fig. 4. Number of nodes developed by IDA* with increasing regressons

On the 9-puzzle it of no we to regressthe orflict heuristic further becaise of
some particul ariti es of the problem. However, on the 15-puzzle, the heuristic can be
spedalized ore step further, and onmore cmplex problem like Sokoban, it can be
regresed much more.

4 Conclusion

We have presented a technique that uses a kind d logic program generation to
specialize almisgble heuristics for path-finding problems.

It is of interest to apply this technique to more mmplex path-finding problems
such as the Rubik's cube or Sokoban. This approach can be compared to aher
knowledge generation approaches like retrograde analysis of patterns [5]. The al-
vantage of the representation d heuristics by a program is that abstrad knowledge
of the domain can be eaily represented. This abstrad information might be more
powerful than usual pattern-based representation in that it enables flexible and non
locd properties to be matched together (for example two stones eparated by along
tunrel in Sokoban form a deadlock that does nat fit in a pattern).

Another pradicd isale is the comparison d the st of the computation d an
elaborate heuristic that cuts down a lot of nodes, and the st of a much cheger
heuristic that cuts lessnodes but solves the problems in lesstime. This comparison
is usually problem dependent. On some simple problems where a teg and effi-

cient heurigtic drealy exists, it may nat be of pradicd interest to generate daborate
heuristics, whereas on more complex and dfficult problems a very speaalized heu-
ristic may well give excdlent results.

5 References

1. Barklund J.: Metaprogramming in Logic. UPMAIL Tecdhnicd Report N° 80, Uppsala,
Sweden, 1994

2. Cazenave, T.: Systeme d’ Apprentissage par Auto-Observation. Applicaion au Jeu de Go.
Ph.D. diss, University Paris 6, 1996

3. Cazenave T.. Metaprogramming Forced Moves. Procealings ECAI98, pp 645649
Brigthon, 1998

4. Cazenave T.: Controlled Partial Deduction o Dedarative Logic Programs. ACM Com-
puting Surveys, vol. 30, no 3=s, 1998

5. Culberson J.C., Schadfer J.: Pattern Databases. Computational Intelli gence, 1998

6. Etzioni, O.: A structural theory of explanation-based learning. Artificia Intelli gence 60
(1), pp. 93-139 1993

7. Gallagher J.: Speddizaion o Logic Programs. Procealings of the ACM SIGPLAN
Symposium on PEPM’93, Ed. David Schmidt, ACM Press Copenhagen, Danemark,
1993

8. Hill P. M. and Lloyd J. W.: The Gddel Programming Language. MIT Press Cambridge,
Mass, 1994

9. Jungrenns A.: Pushing the Limits: New Developments in Singe-Agent Seach. PhD
thesis. University of Alberta, 1999

10. Korf R. E.: Depth-first iterative-deepening: An optimal admisshble tree search. Artificial
Intelli gence, vol. 27, no 1 pp. 97-109, 1985

11 Korf R. E.: Optimal path-finding algorithms. Search in Artificial Intelligence L. Kanal
and V. Kumar eds. New-York: Springer Verlag, 1988

12 Korf, R.: Finding ogimal solutions to Rubik's Cube using pattern databases. AAA1-97,
pp. 700-705, 1997.

13 Lloyd J. W. and Shepherdson J. C.: Partial Evaluation in Logic Programming. J. Logic
Programming, vol. 11 pp 217-242, 1991

14. Minton S., Carborell J., Knolock C., Kuokka D., Etzioni O., Gil Y.: Explanation-Based
Leaning: A Problem Solving Perspedive. Artificial Intelligence 40, 1989

15. Mitchell, T. M.; Keller, R. M. and Kedar-Kabelli S. T.: Explanation-based Generaliza-
tion: A unifying view. Machine Leaning 1(1), 1986

16. Pettoross, A. and Proietti, M.: A Comparative Revisitation d Some Program Transfor-
mation Techniques. Partial Evaluation, International Seminar, Dagstuhl Castle, Germany
LNCS 111Q pp. 355385, Springer 1996

17. Pitrat, J.: Games. The Next Challenge. ICCA journal, vol. 21, No. 3, September 1998
pp.147-156, 1998

18. Reinefeld, A.; Marsland T. A.: Enhanced Iterative-Deepening Search. IEEE Transadions
on Pattern Analysis and Madhine Intelligence, vol. 16, No. 7, July 1994 pp.701-710,
1994

19. Tamaki H. and Sato T.: Unfold/Fold Transformations of Logic Programs. Proc. 2nd Intl.
Logic Programming Conf., Uppsala Univ., 1984

20. Van Harmelen F. and Bundy A.: Explanation based generalisation = partial evaluation.
Artificial Intelligence 36:401-412 1988

