
Sequential Halving Using Scores

Nicolas Fabiano1,2 and Tristan Cazenave2

1 DI, ENS Paris, PSL, France
2 LAMSADE, Université Paris-Dauphine, PSL, CNRS, Paris, France

nicolabiano22@yahoo.fr
Tristan.Cazenave@dauphine.psl.eu

Abstract

We study the multi-armed bandit problem, where the aim is to
minimize the simple regret with a fixed budget. The Sequen-
tial Halving algorithm is known to tackle it efficiently. We
present a more elaborate version of this algorithm to integrate
some exterior knowledge or ”scores”, that can be provided for
instance by a neural network of a heuristic like all-moves-as-
first (AMAF). We provide both theoretical justifications and
experiments.

Introduction
Since it was introduced in (Coulom 2006; Kocsis and
Szepesvári 2006), the Monte Carlo Tree Seach (MCTS) al-
gorithm has known a great success in AI, especially in turn-
based games like Go or Chess, and some of its refinements
are the state of the art for most games.

The general idea of this algorithm is the following: on
the root configuration, pick a move, and generate a random
playout from it. If the player to move wins, this means that
the move was probably good, and if she loses it was probably
bad. Then loop by picking more moves, deeper and deeper
in the game tree, with a fixed amount of playout (or time)
budget.

One of the keys for MCTS to be efficient is to choose
what moves to investigate, with the usual exploration vs
exploitation balance to find. To perform this, one typically
uses the Upper Confidence Bound (UCB) bandit algorithm,
which has good properties in terms of cumulative regret.
This means that, for every investigated configuration, the
moves tested were overall not bad.

However, in the context of games, the success of simula-
tions does not really matter. The only aim is that, at the end,
the algorithm outputs a move that is as good as possible.
This means that, instead of cumulative regret, a more rele-
vant quantification is the expected simple regret (see Fig. 1
for a precise definition).

In (Karnin, Koren, and Somekh 2013), a new bandit al-
gorithm named Sequential Halving (SH) was introduced. It
is proved to have a small expected simple regret 0-1, and it
experimentally shows to also have a small expected simple
regret. It has successfully been used as an alternative to UCB

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: The various notions of regret

With i∗ the optimal arm and î the chosen one,
• Cumulative regret :Rcum =

∑
r round(pi∗ − pr)

• Simple regret :R = pi∗ − pî
• Simple regret 0-1 :R0−1 = 1 if i∗ 6= î else 0

in MCTS, especially as a replacement in the root with UCB
used in the rest of the tree (Pepels et al. 2014), in Partially
Observable Games (Pepels, Cazenave, and Winands 2015)
or even is the whole tree with SHOT (Cazenave 2015b).

However, for most games, the plain UCB is not state of
the art. For many games like Go, moves typically commute,
so the RAVE algorithm was introduced (Gelly and Silver
2011), which uses the all-moves-as-first (AMAF) heuristic
(Bouzy and Helmstetter 2003). For some games also includ-
ing Go (Silver et al. 2016), Neural Networks (NN) can pro-
vide the algorithm with reliable priors, which are incorpo-
rated in the PUCT algorithm (Silver et al. 2016).

The aim of this paper will be to incorporated exterior
knowledge like AMAF or NN prior to the SH algorithm,
and to compare the result both to plain SH and to the state
of the art MCTS algorithms RAVE and PUCT.

The first part will discuss the SH algorithm in general,
and report a few experiments. The second part will present a
theoretical foundation for a new algorithm named SHUSS,
Sequential Halving USing Scores. It will also discuss some
variations around it, and report a few experiments.

The Sequential Halving algorithm
The SH algorithm is round-based. On every round, each arm
is sampled the same amount of times, and then some fraction
of the worst arms is removed, until there is only one arm left.

The theoretical bounds presented in (Karnin, Koren, and
Somekh 2013) suggest that the same total budget should be
spent for each round, and that the fraction removed should
be constant on every step (denoted 1− λ). For a precise de-
scription, see Algorithm 1.

This version of the algorithm is slightly different from
the original in two ways. First, a parameter λ is introduced,
while it was fixed to 1/2. Second, the computation of the

budget per round is improved, to ensure that less budget is
left unspent in case of multiple roundings.

Note 1 Contrary to other bandit algorithms like UCB, the
fact that SH gives a lot of budget at once to one single
arm has practical advantages like an easier parallelism and
less back-and-forth in the search tree. This is especially true
when there are few rounds (λ small).

Algorithm 1 Sequential Halving

Parameter: cutting ratio λ
Input: total budget T , set of arms S
S0 ← S, T0 ← T
R← number of rounds before |SR| = 1
for r = 0 to R− 1 do
tr ← b Tr

|Sr|·(R−r)c
Tr+1 ← Tr − tr|Sr|
sample each arm in Sr tr times
Sr+1 ← Sr without the fraction 1−λ of the worst arms

end for
Output: arm in SR

Restart vs stockpile
In (Karnin, Koren, and Somekh 2013), for the theoretical
computations to be rigorous, one has to assume that rounds
are independents, which means that statistics are discarded
from one round to the other.

However, to gather more accurate statistics, it may be
worth, instead of restarting at every round, to stockpile the
statistics from the previous round. In terms of budget, this
adds a factor almost 1/(1− λ).
Note 2 Getting the factor almost 1/(1 − λ) from the first
rounds implies to twist the distribution of weight to give
more at the beginning, but less at the end. Doing this will
be referred to as uniforming.

In theory, this may cause the following issue: if, on one
round, a rather bad arm is lucky and has good stats, it will
be stockpiled for the next round and cause it to be kept even
further; while if we restarted it would be rare that an arm
is lucky twice. This issue is especially important when λ is
close to 1, as the stockpiled statistics form a huge part of the
overall ones.

In addition to the two extremes of restart and stockpile,
one can keep the statistics from the previous round, and give
it a weight w between 1 (pure stockpile) and 0 (pure restart).

Experiments of the next section clearly show that stock-
piling is always the best, even better than w = 1− ε.
Note 3 We successfully replicated the SH part of the experi-
ments of (Karnin, Koren, and Somekh 2013), and it appears
that they must have been done using stockpiling, as restart-
ing gives significantly worse results.

Experiments
Even if we could be more general, we focus on the case
where the only possible outcomes are 0 (loss) and 1 (win).

Thus, every arms is described by its value, which is both the
probability of win and the expected value.

The performance of bandit algorithms highly depend on
the distribution of the arm’s values. We consider 4 settings
for the n arms.

In setting (1), the optimal arm has a value 0.5 and the n−1
others have a value 0.4.

In setting (A), the values form an arithmetic sequence
from 0.5 to 0.25.

In setting (S), the optimal arm has a value 0.5, the worst
has a value 0.25, and the others have values such that i/δ2i
is constant, with δi the difference with the optimal arm. This
setting is suggested by the fact that the theoretical bounds of
(Karnin, Koren, and Somekh 2013) rely on these values.

In setting (N), the values are distributed according to the
sigmoid of a normal of parameters 0.5 and σ2 = 0.01. This
setting induces richer behaviours, and we believe it to be a
more realistic model of the actual distributions in games.

The results are compared to UCB, the standard MCTS
bandit. It consists in, for each step from 1 to the budget,
picking the arm that maximises the empirical value, plus a
term to force exploration of the form

c

√
log(playouts)

playoutsz

We tested various values for λ and w for SH, and com-
pared it to various values for the exploration constant c in
UCB. We also tested the uniforming variant discussed in
Note 2. The results are shown in Fig. 2.

Roundings of the number of arms left are handled as fol-
lows: always round up, except when this would cause the
amount of arms to remain constant (then round down in-
stead).

To reduce the covariance from one setting to another, the
bandits are seeded using numpy.random.binomial. For the
same number of experiment e and the same arm i, if the
value of the arm i is the same in two settings, then on the
same round r their results are drawn out of the same se-
quence of win/loss (the number of successes is monotonic
in terms of budget).

As announced, in every setting, the best results are ob-
tained for w = 1, so that in practice stockpiling is really
stronger than restarting.

The optimal λ depends on the setting, but the experiments
globally suggest that, for the interesting casew = 1, λ ≈ 0.7
is often the best value. Actually, this is a very complex issue,
and some less rigorous experiments suggest that it is better
not to decrease like a geometric sequence but rather to start
with large decreasing factors and to end with smaller ones.

Uniforming is significantly better in settings (1) and (S)
for n = 20, but globally slightly worse in the others. We
don’t know how to explain this precise behaviour, but at least
this suggests that there is room for practical improvement
about how the budget is distributed among the rounds.

Surprisingly, the results are globally worse than UCB for
n = 20, especially in the setting (S) while this is the one

for which the SH algorithm is theoretically designed. Still,
UCB relies more heavily on a fine-tuning of its parameter c,
with no universally excellent value, and for n = 80 SH is
globally better.

Scores
The aim of this part will be to develop a variant of the SH al-
gorithm that makes advantage of some exterior knowledge,
like a NN of AMAF statistics.

We will consider the general case where we have access to
what we will call a score, which is a numerical evaluations
of every move, independent from the bandit evaluation.

The bandits are still assumed to give either 0 or 1, giving
an empirical mean p(i)r ∈ [0, 1] for arm i on round r, but the
scores do not necessarily belong to [0, 1].

Theoretical model
We don’t know precisely how to estimate the expected
simple regret: the bounds provided in (Karnin, Koren, and
Somekh 2013) are far from tight in practical cases and only
describe the expected simple regret 0-1.

Still, it is clear that it will essentially depend on P (p(i)r <

p
(j)
r): if any two arms are often properly ordered, then the

best arms have a low probability to be among the worst 1−λ
fraction.

Thus, our aim will be to find an optimal formula for some
replacing q(i)r which optimizes P (q(i)r < q

(j)
r).

Formally, let x and y (the value of the arms) be two hidden
values that we want to compare, with x− y = δ.

We have access to 4 independent variables. X and Y (the
empirical means) are binomial with a same first parameter t
and centered on respectively x and y. X̃ and Ỹ (the scores)
are such that X̃− Ỹ = δ̃ is hopefully globally the same sign
as δ.

In the following, z can stand for x, y, or any arm.

We make the assumption that δ̃ is distributed following a
normal law with parameters δ̃0 and σ̃2

0 . δ̃0 has the same sign
as δ, and we even have δ̃0 = δ when the score is unbiased.

Optimal combination
As a particular case of the central limit theorem, we know
that (for a more quantified statement, see for instance (Feller
2015)):
Lemma 1 A binomial law of parameters t and p and a nor-
mal law of parameters tp and tp(1−p) have almost the same
distribution, provided that t is large.

This means thatX−Y is (almost) distributed as a normal
law of parameters tδ and tσ2 = t(x(1 − x) + y(1 − y)),
which up to normalisation can be seen as having parameters
δ̃0 and δ̃20σ

2

δ2t .
Conversely, this shows that X̃−Ỹ gives (almost) the same

information as two binomials, with the crucial first parame-
ter

t̃ =
δ̃20σ

2

δ2σ̃2
0

but with an intensity δ̃0
δ too large.

We define

t̃′ =
δ̃0σ

2

δσ̃2
0

We showed that the problem is (almost) equivalent to
maximizing the probability to choose the best arm among
two, knowing that one has succeeded X + t̃′X̃ times out of
t+ t̃ trials, and the second Y + t̃′Ỹ times.

Thus, it is optimal to use (for δ̃
2
0σ

2

δ2σ̃2
0

reasonably large)

qz = Z + t̃′Z̃

A similar reasoning give the same result for t reasonably
large.

One could be tempted to use the Z̃ to approximate σ.
However, given the final goal is to sort all the arms on one
single scale, t̃′ has to be the same for every pair of arms.

The simplest solution is to choose an hyperparameter t̃′
that corresponds to an overall reasonable guess. We will see
how to improve it in some particular cases.

The resulting algorithm is presented as Algorithm 2.
In this algorithm, t+r corresponds to the total budget used

in p(i)r : t+r = tr if we restart and t+r = t0 + · · · + tr if we
stockpile.

Algorithm 2 Sequential Halving USing Scores (SHUSS)

Parameter: cutting ratio λ, t̃′

Input: total budget T , set of arms S, online scores X̃(i)
r

S0 ← S, T0 ← T
R← number of rounds before |SR| = 1
for r = 0 to R− 1 do
tr ← b Tr

|Sr|·(R−r)c
Tr+1 ← Tr − tr|Sr|
sample each arm in Sr tr times, giving an empirical
mean p(i)r to arm i out of t+r trials
q
(i)
r = p

(i)
r + t̃′

t+r
X̃

(i)
r

Sr+1 ← Sr without the fraction 1−λ of the worst arms
in terms of q(i)r

end for
Output: arm in SR

Selection bias
One issue that may occur with this algorithm is that, after
some round, the arms that remains have their Z̃ biased by
the fact that they were among the best. Thus, even if at the
first round they are indeed normal laws, it is unclear how
they look like after a few rounds.

However, this issue is very similar to the issue of stock-
piling, as all arms tend to have better stats than they should.
The fact that stockpiling is so powerful suggest that this is-
sue is not too important, so we will neglect it.

Figure 2: Simple regret obtained with SH in various settings. In every setting, the budget is taken equal to T = 2048. From
top to bottom, we report settings (1), (A), (S) and (N). For each setting, the left plot corresponds to SH, and the right one
corresponds to UCB. For SH, for each λ, the bars correspond (from left to right) to w = 0, w = 0.5, w = 0.9, w = 1, and
w = 1 with uniforming. The darker bars correspond to n = 20, and the lighter ones to n = 80.

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

2

4

6

8

·10−2

λ

Si
m

pl
e

re
gr

et

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

2

4

6

8

·10−2

λ

Si
m

pl
e

re
gr

et

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

2

4

6

8

·10−2

λ

Si
m

pl
e

re
gr

et

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

2

4

6

8

·10−2

λ

Si
m

pl
e

re
gr

et

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

2

4

6

8

·10−2

λ

Si
m

pl
e

re
gr

et

.25 .35 .5 .71 1 1.41
0

2

4

6

8

·10−2

c

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

1

2

3
·10−2

λ

Si
m

pl
e

re
gr

et

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

1

2

3
·10−2

λ

Si
m

pl
e

re
gr

et

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

1

2

3
·10−2

λ

Si
m

pl
e

re
gr

et

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

1

2

3
·10−2

λ

Si
m

pl
e

re
gr

et

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

1

2

3
·10−2

λ

Si
m

pl
e

re
gr

et

.25 .35 .5 .71 1 1.41
0

1

2

3
·10−2

c

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

2

4

6

·10−2

λ

Si
m

pl
e

re
gr

et

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

2

4

6

·10−2

λ

Si
m

pl
e

re
gr

et

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

2

4

6

·10−2

λ

Si
m

pl
e

re
gr

et

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

2

4

6

·10−2

λ

Si
m

pl
e

re
gr

et

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

2

4

6

·10−2

λ

Si
m

pl
e

re
gr

et

.25 .35 .5 .71 1 1.41
0

2

4

6

·10−2

c

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

2

4

·10−2

λ

Si
m

pl
e

re
gr

et

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

2

4

·10−2

λ

Si
m

pl
e

re
gr

et

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

2

4

·10−2

λ

Si
m

pl
e

re
gr

et

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

2

4

·10−2

λ

Si
m

pl
e

re
gr

et

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

2

4

·10−2

λ

Si
m

pl
e

re
gr

et

.25 .35 .5 .71 1 1.41
0

2

4

·10−2

c

Case of AMAF: a better formula for t̃′

This subsection discusses the special case where the scores
are given by AMAF statistics. It should be seen as a little
toolbox of a few ideas that can be used to do better than
taking t̃′ as a constant, based on a case study.

The AMAF (all-moves-as-first) score (Bouzy and Helm-
stetter 2003) consists to evaluate a move m for a player p
in a configuration c, considering the win/loss ratio of every
game where p plays m, not only in c itself but in any of its
descendants in the game tree (or even its cousins, in some
variants of AMAF like GRAVE (Cazenave 2015a)).

First of all, this score is not independent from the value
of the bandits. In the first rounds of the algorithm, there are
many bandits, so the AMAF scores are almost independent
from each of them, which makes it not a big issue.

In the last rounds, however, it is highly correlated with
the stats of some, if not all, bandits. In some games, one
could imagine that some properties of the moves generate
important biases, for instance if the move c can only appear
after few of the remaining moves considered. We will see a
general way to address this problem, but this could be more
tricky for some particular games and we recommend cau-
tiousness.

The main interesting thing about AMAF in this context
is that the score is more and more accurate as simulations
are performed. Thus, taking t̃′ as a constant throughout the
algorithm may not be appropriate.

Instead, one can model the distribution of δ̃ as follows:

• the fact that AMAF is a heuristic causes an error dis-
tributed a a normal law of variance σ2

heu, centered some-
where between δ and the local average value;

• the fact that the AMAF stats are only gathered on a fi-
nite number sr of moves on round r causes an error dis-
tributed as a binomial law, which is almost (see Lemma 1)
and after normalization a centered normal law of variance
σ2

stat/sr.

Provided that σ2
heu is small (i.e. the heuristic makes sense

in the application context), and the values of the arms are not
too extreme, σ and σstat are almost equal.

We get

t̃′r =
δ̃0
δ

σ2

σ2
heu + σ2

stat/sr
≈ δ̃0

δ

1

σ2
heu/σ

2 + 1/sr

This time, we have 2 hyperparameters to choose.
δ̃0
δ describes how much AMAF flattens the stats, and can

easily be measured experimentally. It may be relevant to
make it depend on the number of arms left and on the variant
of AMAF used.
σheu/σ describes how accurate the heuristic is, compared

to the accuracy provided by binomial stats. Taking this hy-
perparameter as a relatively high value also ensures that, in
the last rounds where sr is large, the value of t̃′r stops in-
creasing, which addresses the previously mentioned issue of
correlation.

Note that this reasoning works only if, on each round, sr is
globally the same for every arm (or if, for every arm, 1/sr �
σ2

heu/σ
2), as we need a common value of t̃′r.

Case of prior score: pruning
In this subsection, we assume that the Z̃ are known a priori
(before any budget is attributed), for instance using a NN.
This can be applied to some extent in cases where some
score is known a priori but is refined during the algorithm,
like GRAVE.

In the following, the arms are sorted by the value of Z̃,
with X̃0 the largest and X̃n−1 the smallest.

Even before the algorithm begins, some arms have no
chance of being chosen at the end, if for instance Z̃ is
smaller than the median (for λ = 1/2) minus 1/t̃′0.

In addition to these trivial pruning, it is often worth to
prune some more arms, as the budget saved will compensate
for the risk taken.

As we saw in a previous section, the prior can be inter-
preted as if we have already spent some amount t̃ of budget
on each arm before round 0, which we will consider as a
round number −1.

The philosophy of SH (exploited in the performance proof
in (Karnin, Koren, and Somekh 2013)) is that, when bandits
are pruned up to number nr with a budget tr, the product
πr := nr · tr is equal to some π that does not depend on r.

Thus, it is natural to prune up to arm n−1, where n−1 is
chosen so that π−1 = π.

For a precise computation, we neglect the rounding issues
when dividing by λ. We also make the computations as if we
were not stockpiling (note that using the score on the further
rounds can be seen as stockpiling when it is purely a prior).

Then
π−1 = n−1 · t̃

π = π0 = λn−1 ·
T

log1/λ(n−1) · n−1

n−1 log1/λ(n−1) =
λT

t̃

Experiments
We chose to test SHUSS using the score AMAF, to compare
it with RAVE (Gelly and Silver 2007, 2011). The latter uses
the AMAF score as follows: the value of the arm, which the
exploration term is added to, is taken equal to

(1− βz)Z + βzZ̃

with tz the number of playouts starting with z, sz the number
of playouts containing z and

βz =
sz

sz + tz + bias× sz × tz
(Pepels et al. 2014) demonstrates how to combine the SH

algorithm with UCT in the Hybrid-MCTS algorithm: SH is
used only at the root, and the rest of the tree expansion uses
UCB. We followed this idea, by combining SHUSS at the

Table 1: Comparison of Hybrid-SHUSS with AMAF score against RAVE.

Game Playouts 0 128 256 512 1024 2048 4096 8192 16384 ∞

Atarigo 7x7 10 000 44.2 47.2 49.6 50.2 50.0 49.6 45.2 47.8 46.4 45.2
Atarigo 9x9 10 000 35.6 41.4 40.0 38.2 41.0 41.2 43.4 41.4 36.4 40.2
Ataxx 8x8 10 000 30.2 33.6 35.2 34.2 42.0 46.2 55.0 62.4 62.0 71.8
Breakthrough 8x8 10 000 54.0 57.8 56.8 56.0 56.6 55.2 53.8 51.0 55.0 52.4
Domineering 8x8 10 000 41.4 47.8 44.8 49.0 46.2 47.2 46.2 45.6 43.0 42.4
Go 7x7 10 000 45.2 49.2 46.2 53.8 58.6 50.2 42.6 33.2 31.0 15.8
Go 9x9 10 000 43.4 53.2 58.2 52.2 50.8 43.8 35.6 26.4 19.0 12.2
Hex 11x11 10 000 15.8 43.0 43.4 51.4 48.4 50.2 46.4 46.6 43.4 42.6
Knightthrough 8x8 10 000 61.0 61.6 65.0 63.8 62.2 60.2 54.2 54.4 56.2 52.8
NoAtaxx 8x8 10 000 91.0 87.4 76.8 72.0 62.8 55.2 53.8 44.6 45.8 43.2
NoBreakthrough 8x8 10 000 37.8 40.8 44.0 46.2 51.4 44.2 46.4 44.0 50.0 46.6
NoDomineering 8x8 10 000 40.4 45.6 49.4 46.0 48.4 50.0 47.6 47.4 45.0 47.6
NoGo 7x7 10 000 38.8 40.8 45.6 44.0 50.8 47.6 50.8 49.4 47.6 51.8
NoGo 9x9 10 000 30.0 37.8 38.8 40.0 41.0 42.0 42.8 45.0 45.8 37.4
NoHex 11x11 10 000 46.4 48.0 48.6 49.0 49.2 48.6 48.6 49.2 48.8 49.2
NoKnightthrough 8x8 10 000 29.0 36.8 38.8 39.6 47.8 46.2 46.0 45.2 48.2 47.6

root with RAVE for the rest of the tree, in an algorithm nat-
urally named Hybrid-SHUSS.

Table 1 reports the results of 500 matches (250 as White
and 250 as Black) between Hybrid-SHUSS and RAVE, for
many classical games.

RAVE uses the classical parameter bias = 10−7, both in
the inner parts of Hybrid-SHUSS and its opponent. SHUSS
uses the classical parameter λ = 1/2. Different values of t̃′

are experimented (to keep things simple, t̃′ is a constant).
The extreme case t̃′ = 0 is the usual SH algorithm without

AMAF (it is only used to break ties), and t̃′ = ∞ is relying
purely on AMAF, with the same weight whether or not the
move is first.

In most games, SHUSS performs better than both pure SH
and pure AMAF.

For some games, even with a tuned t̃′, Hybrid-SHUSS is
a bit worse than RAVE. For some others, Hybrid-SHUSS
outperforms RAVE, sometimes even for a wide scale of t̃′.
We didn’t find any general property to heuristically guess in
which category a given game is.

Conclusion
In the first section, we have discussed the SH algorithm in
general.

We discussed the difference between stockpile and restart,
and stockpiling is experimentally way better.

We also showed that a parameter λ ≈ 0.7 is apparently
better than the classical λ = 0.5. Still, it appears that some
more flexible budget attribution or cuts may be better.

In the second section, we presented our new algorithm
Sequential Halving USing Scores (SHUSS).

A theoretical model suggests a very simple way to com-
bine the score with the bandit statistics, but there is plenty of
room for improvement depending on the exact nature of the
score.

Work still has to be done to handle scores that are very
asymmetrical among the arms (for instance, if we have
plenty of AMAF data for one move but very few for an-
other).

In addition, SHUSS requires the scores to be linked to the
statistics given by MCTS, while currently most neural net-
works predicts the probability that each move is chosen. This
implies to either post-treat the output of the neural network,
to do a one ply search to get the scores associated to moves
or ideally to use a whole other training pipeline.

Acknowledgment
This work was supported in part by the French government
under management of Agence Nationale de la Recherche
as part of the “Investissements d’avenir” program, reference
ANR19-P3IA-0001 (PRAIRIE 3IA Institute).

References
Bouzy, B.; and Helmstetter, B. 2003. Monte-Carlo Go De-
velopments. In ACG, volume 263 of IFIP, 159–174. Kluwer.

Cazenave, T. 2015a. Generalized rapid action value estima-
tion. In 24th International Conference on Artificial Intelli-
gence, 754–760.

Cazenave, T. 2015b. Sequential Halving Applied to Trees.
IEEE Trans. Comput. Intell. AI Games 7(1): 102–105.

Coulom, R. 2006. Efficient Selectivity and Backup Opera-
tors in Monte-Carlo Tree Search. In Computers and Games,
5th International Conference, CG 2006, Turin, Italy, May
29-31, 2006. Revised Papers, 72–83.

Feller, W. 2015. On the normal approximation to the bino-
mial distribution. In Selected Papers I, 655–665. Springer.

Gelly, S.; and Silver, D. 2007. Combining online and offline
knowledge in UCT. In Machine Learning, Proceedings of
the Twenty-Fourth International Conference (ICML 2007),

Corvallis, Oregon, USA, June 20-24, 2007, 273–280. doi:
10.1145/1273496.1273531.
Gelly, S.; and Silver, D. 2011. Monte-Carlo tree search and
rapid action value estimation in computer Go. Artif. Intell.
175(11): 1856–1875.
Karnin, Z. S.; Koren, T.; and Somekh, O. 2013. Almost Op-
timal Exploration in Multi-Armed Bandits. In Proceedings
of the 30th International Conference on Machine Learning,
ICML 2013, Atlanta, GA, USA, 16-21 June 2013, 1238–
1246.
Kocsis, L.; and Szepesvári, C. 2006. Bandit Based Monte-
Carlo Planning. In Machine Learning: ECML 2006, 17th
European Conference on Machine Learning, Berlin, Ger-
many, September 18-22, 2006, Proceedings, 282–293.
Pepels, T.; Cazenave, T.; and Winands, M. H. 2015. Sequen-
tial halving for partially observable games. In CGW 2015,
16–29. Springer.
Pepels, T.; Cazenave, T.; Winands, M. H. M.; and Lanc-
tot, M. 2014. Minimizing Simple and Cumulative Regret
in Monte-Carlo Tree Search. In CGW 2014, 1–15. Springer.
Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre,
L.; van den Driessche, G.; Schrittwieser, J.; Antonoglou,
I.; Panneershelvam, V.; Lanctot, M.; Dieleman, S.; Grewe,
D.; Nham, J.; Kalchbrenner, N.; Sutskever, I.; Lillicrap, T.;
Leach, M.; Kavukcuoglu, K.; Graepel, T.; and Hassabis, D.
2016. Mastering the Game of Go with Deep Neural Net-
works and Tree Search. Nature 529(7587): 484–489. ISSN
0028-0836. doi:10.1038/nature16961.

