
Stabilized Nested Rollout Policy Adaptation

Tristan Cazenave1, Jean-Baptiste Sevestre2, and Matthieu Toulemont3

1 LAMSADE, Université Paris-Dauphine, PSL, CNRS, France
Tristan.Cazenave@dauphine.psl.eu

2 InstaDeep jb.sevestre@instadeep.com
3 matthieu.toulemont@ponts.org

Abstract. Nested Rollout Policy Adaptation (NRPA) is a Monte Carlo search
algorithm for single player games. In this paper we propose to modify NRPA in
order to improve the stability of the algorithm. Experiments show it improves
the algorithm for different application domains: SameGame, Traveling Salesman
with Time Windows and Expression Discovery.

1 Introduction

Monte Carlo Tree Search (MCTS) has been successfully applied to many games and
problems [3].

Nested Monte Carlo Search (NMCS) [4] is an algorithm that works well for puz-
zles and optimization problems. It biases its playouts using lower level playouts. At
level zero NMCS adopts a uniform random playout policy. Online learning of play-
out strategies combined with NMCS has given good results on optimization problems
[27]. Other applications of NMCS include Single Player General Game Playing [20],
Cooperative Pathfinding [1], Software testing [25], heuristic Model-Checking [26], the
Pancake problem [2], Games [10] and the RNA inverse folding problem [23].

Online learning of a playout policy in the context of nested searches has been fur-
ther developed for puzzles and optimization with Nested Rollout Policy Adaptation
(NRPA) [28]. NRPA has found new world records in Morpion Solitaire and crosswords
puzzles. Stefan Edelkamp and co-workers have applied the NRPA algorithm to mul-
tiple problems. They have optimized the algorithm for the Traveling Salesman with
Time Windows (TSPTW) problem [11,12]. Other applications deal with 3D Packing
with Object Orientation [14], the physical traveling salesman problem [15], the Multi-
ple Sequence Alignment problem [16] or Logistics [13]. The principle of NRPA is to
adapt the playout policy so as to learn the best sequence of moves found so far at each
level. Unfortunately, this mechanism only samples each policy once at the lowest level
which may lead to a misclassification of a good policy (one that improves the best score)
as a bad one. To solve this issue, we propose a simple, yet effective modification of the
NRPA Algorithm, which we name Stabilized NRPA.By sampling each policy multiple
times at the lowest level we show that this new NRPA is stabilized and converges faster.

We now give the outline of the paper. The second section describes NRPA. The third
section explains Stabilized NRPA. The fourth section describes the problems used for
the experiments. The fifth section gives experimental results for these problems. The
sixth section outlines further work and the last section concludes.



2 T. Cazenave et al.

2 NRPA

Nested Policy Rollout Adaptation is an algorithm introduced by Chris Rosin [28] that
achieves state-of-the-art performance on problems such as Morpion Solitaire.

This algorithm has two major components : An adaptive rollout policy, and a nested
structure, shown in Figure 1.

The adaptive rollout policy is a policy parameterized by weights on each action.
During the playout phase, action is sampled according to this weights. The Playout
Algorithm is given in algorithm 1. It uses Gibbs sampling, each move is associated to
a weight. A move is coded as an integer that gives the index of its weight in the policy
array of floats. The algorithm starts with initializing the sequence of moves that it will
play (line 2). Then it performs a loop until it reaches a terminal states (lines 3-6). At
each step of the playout it calculates the sum of all the exponentials of the weights of
the possible moves (lines 7-10) and chooses a move proportionally to its probability
given by the softmax function (line 11). Then it plays the chosen move and adds it to
the sequence of moves (lines 12-13).

Then, the policy is adapted on the best current sequence found, by increasing the
weight of the best actions. The Adapt Algorithm is given in algorithm 2.For all the
states of the sequence passed as a parameter it adds α to the weight of the move of
the sequence (lines 3-5). Then it reduces all the moves proportionally to α times the
probability of playing the move so as to keep a sum of all probabilities equal to one
(lines 6-12).

The nested structure was introduced by Tristan Cazenave [4]. This method helps the
algorithm to converge towards better and better sequences. In NRPA, each nested level
takes as input a policy, and returns a sequence. Inside the level, the algorithm makes
many recursive calls to lower levels, providing weights, getting sequences and adapting
the weights on those sequences. In the end, the algorithm returns the best sequence
found in that level. At the lowest level, the algorithm simply makes a rollout.

The NRPA algorithm is given in algorithm 3. At level zero it simply performs a
playout (lines 2-3). At greater levels it performs N iterations and for each iteration it
calls itself recursively to get a score and a sequence (lines 4-7). If it finds a new best
sequence for the level it keeps it as the best sequence (lines 8-11). Then it adapts the
policy using the best sequence found so far at the current level (line 12).

NRPA balances exploitation by adapting the probabilities of playing moves toward
the best sequence of the level, and exploration by using Gibbs sampling at the lowest
level. It is a general algorithm that has proven to work well for many optimization
problems.

3 Stabilized NRPA

In this section we explain Stabilized NRPA and its potential for being parallelized.

3.1 Better Convergence of NRPA

In NRPA algorithm, an evaluation problem may occur.



Stabilized Nested Rollout Policy Adaptation 3

Algorithm 1 The Playout algorithm
1: Playout (state, policy)
2: sequence← []
3: while true do
4: if state is terminal then
5: return (score (state), sequence)
6: end if
7: z← 0.0
8: for m in possible moves for state do
9: z← z + exp (policy [code(m)])

10: end for
11: choose a move with probability exp(policy[code(move)])

z

12: state← play (state, move)
13: sequence← sequence + move
14: end while

Algorithm 2 The Adapt algorithm
1: Adapt (policy, sequence)
2: polp← policy
3: state← root
4: for move in sequence do
5: polp [code(move)]← polp [code(move)] + α
6: z← 0.0
7: for m in possible moves for state do
8: z← z + exp (policy [code(m)])
9: end for

10: for m in possible moves for state do
11: polp [code(m)]← polp [code(m)] - α ∗ exp(policy[code(m)])

z

12: end for
13: state← play (state, move)
14: end for
15: policy← polp
16: return policy



4 T. Cazenave et al.

Algorithm 3 The NRPA algorithm.
1: NRPA (level, policy)
2: if level == 0 then
3: return playout (root, policy)
4: else
5: bestScore←−∞
6: for N iterations do
7: (result,new)← NRPA(level − 1, policy)
8: if result ≥ bestScore then
9: bestScore← result

10: seq← new
11: end if
12: policy← Adapt (policy, seq)
13: end for
14: return (bestScore, seq)
15: end if

Fig. 1. NRPA scheme

Imagine that we have a policy that has good performance, but unfortunately the
sequence generated by this policy at level 0 is bad (i.e. the sequence has a bad score
comparing to the usual policy performance). This sequence is up to level 1 and is ig-
nored since it is worse than the best sequence of level 1. The policy is adapted on the
best sequence of level 1, pushing slightly the next rollouts toward the best sequence of
level 1, making the policy more deterministic, making it less exploratory and less likely
to find a new best sequence. This bad behavior could be propagated to the upper level,
for the same reasons.

The problem is even worse when this situation occurs at the beginning of a nested
level since there is not yet a best sequence. In this case the policy is adapted directly
on this bad sequence, pushing the rollouts towards bad sequences, which perturbs the
rollouts of the entire nested level.

To prevent this problem, an idea is simply to generate not only 1 sequence according
to a given policy, but P sequences, in order to get a better evaluation of the performance
of this policy. The algorithm does not adapt to the best sequence until P sequence



Stabilized Nested Rollout Policy Adaptation 5

Fig. 2. Stabilized NRPA scheme. Level 1 is replaced by an evaluation level

have been played. And the best sequence returned is the best sequence over those P
sequences.

We note that doing so stabilizes the convergence of NRPA. Rollouts are less often
pushed to bad sequences, making entire nested level less perturbed, and so making each
nested level useful for the search efficiency, leading also to faster convergence.

In our experiments, we have replaced classic level 1 by an evaluation level leading
to Figure 2, that aims to better evaluate the policy, and to return the best sequence found
by this policy. We can see in figure 2 that multiple level zero calls are performed before
doing the adapt in green whereas in figure 1 the green adapt function is called after
every level zero call.

The number of evaluation is parameterized by the P parameter and the number of
playouts at the lowest level of SNRPA is P times greater than the number of playout at
the lowest level of NRPA.

Note that for a fixed number of playouts, the Stabilized NRPA makes less updates
comparing to NRPA, making it faster. Note further that Stabilized NRPA is a general-
ization of NRPA, since SNRPA(1) is NRPA.

Stabilized NRPA is given in algorithm 4. It follows the same pattern as NRPA. Lines
2-3 and lines 14-25 are the same as in NRPA. They correspond to level zero and to levels
strictly greater than one. The difference lies in level one (lines 4-13). At level one there
is an additional loop from 1 to P that gets the best sequence out of P playouts.

3.2 Parallelization

Parallelizing NMCS was done in [9]. Parallelizing NRPA on a cluster is easily done us-
ing root parallelization when distributing among the different computers and using leaf
parallelization on each multiple cores computer [22]. More recently Andrzej Nagorko
efficiently parallelized NRPA while not changing its global behavior [21].

Stabilized NRPA is well fitted for leaf parallelization as the P playouts can be done
in parallel.



6 T. Cazenave et al.

Algorithm 4 The Stabilized NRPA algorithm.
1: StabilizedNRPA (level, policy)
2: if level == 0 then
3: return playout (root, policy)
4: else if level == 1 then
5: bestScore←−∞
6: for 1, . . . , P do
7: (result,new)← StabilizedNRPA(level − 1, policy)
8: if result ≥ bestScore then
9: bestScore← result

10: seq← new
11: end if
12: end for
13: return (bestScore, seq)
14: else
15: bestScore←−∞
16: for 1, . . . , N do
17: (result,new)← StabilizedNRPA(level − 1, policy)
18: if result ≥ bestScore then
19: bestScore← result
20: seq← new
21: end if
22: policy← Adapt (policy, seq)
23: end for
24: return (bestScore, seq)
25: end if



Stabilized Nested Rollout Policy Adaptation 7

4 Problems Used for the Experiments

In this section we present the three problems used for the experiments. The Maximum
problem where the goal is to find a mathematical expression that evaluates as great as
possible. The TSPTW problem that finds short paths to visit as set of cities with time
constraints. The SameGame problem, a popular puzzle.

4.1 The Maximum Problem

Nested Monte Carlo Search can be used for the optimization of mathematical expres-
sions [5,6,8]. For some problems it gives better results than alternative algorithms such
as UCT [17] or Genetic Programming [18].

The Maximum problem [19] consists in finding an expression that results in the
maximum possible number given some limit on the size of the expression. In the exper-
iment limit was on the depth of the corresponding tree and the available atoms were +,
* and 0.5. In our experiments we fixed a limit on the number of atoms of the generated
expression, not on the depth of the tree and the available atoms are +, * and 1.0.

We applied NRPA to the Maximum Problem. It is the first time NRPA is applied to
Expression Discovery.

Figure 3 gives an example of how an expression is built using a playout. The left
tree corresponds to the stack of atoms below the tree. The stack defines a tree and in
order to fill the tree new atoms are pushed on top of the stack. For example pushing the
’+’ atom on the stack gives the tree on the right. When the maximum number of nodes
+ leaves is reached for a stack only terminal atoms (atoms that do not have children) are
pushed onto the stack enforcing the number of nodes of the generated expression to be
below the defined maximum.

−

+

4

−

+

4 +
+

4

−

Fig. 3. A partial tree and the corresponding stack.

4.2 TSPTW

In the Traveling Salesman Problem with Time Windows (TSPTW) an agent has to visit
N cities at predefined periods of times while minimizing the total tour cost. NRPA has
been successfully applied to TSPTW [11,12].



8 T. Cazenave et al.

The Hamiltonian Path problem is a subproblem of the TSP, so TSPTW and most
other TSP variants are computationally hard. No algorithm polynomial in the number
of cities is expected.

The TSPTW is much harder than the TSP, different algorithms have to be used for
solving this problem and NRPA had state of the art results on standard benchmarks.

Following the formulation of [11], the TSPTW can be defined as follow. LetG be an
undirected complete graph.G = (N,A), whereN = 0, 1, . . . , n corresponds to a set of
nodes and A = N ×N corresponds to the set of edges between the nodes. The node 0
corresponds to the depot. Each city is represented by the n other nodes. A cost function
c : A → R is given and represents the distance between two cities. A solution to this
problem is a sequence of nodes P = (p0, p1, . . . , pn) where p0 = 0 and (p1, . . . , pn) is
a permutation of [1, N ]. Set pn+1 = 0 (the path must finish at the depot), then the goal
is to minimize the function defined in Equation 1.

cost(P ) =

n∑
k=0

c(apk
, apk+1

) (1)

As said previously, the TSPTW version is more difficult because each city i has to
be visited in a time interval [ei, li]. This means that a city i has to be visited before li.
It is possible to visit a cite before ei, but in that case, the new departure time becomes
ei. Consequently, this case may be dangerous as it generates a penalty. Formally, if
rpk

is the real arrival time at node pk, then the departure time dpk
from this node is

dpk
= max(rpk

, epk
).

In the TSPTW, the function to minimize is the same as for the TSP (Equation 1),
but a set of constraint is added and must be satisfied. Let us define Ω(P ) as the number
of violated windows constraints by tour (P).
Two constraints are defined. The first constraint is to check that the arrival time is lower
than the fixed time. Formally,

∀pk, rpk
< lpk

.

The second constraint is the minimization of the time lost by waiting at a city.
Formally,

rpk+1
= max(rpk

, epk
) + c(apk,pk+1

).

In NRPA paths with violated constraints can be generated. As presented in [27] , a
new score Tcost(p) of a path p can be defined as follow:

Tcost(p) = cost(p) + 106 ∗Ω(p),

with, as defined previously, cost(p) the cost of the path p and Ω(p) the number of
violated constraints. 106 is a constant chosen high enough so that the algorithm first
optimizes the constraints.

The problem we use to experiment with the TSPTW problem is the most difficult
problem from the set of [24].



Stabilized Nested Rollout Policy Adaptation 9

4.3 SameGame

In SameGame the goal is to score as much as possible removing connected components
of the same color. An example of a SameGame board is given in figure 4. The score for
removing n tiles is (n−2)2. If the board is completely cleared there is a bonus of 1000.

When applying Monte Carlo Search to SameGame it is beneficial to use selective
search [7] in order to eliminate moves that are often bad. For example it is important to
remove the tiles of the dominant color all at once in order to score a lot with this move.
The Tabu color playout strategy achieves this by forbidding moves of the dominant
color when they do not clear all the tiles of the dominant color in one move. We some-
times allow moves of size two for the dominant color beside the Tabu color strategy as
advised in [7].

The best published results for SameGame come from a parallel implementation of
NRPA [22].

Figure 4 gives the first problem of the standard SameGame suite. This is the one we
used in our experiments.

Fig. 4. First problem of the SameGame standard suite

5 Experimental Results

In all our experiments we use the average score over 200 runs. For each search time
starting at 0.01 seconds and doubling until 163.84 seconds we give the average score
reached by Stabilized NRPA within this time. We run a search of level 4 each run,



10 T. Cazenave et al.

Table 1. Results for the Maximum problem (scale × 1 000 000).

Time NRPA SNRPA(2) SNRPA(3) SNRPA(4) SNRPA(10)

0.01 1 1 2 2 1
0.02 3 24 68 138 25
0.04 16 108 326 934 5086
0.08 150 1341 2092 5971 21745
0.16 3475 15844 19874 52041 88547
0.32 170265 534672 487983 1147083 789547
0.64 13803062 28885199 22863271 36529536 12000748
1.28 40077774 216376610 270326701 379573875 212668695
2.56 89668935 314740908 408327339 495249021 708820733
5.12 151647343 472960557 557957691 704240083 904642720

10.24 345707890 712902227 856149587 938008979 1296603114
20.48 852761999 1151948749 1284225823 1359946097 1661398711
40.96 1975250628 2168737831 2221426342 2232301333 2128244879
81.92 2973605038 3276850130 3381032884 3321287204 3057041220

163.84 3336604131 3531572024 3627351674 3621195107 3928494648

but NRPA does not has the time to finish level 3, especially when running SNRPA(P).
SNRPA(P) advances approximately P times less steps than NRPA at level 3 since it
spends approximately P times more at level 1. All the experiments use sequential ver-
sions of NRPA and Stabilized NRPA.

Table 1 gives the evolution for the Maximum problem. The score is the evaluation
of the mathematical expression. The first column gives the average scores of standard
NRPA. The second column gives the average scores of Stabilized NRPA with P = 2.
The third column gives the average scores of Stabilized NRPA with P = 3 and so
on. We can observe that SNRPA(10) gives the best results. To save place the numbers
generated by the expressions have been divided by 1 000 000.

Table 3 gives the results for the rc204.1 TSPTW problem. This is the most difficult
problem of the Solomon-Potwin-Bengio TSPTW benchmark. The score is one million
times the number of violated constraints plus the tour cost. SNRPA(10) gives again the
best results.

Table 4 gives the results for the first problem of SameGame. Evaluation improves
the performance until a certain limit. Indeed, P = 4 provides the best results with
P = 5 and P = 6 yielding close scores.

For the three problems, Stabilized NRPA gives better results than NRPA.
Among the different version of SNRPA, the conclusion differs depending of the

problem we consider :
For the Maximum Problem, we note that values as great as 10 for P give the best

results. For the TSPTW Problem, we note that for the longest time (163.84s), we go
from −980946 for NRPA, to −385937 for SNRPA(10) the best result for the greatest
value we have tried for P . On the contrary smaller values for P seem appropriate for
SameGame with P = 4 being the best.



Stabilized Nested Rollout Policy Adaptation 11

Table 2. Best scores for SameGame

Problem NMCS SP-MCTS NRPA SRNPA(4) js-games.de

1 3,121 2,919 3,179 3,203 3,413
2 3,813 3,797 3,985 3,987 4,023
3 3,085 3,243 3,635 3,757 4,019
4 3,697 3,687 3,913 4,001 4,215
5 4,055 4,067 4,309 4,287 4,379
6 4,459 4,269 4,809 4,799 4,869
7 2,949 2,949 2,651 2,151 3,435
8 3,999 4,043 3,879 4,079 4,771
9 4,695 4,769 4,807 4,821 5,041

10 3,223 3,245 2,831 3,333 3,937
11 3,147 3,259 3,317 3,531 3,783
12 3,201 3,245 3,315 3,355 3,921
13 3,197 3,211 3,399 3,379 3,821
14 2,799 2,937 3,097 3,121 3,263
15 3,677 3,343 3,559 3,783 4,161
16 4,979 5,117 5,025 5,377 5,517
17 4,919 4,959 5,043 5,049 5,227
18 5,201 5,151 5,407 5,491 5,503
19 4,883 4,803 5,065 5,325 5,343
20 4,835 4,999 4,805 5,203 5,217

Total 77,934 78,012 80,030 82,032 87,858



12 T. Cazenave et al.

Table 3. Results for the TSPTW rc204.1 problem

Time NRPA SNRPA(2) SNRPA(3) SNRPA(4) SNRPA(10)

0.01 -29037026 -28762022 -29107010 -29222032 -29337060
0.02 -26501832 -26121858 -26226870 -26181904 -27096936
0.04 -25276756 -24221694 -24056722 -23596696 -24031802
0.08 -23821720 -22621656 -22556632 -22176624 -21706624
0.16 -22006640 -21436606 -21216568 -20806566 -20261500
0.32 -19521526 -19441520 -19481502 -19086484 -18821438
0.64 -16416390 -16536396 -16536403 -16536387 -17166394
1.28 -13966259 -13636262 -13466266 -13316265 -14691306
2.56 -12781221 -11881189 -11111173 -10856164 -11696195
5.12 -11301179 -10556154 -9866131 -9406120 -8831112

10.24 -9351129 -8816107 -8166091 -7866081 -7241065
20.48 -6591049 -6631047 -6166038 -6031033 -6076040
40.96 -3695987 -3890987 -3975989 -4045989 -4085994
81.92 -1825960 -1560955 -1505955 -1540954 -2100962

163.84 -980946 -780941 -580938 -500938 -385937

Table 4. Results for the first problem of SameGame

Time NRPA SNRPA(2) SNRPA(3) SNRPA(4) SNRPA(5) SNRPA(6) SNRPA(7) SNRPA(10)

0.01 448 499 483 494 504 479 485 464
0.02 654 685 678 701 676 672 660 637
0.04 809 871 863 896 904 867 836 823
0.08 927 989 1010 1062 1062 1045 1032 1026
0.16 1044 1091 1133 1183 1172 1156 1170 1186
0.32 1177 1214 1239 1286 1286 1278 1285 1288
0.64 1338 1370 1386 1407 1414 1396 1403 1398
1.28 1514 1548 1559 1556 1573 1544 1548 1547
2.56 1662 1739 1721 1740 1759 1713 1733 1716
5.12 1790 1859 1894 1900 1913 1917 1913 1897

10.24 1928 2046 2025 2034 2068 2080 2071 2065
20.48 2113 2228 2249 2277 2255 2271 2243 2213
40.96 2393 2518 2475 2556 2518 2513 2471 2477
81.92 2642 2753 2718 2787 2761 2760 2733 2700

163.84 2838 2898 2868 2949 2940 2945 2912 2917

Table2 gives the scores reached by different algorithms on the standard test set of 20
SameGame problems. We see that SNRPA(4) improves on NRPA at level 4. However
SNRPA(4) takes more time when run sequentially since it does four times more playouts
as NRPA. Still is does the same number of calls to the adapt function as NRPA. SP-
MCTS is a variant of the UCT algorithm applied to single player games, and NMCS
is Nested Monte Carlo Search. They both reach smaller overall scores than SNRPA(4).
the last column contains the records from the website js-games.de. They were obtained



Stabilized Nested Rollout Policy Adaptation 13

by specialized algorithms and little is known about these algorithms except that some
of them use a kind of beam search with specialized evaluation functions.

6 Conclusion

Stabilized NRPA is a simple modification of the NRPA algorithm. It consists in peri-
odically playing P playouts at the lowest level before performing the adaptation. It is a
generalization of NRPA since Stabilized NRPA with P = 1 is NRPA. It improves the
average scores of NRPA given the same computation time for three different problems:
Expression Discovery, TSPTW and SameGame.

Acknowledgment

This work was supported in part by the French government under management of
Agence Nationale de la Recherche as part of the “Investissements d’avenir” program,
reference ANR19-P3IA-0001 (PRAIRIE 3IA Institute).

References

1. Bouzy, B.: Monte-carlo fork search for cooperative path-finding. In: Computer Games -
Workshop on Computer Games, CGW 2013, Held in Conjunction with the 23rd Interna-
tional Conference on Artificial Intelligence, IJCAI 2013, Beijing, China, August 3, 2013,
Revised Selected Papers. pp. 1–15 (2013)

2. Bouzy, B.: Burnt pancake problem: New lower bounds on the diameter and new experimental
optimality ratios. In: Proceedings of the Ninth Annual Symposium on Combinatorial Search,
SOCS 2016, Tarrytown, NY, USA, July 6-8, 2016. pp. 119–120 (2016)

3. Browne, C., Powley, E., Whitehouse, D., Lucas, S., Cowling, P., Rohlfshagen, P., Tavener,
S., Perez, D., Samothrakis, S., Colton, S.: A survey of Monte Carlo tree search methods.
IEEE Transactions on Computational Intelligence and AI in Games 4(1), 1–43 (Mar 2012).
https://doi.org/10.1109/TCIAIG.2012.2186810

4. Cazenave, T.: Nested Monte-Carlo Search. In: Boutilier, C. (ed.) IJCAI. pp. 456–461 (2009)
5. Cazenave, T.: Nested monte-carlo expression discovery. In: ECAI 2010 - 19th European

Conference on Artificial Intelligence, Lisbon, Portugal, August 16-20, 2010, Proceedings.
pp. 1057–1058 (2010). https://doi.org/10.3233/978-1-60750-606-5-1057, https://doi.org/10.
3233/978-1-60750-606-5-1057

6. Cazenave, T.: Monte-carlo expression discovery. International Journal on Artificial Intelli-
gence Tools 22(1) (2013). https://doi.org/10.1142/S0218213012500352, https://doi.org/10.
1142/S0218213012500352

7. Cazenave, T.: Nested rollout policy adaptation with selective policies. In: CGW at IJCAI
2016 (2016)

8. Cazenave, T., Hamida, S.B.: Forecasting financial volatility using nested monte carlo
expression discovery. In: IEEE Symposium Series on Computational Intelligence,
SSCI 2015, Cape Town, South Africa, December 7-10, 2015. pp. 726–733 (2015).
https://doi.org/10.1109/SSCI.2015.110, https://doi.org/10.1109/SSCI.2015.110

9. Cazenave, T., Jouandeau, N.: Parallel nested monte-carlo search. In: 23rd IEEE International
Symposium on Parallel and Distributed Processing, IPDPS 2009, Rome, Italy, May 23-29,
2009. pp. 1–6 (2009). https://doi.org/10.1109/IPDPS.2009.5161122, https://doi.org/10.1109/
IPDPS.2009.5161122

https://doi.org/10.1109/TCIAIG.2012.2186810
https://doi.org/10.3233/978-1-60750-606-5-1057
https://doi.org/10.3233/978-1-60750-606-5-1057
https://doi.org/10.3233/978-1-60750-606-5-1057
https://doi.org/10.1142/S0218213012500352
https://doi.org/10.1142/S0218213012500352
https://doi.org/10.1142/S0218213012500352
https://doi.org/10.1109/SSCI.2015.110
https://doi.org/10.1109/SSCI.2015.110
https://doi.org/10.1109/IPDPS.2009.5161122
https://doi.org/10.1109/IPDPS.2009.5161122
https://doi.org/10.1109/IPDPS.2009.5161122


14 T. Cazenave et al.

10. Cazenave, T., Saffidine, A., Schofield, M.J., Thielscher, M.: Nested monte carlo search for
two-player games. In: Proceedings of the Thirtieth AAAI Conference on Artificial Intelli-
gence, February 12-17, 2016, Phoenix, Arizona, USA. pp. 687–693 (2016), http://www.aaai.
org/ocs/index.php/AAAI/AAAI16/paper/view/12134

11. Cazenave, T., Teytaud, F.: Application of the nested rollout policy adaptation algorithm to the
traveling salesman problem with time windows. In: Learning and Intelligent Optimization -
6th International Conference, LION 6, Paris, France, January 16-20, 2012, Revised Selected
Papers. pp. 42–54 (2012)

12. Edelkamp, S., Gath, M., Cazenave, T., Teytaud, F.: Algorithm and knowledge engineering
for the tsptw problem. In: Computational Intelligence in Scheduling (SCIS), 2013 IEEE
Symposium on. pp. 44–51. IEEE (2013)

13. Edelkamp, S., Gath, M., Greulich, C., Humann, M., Herzog, O., Lawo, M.: Monte-carlo tree
search for logistics. In: Commercial Transport, pp. 427–440. Springer International Publish-
ing (2016)

14. Edelkamp, S., Gath, M., Rohde, M.: Monte-carlo tree search for 3d packing with object
orientation. In: KI 2014: Advances in Artificial Intelligence, pp. 285–296. Springer Interna-
tional Publishing (2014)

15. Edelkamp, S., Greulich, C.: Solving physical traveling salesman problems with policy adap-
tation. In: Computational Intelligence and Games (CIG), 2014 IEEE Conference on. pp. 1–8.
IEEE (2014)

16. Edelkamp, S., Tang, Z.: Monte-carlo tree search for the multiple sequence alignment prob-
lem. In: Eighth Annual Symposium on Combinatorial Search (2015)

17. Kocsis, L., Szepesvári, C.: Bandit based Monte-Carlo planning. In: 17th European Confer-
ence on Machine Learning (ECML’06). LNCS, vol. 4212, pp. 282–293. Springer (2006)

18. Koza, J.R., et al.: Genetic programming II, vol. 17. MIT press Cambridge (1994)
19. Langdon, W.B., Poli, R., et al.: An analysis of the max problem in genetic programming.

Genetic Programming 1(997), 222–230 (1997)
20. Méhat, J., Cazenave, T.: Combining UCT and Nested Monte Carlo Search for single-player

general game playing. IEEE Transactions on Computational Intelligence and AI in Games
2(4), 271–277 (2010)

21. Nagorko, A.: Parallel nested rollout policy adaptation. In: IEEE Conference on Games (2019)
22. Négrevergne, B., Cazenave, T.: Distributed nested rollout policy for samegame. In: Computer

Games - 6th Workshop, CGW 2017, Held in Conjunction with the 26th International Con-
ference on Artificial Intelligence, IJCAI 2017, Melbourne, VIC, Australia, August, 20, 2017,
Revised Selected Papers. pp. 108–120 (2017). https://doi.org/10.1007/978-3-319-75931-9 8

23. Portela, F.: An unexpectedly effective monte carlo technique for the rna inverse folding prob-
lem. bioRxiv p. 345587 (2018)

24. Potvin, J.Y., Bengio, S.: The vehicle routing problem with time windows part ii: genetic
search. INFORMS journal on Computing 8(2), 165–172 (1996)

25. Poulding, S.M., Feldt, R.: Generating structured test data with specific properties using
nested monte-carlo search. In: Genetic and Evolutionary Computation Conference, GECCO
’14, Vancouver, BC, Canada, July 12-16, 2014. pp. 1279–1286 (2014)

26. Poulding, S.M., Feldt, R.: Heuristic model checking using a monte-carlo tree search algo-
rithm. In: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO
2015, Madrid, Spain, July 11-15, 2015. pp. 1359–1366 (2015)

27. Rimmel, A., Teytaud, F., Cazenave, T.: Optimization of the Nested Monte-Carlo algorithm on
the traveling salesman problem with time windows. In: Applications of Evolutionary Compu-
tation - EvoApplications 2011: EvoCOMNET, EvoFIN, EvoHOT, EvoMUSART, EvoSTIM,
and EvoTRANSLOG, Torino, Italy, April 27-29, 2011, Proceedings, Part II. Lecture Notes
in Computer Science, vol. 6625, pp. 501–510. Springer (2011)

http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12134
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12134
https://doi.org/10.1007/978-3-319-75931-9_8


Stabilized Nested Rollout Policy Adaptation 15

28. Rosin, C.D.: Nested rollout policy adaptation for Monte Carlo Tree Search. In: IJCAI. pp.
649–654 (2011)


	Stabilized Nested Rollout Policy Adaptation

