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Abstract We present a new method for taking advantage of the relative independence
between parts of a single-player game. We describe an implementation for im-
proving the search in a solitaire card game called Gaps. Considering the basic
techniques, we show that a simple variant of Gaps can be solved by a straight-
forward depth-first search (DFS); turning to variants with a larger search space,
we give an approximation of the winning chances using iterative sampling. Our
new method was designed to make a complete search; it improves on DFS by
grouping several positions in a block, and searching only on the boundaries of the
blocks. A block is defined as a product of independent sequences. We describe
precisely how to detect interactions between sequences and how to deal with
them. The resulting algorithm may run ten times faster than DFS, depending on
the degree of independence between the subgames.
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1. Introduction

In this paper we consider a solitaire card game usually called Gaps, Montana,
Rangoon or Blue Moon. We give approximations of winning chances for the
game of Gaps and use the domain for testing new ideas. In the field of solitaire
card games, we may also mention the game Freecell which has become a test
domain in planning (Hoffmann, 2001).

We have reasons to believe that techniques based on heuristics are not very
useful in Gaps. However we have been able to improve the search in another
way, by proving the independence between moves in different parts of the game
and making use of it. A few search techniques with similar concerns exist but
they are based on different principles (Allis, 1994; Junghanns and Schaeffer,
2001; Botea, Müller, and Schaeffer, 2002). .
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This paper is organised as follows. We explain the rules of Gaps in Section 2.
We give results of the basic techniques and explain the reasons for our approach
in Section 3. We present our method in Section 4 and experimental results in
Section 5. Finally, in Section 6 we discuss possibilities for generalization and
compare our method to the existing one which is the closest: dependency-based
search (Allis, 1994).

After our experiments, it was a surprise to find that a game called Superpuzz,
studied by Berliner and more recently by Shintani, is a variant of Gaps. How-
ever, at the time this paper was written, we did not know precisely what work has
been done on Superpuzz. We have found a short description of Berliner’s (1997)
work on the web, and Shintani’s (1999, 2000) work has only been published in
Japanese.

2. Rules of the Game

Below we explain the rules of what we call the basic variant (2.1). Then we
describe a few other variants (2.2). Finally, we give some basic properties of
the game (2.3).

2.1 Basic Variant

The game is usually played with a 52-card deck. The cards are placed in
4 rows of 13 cards each. The 4 Aces are removed, resulting in 4 gaps in the
position; then they are placed in a new column at the left in a fixed order (e.g.,
1st row Spade, 2nd Heart, 3rd Diamond, 4th Club). The goal is to create ordered
sequences of the same suit, from Ace to King, in each row. A move consists in
moving a card to a gap, thus moving the gap to where that card was. A gap can
be filled only with the successor of the card on the left (that is, the card of the
same colour and one higher in value), provided that there is no gap on the left
and that the card on the left is not a King, in which case we can place no card
in that gap. Figure 1 shows an initial position with only 4 cards per suit, before
and after moving the Aces, and the possible moves.

4♦ 4♣ 4♥3♣
2♠ 4♠ 2♥ 2♣

3♠
3♦ 3♥1♠ 1♦

1♣

4♦
2♠

3♦

3♣
4♠
3♠

4♣
2♥

3♥

2♣
4♥1♠

1♥
1♦
1♣

1♥2♦ 2♦

Figure 1. An initial position with 4x4 cards, before and after moving the Aces. This position
can be won.
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2.2 Other Variants

The basic variant presented above is probably not the most common. Usually
the Aces are not placed in a new column but are definitively removed. Instead
it is allowed to place any Two in a gap if it is on the first column. This gives
more possibilities than in the basic variant where only one Two can go in each
place of the second column (which was the first before moving the Aces). This
difference is not a minor one, as it has a strong influence both on the size of the
search space and on the probability of a winning game, as we will see. We call
this variant the common one. The reason for our choice of the basic variant was
to make the rules cleaner; this way only one card can be placed in any gap.

The game is usually played with an additional rule which says that when the
player gets stuck, he may remove the cards that are not part of an increasing
sequence starting from the first column, and redeal them. Two redeals are
allowed. We have not studied the game with this rule. However, as we will see,
the probability of winning without this rule but with perfect play is higher than
that obtained by human players using this rule.

It is possible to change the number of suits and the number of cards per suit.
This influences the size of the search space and the problem’s difficulty. It also
has an effect on the degree of independence between subgames, which will be
a major concern.

The game that has been studied under the name Superpuzz is what we have
called the common variant. There is only one minor difference: the gaps are
created by removing the Kings instead of the Aces.

2.3 Properties

In the basic variant, every initial dealing results in a separate game of perfect
information. This version has a remarkable property: in any position, the depth
of the search graph is bounded; in particular there is no cycle. If we look at a
particular card, of value v, there is only v − 1 places where it could be in the
subsequent positions, in addition to its present location: it could be one space
on the right of the card of the same suit and of value v − 1, two spaces on the
right of the card of the same suit and of value v − 2 (which means that we have
built a sequence v − 2, v − 1, v from the current position of the card of value
v − 2 and of the same suit) . . . , and v − 1 spaces on the right of the Ace of the
same suit. The card cannot go to any of those places twice, so the number of
moves of this card is bounded by v − 1. Therefore the total number of moves
with 52 cards is bounded by 4 × (1 + 2 + 3 + . . . + 12) = 312.
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3. Basic Techniques

In this section we show results of either a depth-first search or an iterative
sampling search applied to Gaps, then we discuss possibilities for improvement.
Although the techniques exposed here are basic, the results are about the best
we could do without using the method, block search, that we present in the next
section.

3.1 Depth-First Search

It turns out that in the basic variant the search space is small enough to allow
a complete depth-first search enhanced with a transposition table. Assuming
that we stop the search as soon as we find a winning path, the average size of the
search space is about 250,000. It seldom goes above 2 million. This is small
enough for all positions to be stored in a transposition table. A test on 10,000
initial positions shows that the probability that an initial position can be won
is about 24.8%. The length of winning solutions is usually in the range of 90
to 130 moves. All the computations have been made on an Athlon 1600+ with
1GB RAM. The previous search takes about 0.2s per problem.

This is only the beginning of the story though, because the basic variant is
far from being the most difficult one, and even in the basic variant the difficulty
could be increased by playing with more cards.

3.2 Iterative Sampling

DFS is impractical in variants where the size of the search space is too big.
Instead, iterative sampling (Harvey and Ginsberg, 1995) has proved to be
surprisingly efficient. This consists in playing completely random moves until
a goal is found or the player gets stuck, in which case the search restarts at the
beginning. This is repeated until a probe is successful or the maximal number
of probes is reached.

We give results of this algorithm both for the basic variant and for the common
one (where the Aces are definitely removed and any Two can go in the first
column). We consider the common variant because the typical size of its search
space is too big to allow a complete search in a reasonable time (this property
could also have been obtained by increasing the number of cards). This way we
also get a first approximation of the winning chances for the common variant,
which are unexpectedly high.

Table 1 shows the results of an experiment on a set of 1000 random initial
positions. The set of positions is always the same, except that, for accuracy,
experiments with fewer than 1000 probes have been made on 100,000 initial
positions. One probe takes about 4.5µs. This amounts to about 450 s for 108
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probes when they are unsuccessful; on average 425 s and 164 s for the basic
and common variants, respectively.

max number success rate success rate
of probes basic variant common variant

1 0.046% 0.041%
10 0.373% 0.396%
10

2 1.37% 2.96%
10

4 7.1% 26.6%
10

5 9.7% 43.1%
10

6 12.8% 53.0%
10

7 14.5% 60.3%
10

8 16.4% 66.9%

Table 1. Results of iterative sampling.

It is a particularity of our
domain that we have a slight
chance of winning by doing ran-
dom moves. The efficiency of
the algorithm is due to its cov-
ering a well-distributed part of
the search space and its avoid-
ing getting lost in large parts of
the tree where it is impossible to
win.

3.3 Combining a Depth-bounded Search with Iterative
Sampling

Iterative sampling can be combined with a depth-bounded complete search.
One possibility is to make a breadth-first search until exhaustion of memory
resources, and to make one or more random probes at each node of this search.
The results are better compared to simple iterative sampling, probably because
it ensures a better distribution of the probes in the search space. Furthermore
this method will also prove some problems impossible when the search space
is searched completely.

We have run a test on 100 random initial positions for the common variant.
The breadth-first search was limited by the number of positions that could be
stored in memory: this number was set to 5, 000, 000. One random sample was
performed at each node. The program took 144 s per problem in average, and
it has found solutions for 88 of the initial positions and proved 4 impossible.

3.4 Comparison with Human Performance

Estimations of the chances of winning for human players are based on various
sources from the web and on personal experience. The chances of winning when
no redeal is allowed are of about 1%. The exact rule concerning the gaps in
the first column apparently has little effect on the difficulty of the game for
human players, but we have shown it is important for the computer. The last
feature must be compared with 24.8% (basic variant, complete DFS), 66.9%
(common variant, iterative sampling) and 88% (common variant, combination
of breadth-first search and iterative sampling).

With two redeals allowed, chances of winning for human players are of about
25%, still well below 88%.
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3.5 Discussion on Possibilities for Improvement

Iterative sampling is a simple and efficient technique for the game of Gaps;
however, in the process of designing a search program for solving Gaps, this
took us quite some time to realize. Previously, our attempts for solving Gaps and
its variants were based on complex best-first search algorithms. We gradually
realized that it was important to try and go to the goal often without caring
much for the quality of the moves. At that time our algorithms were about as
follows: do some tree search in a best-first way, and during this search, from
time to time, launch random samplings. We finally found that the strength of
our program was almost entirely due to the random samplings.

At the beginning, we had been working on yet another variant of the game.
This variant differs from the common one by the rule that we may move in a
gap not only the successor of the card on the left but also the predecessor of
the card on the right. We felt that there were much more efficient heuristics in
this variant. We did get some successes using heuristics, but even there random
sampling alone would do about as well.

In the basic variant the situation is worse. What heuristics do we have?
First, there is the number of cards that are already in their final location. This
is the only simple heuristic we know about, but unfortunately it gives a poor
evaluation of the position, as it often happens that most cards only get in their
correct location in the endgame. Then there could be heuristics concerning the
mobility of the cards, in the present and in the long term, but this is difficult to
estimate.

It is possible that good heuristics could be found. However a comparison
with human performance shows that we are not so bad with iterative sampling.
One can see that one sample by human players is roughly as successful as 100
random samples. This indicates that human players do not use very efficient
heuristics anyway. Even if we could do as well as humans on one sample,
considering the time that would be needed for computing heuristics it would
probably not be interesting. Because heuristics are weak, any best-first search
algorithm would also be of limited use. As an example there is the well-known
IDA*; we have experimented with it but did not achieve better results than with
a depth-first search.

The next part of this paper takes an orthogonal approach to the heuristic one.
Our goal is to go through the search space completely, without even caring
whether we find a winning sequence. We want to do it faster than a depth-first
search would, by simplifying the search space. Thanks to this, we will be able
to determine for sure if there is a solution in some problems where depth-first
search is not applicable; for instance in the basic variant when playing with
more cards.
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4. Block Search

In this section we present a new method that aims at proving the independence
between some parts of the problem and taking advantage of it, while keeping
the search complete.

From now on the focus will be on the basic variant only, because we will
make use of the fact that in any position only one card can be placed in a
gap. The common variant does not have this property, and therefore more work
would be needed in order to generalize the method to this variant.

4.1 Related Work

Among existing search algorithms, the closest to ours is probably the algo-
rithm dependency-based search by Victor Allis (1994). He applied his method
to three domains: the double letter problem, and the search of winning se-
quences in Qubic and GoMoku (the last two, being 2-person games, were first
transformed into single agent games). In fact the starting point of our work
was a failure to adapt this algorithm to the game of Gaps. A pseudo-code for
the algorithm was given, but a function called NotInConflict was not explicit;
we believe that this function was easy to write in the domains where the algo-
rithm had been implemented but would be difficult to write in Gaps, at least not
statically.

The goal of our method is also similar to that of Junghanns’ Relevance Cuts
for Sokoban (Junghanns and Schaeffer, 2001). He suggested that relevance can
be approximated by computing an influence between moves, and then penaliz-
ing moves that are not relevant to the previous ones. His work was done in the
context of an IDA* search, so in his method moves are never definitely elimi-
nated, they may only get a penalty. The method we have developed handles the
problem more precisely.

A more recent work on Sokoban (Botea, Müller, and Schaeffer, 2002) ad-
dresses the problem in yet another way, by decomposing the position in rooms
and precomputing the graph of states in each room. The major difference with
our work is that the states in the subgames are precomputed, and this does not
seem possible in Gaps.

4.2 Principle of the Method

We name the four gaps A, B, C , D, and break the game into four subgames
also named A, B, C , D. The moves allowed in one subgame are those that use
the corresponding gap. If one plays only in one subgame, one makes a linear
sequence of moves. This sequence moves the same gap from place to place until
getting stuck, which can happen for any of the following two reasons: either
there is another gap on the left, or the card on the left is a King. Whereas the
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moves in the same subgame are totally ordered, moves from different subgames
are often independent. We want to take advantage of this relative independence
between the subgames.

Let a block be defined by its starting position, and in each subgame X

a sequence SX , possibly empty, from the starting position, so that the four
sequences are independent of each other. A block represents a set of positions:
all positions that can be reached from the starting position of the block with the
moves of the sequences SX in any order. It helps to see a block geometrically
as embedded in a four dimensional space. If lX is the length of sequence SX ,
the block represents lA×lB×lC ×lD positions. Finally, we call FX the face
of the block that consists in the positions of the block where all the moves of
sequences SX have been made.

The main idea of the algorithm is: instead of searching one position at a time,
we search one block at a time. Instead of recursively searching the immediate
children of a position, we construct new blocks at the boundary of a block and
recursively search them.

We want to construct blocks of the biggest possible size, so before building
blocks on the boundary, we try to extend them as much as possible in the four
subgames. Figure 2 shows a pseudo-code for the algorithm.

void search(block) {
for each subgame X

extend block in the subgame X , as long as
all the sequences keep being independent;

for each subgame X

build new blocks near the face FX of the block,
such that any move we can do from FX goes to
one of those blocks, and search them recursively;

test for a winning position in the block;
}

Figure 2. Pseudo-code for block search.

We still have to show how to extend blocks and construct new blocks at the
boundaries. Besides, the pseudo-code does not include a transposition table,
and this will lead to some problems to be addressed in Subsection 4.7.

4.3 Study of the Basic Interaction

We study in detail the case of a single interaction between two sequences.
Figure 3 shows the useful part of the position and a diagram which synthesizes
the relation between the two sequences. For simplicity all cards are of the same
suit. We assume that both sequences begin a few moves before the interaction
and end a few moves after, although the moves that are not critical have not been
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drawn. The dotted arrow in the right diagram indicates the action of sequence
SB on sequence SA. Assume we are just after move a1 in SA. If b1 has not yet
been made, move a2 can be made in subgame A; if move b2 has already been
made, move a′

2
can be made in subgame A; if move b1 has been made but not

move b2, no move can be made in subgame A.

357

8

4

Gap B

b1

b2

a1

a2
a2’

2

b1

b2

a1

a2 a2’

Gap A Subgame BSubgame A

flow of
the game

9

6

Figure 3. A basic interaction.

starting
position

������

b1 b2

psubgame A

subgame B

a1

a2’a2

Figure 4. Search space corresponding to a
basic interaction.

Figure 4 shows a representation in
the plane of the search space, where the
positions lie at the intersections of the
lines. Imagine there was no interaction
between the two sequences; we would
have a big square with the entire se-
quences A and B on the edges. The
effect of the interaction is to cut this
square along a line from the point p to
the right side (the double line in the fig-
ure), and to stick another part along the
cut, which corresponds to sequence SA

taking the bifurcation. The position at
p is particular: it is the position where the two gaps are adjacent, so that no
move can be made in subgame A. This point corresponds to the dotted arrow
in Figure 3. We say that there is a bifurcation of sequence SA, caused by an
action of sequence SB . One must imagine that there are two other dimensions
corresponding to the subgames C and D; if the sequences in these subgames
do not introduce new interactions, the complete search space will be a simple
product of the graph in Figure 3 with the sequences SC and SD.

We are looking for ways to partition the search space into blocks. There
are several ways to do it; Figure 5 shows the two ways we will use. They
deal with the two possible shapes of the first block. Whether we get in the
first or in the second depends on the order in which we have extended the first
block: first in subgame A or B. Subsection 4.6 will explain precisely how to
detect interactions when extending blocks and how to build new blocks at the
boundary. For the moment, we note that in the first possibility blocks 2 and 3
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are children of block 1, whereas in the second only blocks 2 and 4 are children
of block 1, and block 3 is a child of block 2.

��

1

2 3

p

a1

a2
a2’

b1 b2

subgame B

su
bg

am
e 

A ����

1

2

34

subgame B

pa2

a1

a2’

b2b1
su

bg
am

e 
A

Figure 5. Two ways to decompose the search space into blocks.

4.4 Why the Basic Interaction is the Only One to Consider

We have shown how to deal with the basic interaction; it turns out that it
is the only one we have to consider. Let SX and SY be two sequences in the
subgames X and Y . Let us enumerate all the ways that a move y of sequence
SY could be influencing a move x of sequence SX . Move x consists in taking
the card c from place p1 to place p2. The prerequisites for this move are:

1 there is a gap at p2,
2 the card c is in p1,
3 the card at the left of p2, cL, is the predecessor of c.

Those preconditions are verified if we make only moves from sequence SX up
to x, but they could be destroyed by moves of sequence SY . Assume we have
already established the independence of the sequences SX and SY up to the
moves x and y; then precondition 1 is automatically satisfied as soon as we have
executed all the moves of sequence SX up to x and whatever we have done in
the sequence SY up to y, since it is an effect of the beginning of sequence SX

to put a gap in p1.
Precondition 2 is automatically satisfied too. This comes from the fact that

the card c can only go to the right of cL, wherever this card be. If this card was
moved by sequence SY , then there would already be an interaction because of
precondition 3. If move y moved card c to the right of cL and this card was still
at the left of p2, the trajectories of the gaps X and Y in the sequences SX and
SY up to x and y would both pass through p2, which again would imply that
they are dependent.

Therefore only precondition 3 remains to consider, which produces an inter-
action of the kind already analysed.
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4.5 Using a Trace to Speed Up the Discovery of the
Interactions

The trace of the sequences SX is an array of the same size as the position
(4x13). It contains information for each place p indicating whether and at which
move the trajectory of the gap for any sequence is passing through p. The trace
is maintained incrementally as we build new blocks.

Assume we make a new move m, which moves a card from p1 to p2. We
want to know if it produces new interactions with the sequences already built.
A look in the trace at the place just on the left of p2 shows if any sequence has
an effect on move m. A look in the trace at the place just on the right of p1

shows if move m has an effect on any sequence. This way the search for an
interaction is done very quickly.

The method of doing a local search and storing the set of properties of
the position on which the result relies has already been used by other people
in different domains: in Go, with the goal of incrementally updating local
results (Bouzy, 1997); in Generalized Threats Search (Cazenave, 2002) which
is a 2-players selective search algorithm that relies on a trace to find a set
of relevant moves; in the algorithm H-search used in the hex program Hexy

(Anshelevich, 2002) with a bottom-up approach, building increasingly complex
virtual connections.

4.6 Building and Extending Blocks

The procedure for building blocks at the boundary is tricky, because we have
to take into account all the interactions that might occur. Although there is
only one kind of interaction that needs to be considered, it can come in the
two different configurations shown in Figure 5, and we must be prepared that
several configurations occur at a time. Figure 6 represents a search space in two
dimensions that gives an idea of the kind of situations we have to deal with.

We are on face FB of block b. We try to find out what moves can be made in
subgame B depending on the exact location on FB , and if the moves have an
action on the other sequences. This situation occurs twice in the program: first
when we are trying to extend the block in subgame B (which can be done as
long as there is no interaction), second when we are building new blocks near
face FB (generally because we have already found an interaction). We must
answer the following questions in this order.

1 Is there an action of any other sequence of the block that will cause a
bifurcation on SB? This is the case if and only if the trajectory of the
gap for any other sequence is passing through the place at the left of gap
B. This can be decided quickly by looking at the trace. An example is
interaction 1 in Figure 6.
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no move possible
because of a King

interaction 1

subgame A

subgame B

block b

interaction 2

F B

Figure 6. Several interactions on one face of a block.

2 Now we know that the move to be made in subgame B does not depend
on the location on face FB , or we have already restricted ourselves to
an area where it is the case. Is a move possible at all? There cannot
be another gap on the left of gap B because of the previous step, so the
question is whether the card on the left is a King (in this case the block
cannot be extended, and no block will be constructed on this part of the
boundary).

3 Now we know we can do a move; this move takes a card from a place
p and moves it in gap B. Is there an action of this move on the other
sequences? This is the case if and only if the trajectory of the gap for any
other sequence is passing through the place at the right of p. This too can
be decided quickly by looking at the trace. An example is interaction 2
in Figure 6.

When building new blocks at the boundary, one must go through these three
steps. In steps 1 and 3 we may have to break face FB into two parts (in some
degenerated cases there may be one or zero part) and apply the following steps
to each. After step 3 we have isolated a part G of the face FX . We know that
we can make a move m anywhere on G and that this move has no effect on the
other sequences. We then create a new block by doing move m from G, and
search it recursively.

A block c that has just been built on face FX of a block b has no depth in
subgame X . When we try to extend block c in all the subgames, it is generally
successful for subgame SX ; on the contrary, it is generally not successful in
the other subgames because the reasons why block b had been stopped in those
subgames often stand for block c.
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4.7 Adding a Transposition Table

The decomposition in blocks already handles all the transpositions within the
blocks; this is good but insufficient. In order for the algorithm to be efficient, it
is almost compulsory to have a global transposition table. However, when we
construct a new block or when we extend one, there could be common positions
anywhere in this block and in another already built one.

Now we do not want to go to all the positions in every block and mark them in
the transposition table, because the advantages of our method would disappear.
We have to look for a compromise: we could mark only a well-chosen part of
each block and hope it will be sufficient to detect most transpositions.

We define the number of positions of a block search as the sum, for each
block, of the number of positions contained in this block. Let R be the ratio
between the number of positions of a block search and the number of positions
of a depth-first search. Ideally, if the transpositions table is large enough to
contain all the positions of the search space and if the blocks are mutually
disjoint, then R = 1. If the blocks are not mutually disjoint, then R will be
larger; we need to control how much larger it will be.

A first possibility is to mark only the starting position of each block. An
experiment on 100 random positions for the basic variant has shown that the
ratio R is about 3.95, which is too much.

A second possibility is to mark only the positions that can be reached from the
initial position of the block by making moves in only one of the four sequences
of the block simultaneously. Geometrically, those are the points located on the
four edges of the block starting from the initial position. The ratio R drops down
to 1.33, which is acceptable although a better compromise probably exists.

5. Experimental Results

The method was designed to be complete; we have verified experimentally
that it is indeed the case. This is a sign that we have correctly analysed all the
possible interactions that can occur at the boundaries of the blocks. The method
for verifying the completeness was the following: from an initial position, first
run a complete depth-first search and store all the positions of the search space;
then run a block search and verify that all the positions of the search space lie
in at least one of the blocks. This verification has been done for 1000 initial
positions.

Table 2 shows statistics about an experiment on 1000 random initial positions
for the basic variant. There is a difference in time and number of positions
compared to Subsection 3.1 because the search is not stopped when we find a
winning position. Also the transposition table is not implemented in the same
way: before it could grow as needed, now we use a hashtable of fixed size as



356 B. Helmstetter, T. Cazenave

is usual in game programming (Breuker, 1998). The hashtable has 64 million
entries.

avg. number of positions for DFS 502,000
avg. number of blocks 36,200
avg. size of blocks 18.6
R 1.34
avg. time for DFS 2.28s
avg. time for block search 2.04s

Table 2. Basic variant (4 suits, 13 cards/suit).

The average size of the blocks
is 18.6, so one node of block
search does as much work as 18.6
nodes of DFS in average. As we
have already mentioned, the to-
tal number of positions in all the
blocks is larger than the number
of positions searched by DFS, by

about 34%. The final result in speed is a gain of 11% for blocks search. In
the present case however, the difference in time is not very significant of the
performance of block search because, for both algorithms, much time is spent
reinitializing the large transposition table between problems.

We do not see the power of block search yet. Higher gains in speed can
be obtained in variants with a larger search space, and with a higher degree
of independence between the subgames. This can be achieved by increasing
the number of cards. We therefore turn to 6 suits and 13 cards per suit. This
increases both the number of cards and the number of subgames.

number of positions for DFS 289 × 10
6

number of blocks 5.00 × 10
6

size of blocks 59.7
R 1.03
time for DFS 437s
time for block search 44s

Table 3. 6 suits, 13 cards/suit, the hashtable has 64
million entries.

It is difficult to give average
statistics because the size of the
problems vary a great deal, some
being too big for DFS and a few
even for block search. We have
made 15 experiments with ini-
tial positions that could be com-
pletely searched both with blocks
search and DFS. In Table 3 we

show detailed statistics for one of them, which is typical. We also show in
Figure 7 that the gain in speed is correlated to the size of the search space. This
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Figure 7. Gain in speed of block search over DFS, for 15 initial positions.
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is promising. Our algorithm clearly has an advantage over a depth-first search
because it can build large blocks, and this advantage would grow larger if the
number of suits and/or cards per suit was further increased.

number of positions for DFS 1550 × 10
6

number of blocks 5.88 × 10
6

size of blocks 61.1
R 0.23
time for DFS 1730s
time for block search 46s

Table 4. 6 suits, 13 cards/suit,the hashtable has 8
million entries.

In the experiment of Table 3,
the ratio R has dropped down
from 1.34 to 1.03. This is due
to collisions in the transposition
table. This phenomenon is am-
plified if we decrease the size of
the transposition table: Table 4
shows statistics about the same
problem but with a hashtable that

can only contain 8M positions. This has a dramatic effect on DFS, but almost
no effect on our algorithm. Because of collisions, the ratio R is even less than
1! So, now the situation is reversed: it is our algorithm that makes a better use
of the transposition table.

6. Perspectives

We conclude the paper by providing two perspectives. In Subsection 6.1
possibilities for generalization are given. In Subsection 6.2 dependency-based
search is compared to block search.

6.1 Possibilities for Generalization

The general idea of the method does not rely much on the domain of Gaps.
Our notion of a block can in principle find equivalents in many domains, pro-
vided that we generalize it a little. Until now we have worked with blocks
that are products of independent sequences; as a first generalization, we should
define blocks as products of independent graphs. In most domains there will
be parts of the problem that will be, at least locally, relatively independent.

To apply the method, we must define what a subgame is, by stating which
moves belong to which subgame, and we must analyse precisely all kind of
interactions that could occur between them. This analysis is difficult and is
domain-dependent, but then the rest is similar to what we did in Gaps: build and
extend subgraphs in each subgame only as long as they keep being independent.
The product of those graphs gives a block. Then we build new blocks at the
boundary of this block and search them recursively.

Therefore we claim that the idea of decomposing the search space in blocks
is a natural way to simplify the search space and may be applicable to other
domains. Furthermore, the method could be much more powerful in domains
with more independence between subproblems, leading to the construction of
much larger blocks.
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6.2 Comparison between Dependency-based Search and
Block Search

As a first application domain to dependency-based search, Allis (1994) con-
sidered the double letter problem. In this domain, a state consists in a word
on the set of 5 letters {a, b, c, d, e}. Any double occurrence of a letter can be
replaced by a single instance of its alphabetical predecessor or successor. The
alphabet is cyclic so ee can be replaced either by d or a, aa by either e or b. The
winning states are the one-letter words. A detailed application of the method
had been shown by Allis for the initial state aaccadd. A solution exists (the
letters that change have been capitalized):

aaccadd → Bccadd → bBadd → Aadd → Edd → eE → A

We are going to compare the way this instance is solved by dependency-
based search (according to Allis) and a way it could be solved by a block search
algorithm. Dependency-based search runs with a succession of dependency
stages and combination stages. After one dependency stage and one combina-
tion stage, he gets the graph in Figure 8: he considers the 6 moves possible at
the root and finds that two can be combined together. The same situation can
be represented with blocks (Figure 9): we have 3 independent subgames corre-
sponding to the letters at the positions 1, 2, 3, 4 and 6, 7, respectively. In each
of those subgames two moves can be made from the initial position. Therefore
the set of positions reachable with these moves can be represented with a cube,
the initial position aaccadd being in the centre. We then find an interaction at
one of the edges of the cube: the two “B” that have been created allow to move
in a new subgame and therefore a new block can be constructed.

Eccadd Bccadd aaBadd aaDadd aaccaC aaccaE

aaccadd

BBadd

1st dependency stage

1st combination stage

Figure 8. Dependency-based search, beginning.

The rest of the search continues similarly with dependency-based search
(Figure 10) and block search (Figure 11). At least in this example we are really
doing the same thing with different representations.

This goes to show that both methods have similarities. However, there are
some differences that cannot easily be seen on the last example. First we do
not see all the power of block search here: comparatively to dependency-based
search, we believe it can deal with interactions of a more complicated nature
(as in Gaps where we could not apply dependency-based search). Probably we
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BccaddEccadd

aaccaD

aaccaE

aaDadd

aaBadd

BBaE

BBaD

BBadd

a new block can be constructed from this edge

initial
position
aaccadd

Figure 9. Block search, beginning.

Eccadd Bccadd aaBadd aaDadd aaccaC aaccaE

aaccadd

BBadd

Aadd Cadd

EddBdd

EE

AD

Figure 10. Dependency-based search,
complete.

Edd

Bdd

D A

BccaddEccadd

aaccaD

aaccaE

aaDadd

aaBadd

Cadd

Aadd

aaE

BBadd

aaccadd

Figure 11. Block search, complete.

do not see all the power of dependency-based search either. For instance and in
contrary to block search, it is not necessary to provide an explicit decomposition
in subgames to apply dependency-based search.

7. Conclusion

We have presented several search algorithms that take advantage of the par-
ticularities of the game of Gaps. Our work has resulted in a method, block
search, which may be applicable in other domains.

We have shown that iterative sampling produces good results, either for the
basic variant or the common variant. Conversely, we have shown that the use of
heuristics is not so promising. Therefore we could deal with only one problem
in isolation: exploiting the independence between parts of the game. Existing
methods that deal with this problem were either not applicable to the domain
of Gaps or were not as precise as ours.
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Block search is a method to take advantage of a decomposition in subgames
when there are interactions between those subgames, while keeping the search
complete. It implies analysing theoretically all types of interactions that can
occur: how to detect them, how to deal with them by building new blocks at
the boundary of the current block. Although this analysis relies on domain-
dependent knowledge, the general idea of the method does not. Experimental
results have shown that large gains in speed over a depth-first search can be
expected, depending on the average size of the blocks we are able to build.
Specifically, the method can be used to solve positions of the basic variant of
Gaps with more cards. Because the method simplifies the search space, it also
makes better use of a transposition table.
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