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Abstract. Knowledge about forced moves enables to select a small number
of moves from the set of possible moves. It is very important in complex
domains where search trees have a large branching factor. Knowing forced
moves drastically cuts the search trees. We propose a language and a
metaprogram to create automatically the knowledge about interesting and
forced moves, only given the rules about the direct effects of the moves. We
describe the successful application of this metaprogram to the game of Go. It
creates rules that give complete sets of forced moves.

1 INTRODUCTION

Knowledge about forced moves enables to select a small number of
moves from the set of possible moves. It is very important in
complex domains where search trees have a large branching factor.
Knowing forced moves drasticall y cuts the search trees. We
propose a language and a metaprogram to create automaticall y the
knowledge about interesting and forced moves, only given the rules
about the direct effects of the moves. We describe the successful
appli cation of this metaprogram to the game of Go. It creates rules
that give complete sets of forced moves.

The second section describes computer Go. The third section
uncovers the goal of metaprogramming. The fourth section is an
introduction to the metalanguage Introspect. The fifth section
shows how rules concluding on the moves to try at OR nodes are
created. The sixth section describes how rules concluding on
forced moves are created using metaprogramming. The last section
gives the results of our computer Go system.

2 COMPUTER GO

2.1 The game of Go

Go was developed three to four mill ennia ago in China; it is the
oldest and one of the most popular board game in the world. Like
chess, it is a deterministic, perfect information, zero-sum game of
strategy between two players. In spite of the simpli city of its rules,
playing the game of Go is a very complex task. Robson [16] proved
that Go generali zed to NxN boards is exponential in time. More
concretely, Van den Herik [19] and Alli s [1] use complexity
measures of different games to compare them. They define the
whole game tree complexity A. Considering the average length of
actual games L and average branching factor B, we have A = BL.
The state-space complexity of a game is defined as the number of
legal game positions reachable from the initi al position of the
game. In Go, L≈150 and B≈250 hence the game tree complexity
A≈10360. Go state space complexity, bounded by 3361≈10172, and
game tree complexity are far larger than those of any other perfect-
information game. Moreover, a position takes time to evaluate, on
the contrary of chess where positions can be evaluated very fast.
This makes Go very diff icult to program. Computer Go has been
recognized as a challenge for Artificial Intelligence [17].
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Figure 1

The board is made of 19 vertical li nes and 19 horizontal li nes
and therefore 361 intersections. At the beginning the board is
empty. Each player (Black or White) moves alternatively in adding
one stone on an empty intersection. Two adjacent stones of the
same color are connected and they are part of the same string. For
example, the white stones of Figure 1 marked with ∆ are connected
and are part of the same string. Empty adjacent intersections of a
string are the li berties of the string. The string of four marked
white stones of Figure 1 has eight liberties. When a move fill s the
last liberty of a string, this string is removed from the board. The
repetiti ons of positions are forbidden. According to the possibilit y
of being captured or not, the strings may be dead or ali ve. A player
controls an intersection either when he has an ali ve stone on it,
either when the intersection is empty but adjacent to ali ve stones.
The aim of the game is to control more intersections than the
opponent. The game ends when the two players pass.

In spite of the simpli city of the rules, a Go player uses a lot of
concepts to understand a position and to play a move. This
paragraph briefly shows some intuiti ve definiti ons of these
concepts. At the lower level, a player looks at the safety of the
strings in performing look-ahead. When a string has enough
liberties, the string is said to be safe. A player also checks if an
intersection is controlled by one player or not. An eye is a small
enclosed area, Figure 2 gives an example of an eye on intersection
A. In this figure, B is one of the four diagonal intersections of A.
When searching to make an eye, it is important to control diagonal
intersections.

B
A

Figure 2

A virtual connection is a configuration that enables to connect
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strings whatever the opponent plays. Figure 3 gives an example of
a ‘Bamboo join’ . If the white player plays at A, black plays at B
and connects its stones. If white plays at B, then black at A
connects. The four stones are virtually connected.

BA

Figure 3

Using these tactical results, a Go player starts its strategic
reasoning with the use of groups. A group is a complex concept for
human players. It may be either a set of intersections that are
virtuall y connected, either a set of intersections that gather the
same properties. A group has a status. A status is dead or ali ve and
it is derived from other intuiti ve concepts li ke influence, fight,
circling, lif e-base. The reader does not need explanations of these
concepts to understand the following sections.

2.2 Different levels in a Go program

As it is impossible to search the entire tree for the game of Go, the
best Go playing programs rely on a knowledge intensive approach.
They are generally divided in two modules:

�
A tactical module that develops narrow and deep search
trees. Each tree is related to the achievement of a goal of the
game of Go.

�
A strategic module that chooses the move to play according
to the results of the tactical module.

Strategic reasoning is concerned with groups of stones. A group
of stones is a set of stones of the same color, each stone can be
connected to each other.

The tactical module uses rules to decide what moves to try in
the search trees. The strategic module uses the results of the
tactical module to create the groups and calculate their properties.
Then it chooses the move that maximizes its territory.

3 THE GOAL OF METAPROGRAMMING

The goal of metaprogramming, in our system, is to write programs
that write other programs that enable to safely cut search trees,
therefore enabling great speedups. In our appli cations to games,
metarules are used to create theorems that tell what are the
interesting moves to try to achieve a tactical goal (at OR nodes).
They are also used to create rules that find the complete set of
forced moves that prevent the opponent to achieve a tactical goal
(at AND nodes).

Each time our Go program tries to see the degree of
achievement of a goal, it develops two AND/OR proof trees. One
with the friend color playing first, and the other with the enemy
color playing first.

The Figure 4 gives an example of a proof tree for the goal
connect. Black is the friend color, and the goal is to connect the
two black stones. The first move works (the leftmost arrow) and as
it is an OR node, the other branches are cut. The moves at the OR
nodes are given by rules that conclude on moves that can achieve
the goal i f two moves in a row by the friend color are played. This
heuristic is used because these moves lead to positions containing
threats to win by the friend player, and therefore forced moves for

the opponent player.
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Figure 4

We give a visual and intuiti ve definiti on of the rules by
selecting the part of the board corresponding to the conditions of
the logical rule. The rules conclude on a move or a set of moves.
This is represented using arrows that lead to positions after each
move in conclusion. For example, the first visual rule of Figure 5
is represented by the following logical rule ('S1' and 'S2' are the
two strings, 'I' and 'I1' the empty intersections and 'C' the color):

connect (S1, S2, I, C) :- color (C), color
(S1,C), color (S2,C), liberty (I, S1),
liberty (I1, S2), neighbor (I, I1).

W U U U W U

Figure 5

The rules of Figure 5 are rules that tell the moves to try at the
OR levels of the proof trees. This is visuall y explained in the first
diagram of Figure 5, where a tree is represented with the color of
the moves associated to the branches. We can see that the only
available information is that Black can win the goal i f it plays two
moves in a row (state W of the first diagram), otherwise the three
other combination leads to unknown situations (state U). When
Black plays the moves advised by the rule, it switches to a
threatening situation represented by the tree on the right of the first
diagram. Black can now win the goal i f it plays one move, and
therefore White has now to play to prevent Black from doing so.

The first rule of Figure 5 is used to find the upper left move of
the proof tree of Figure 4. The second rule of Figure 5 is a rule
advising a move to try to make an eye.
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Figure 6

The Figure 6 gives the second proof tree developed by the Go
program with White playing first, and the goal Connect the two
black stones. In order to save place, we have numbered at the
leaves of the tree the sequences of moves (odd numbered moves
are Black moves and even numbered moves are White single
forced moves) that lead to the winning positions for Black. The
two forced white moves at the root of the proof tree are refuted by
Black. So the result of the two proof trees is that Black can connect
its two stones even if White plays first: the two black stones are
virtually connected.
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Figure 7

The last rule of Figure 7 is used to find the forced move at the
lowest AND node of Figure 6. The first rule of Figure 7 is used to
find the two forced moves at the root of the proof tree of Figure 6:
note that these two moves are the only ones that need to be
considered out of all the possible moves. The second rule is used to
find the only forced move to prevent an eye. The visual definiti on
of a forced move is given in the first diagram: a White move leads
to an unknown state (state U), whereas a Black move leads to a
lost state for White (a lost state L for White is a winning state W
for Black: White loses if Black is connected in our example).

4 THE INTROSPECT LANGUAGE

Metaprogramming in logic has already attracted some interest [14]
[2] [9]. More specificall y, speciali zation of logic program can be

traced back to [18], it has been well defined and related to Partial
Evaluation in [11], and successfully applied [8].

Introspect [4] is a metaprogramming system based on predicate
logic. On the contrary of Prolog programs, The Introspect programs
are reall y declarative: the result of their execution does not depend
on the resolution strategy. Prolog is based on the SLDNF strategy,
it means that the order of clauses is important and it is harmful for
the declarativity of the programs. A fixed resolution strategy is
harmful when one wants to speed up a concise but ineff icient logic
program into an eff icient but usuall y longer logic program by
speciali zing it. It prevents the reordering of the atoms inside the
clauses and the reordering of the clauses. A good reordering of the
speciali zed programs can lead to large speedups [3]. For similar
reasons, we do not use negation as failure. Moreover, we can have
multiples atoms in the head of a clause and we use forward
chaining.

Introspect uses metapredicates that enable it to manipulate its
own programs. We will describe some of them in this section.
They will be used to explain how to metaprogram forced moves.
Constants and variables are typed. Conventionall y, variables begin
with a capital letter, whereas constants begin with a tiny letter.
Each example of a metapredicate is followed by a definition.

rule (R) : Instantiates in the variable R all the rules of the object
program.

conclusion (R, P) : Instantiates in P the atoms in the head of the
rule R.

conclusion (R, Color (V1)) : Instantiates in the variable V1 all the
variables and constants of the head of R that are arguments of the
Color predicate.

initcut () : Affects 0 to the internal variable that test is the
conclusion of a rule has been found. This affectation is done for
each instantiation of each variable above this metapredicate.

cutifdeduction () : Stops backtracking if a conclusion with the
current instantiations of variables has been found. It is different
from the traditional cut operator of logic programming.

setofmodifyingmoves (SET, SET1, SET2) : Puts in the set variable
SET the set of moves that enable to change any of the conditions
contained in the set of conditions SET2. SET1 returns the set of
conditions that have to be added to SET2 so that the move of SET
are assured to change at least one of the condition of SET2. This is
a metapredicate that call s a logic program that uses the rules of a
game to build SET and SET1 using SET2.

condition ( R, oppositecolors (V1, V2)) : Instantiates in the
variables V1 and V2 the variables and constants of the rule R that
are argument of the predicates oppositecolors.

Introspect uses numerous metapredicates. Most of them can be
understood intuiti vely given their names. We will not define all of
them here.

5 METAPROGRAMMING OR NODES MOVES

The rules used to decide the moves to try at the OR nodes of the
search trees are automaticall y created by an Introspect
metaprogram that partiall y evaluates the target concepts using
domain knowledge. Introspect is also able to speciali ze the target
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concepts using examples. Systems li ke Introspect that learn by
speciali zing goals have been formali zed as Explanation Based
Learning/Generali zation systems [12] [10] [6]. They have received
attention more recently in [15]. The first appli cation to games can
be traced back to [13]. The relation to Partial Evaluation in logic
programming has been uncovered in [20].

The formali sm used to represent the rules is first order predicate
logic. The rules are programmed by Introspect, only given the rules
of the game in predicate logic.

The target concepts are the tactical subgoals of the game of Go :
Remove a string, Make a string ali ve, Connect two strings,
Disconnect two strings, Make an eye and Remove an eye. Each of
these target concepts is defined using rules in predicate logic. For
example the target concept for the tactical goal removestring is
defined using this rule:

removestring (S, I, friend) :- color (S,
enemy), move (I, enemy),
numberoflibertiesbeforemove (S, 1), liberty
(I, S), legalmove (I, enemy).

Thousands of rules are created by using the rules of the game to
speciali ze the tactical goals. Example of a simple created rule used
to find connections between strings of stones :

connect (S1, S2, I, C) :- color (C), color
(S1, C), color (S2, C), oppositecolors (C,
C1), liberty (I, S1), liberty (I, S2).

This rule tell s that if an intersection I is a li berty of strings S1
and S2 that have the same color C, playing a stone of color C at I
enables to achieve the goal Connect between the two strings.

∆∆

Figure 8

The created rule previously given as example applies to the
move marked ∆ that connects the two black strings in the Figure 8.
The initial target concept defining the connect goal is:

connectedaftermove (S1, S2) :- color (C),
color (S1, C), color (S2, C), oppositecolors
(C, C1), elementofaftermove (I, S1),
elementofaftermove (I, S2).

The rules used to speciali ze the target concept in this example
are:

elementofaftermove (I, S) :- liberty (I, S),
color (S, C), move (I, C).

connect (S1, S2, I, C) :- move (I, C),
connectedaftermove (S1, S2).

There are different predicates to describe the board after the
move and the board before the move. This is to prevent side effects
to happen, and to avoid incomplete explanations. The predicate
'move ( I, C )' is retracted from the created rule because it is
redundant.

The speciali zed rules used at OR nodes of the proof tree give

moves that achieve the goal i f they are followed by another move
of the same color, as the rules in Figure 5.

6 METAPROGRAMMING FORCED MOVES

Metaprograms can be used to automaticall y create programs. We
give in this section an explanation of the metarule that enables to
create rules concluding on forced moves, given rules concluding on
winning moves.

addconclusion (R1, forcedmovetolive (V4, V2,
SET)), addrule (R1) :-
rule (R),
conclusion (R, movetotake (V1, V2, V3)),
condition (R, color (V1)),
condition (R, oppositecolors (V1, V4)),
setofconditions (R, SET2),
setofmodifyingmoves (SET, SET1, SET2),
length (SET, N),
greaterthan (5, N),
newrule (R1),
addconditiontoset (R1, SET1),
addconditiontoset (R1, SET2).

The rules concluding on winning moves are also created by
Introspect as described in the previous section.

The first condition of this metarule, 'rule (R)',  selects all the
rules and instantiate them in the variable R. The second condition
selects among the rules those that conclude on a winning move for
color V1 (V1 contains either a constant or a variable representing a
color, V2 contains a variable representing a string to Take, and V3
contains a variable representing an intersection where to play the
winning move), with V4 containing the color opposite to V1. Note
that if there is a winning move for color V1, then the forced moves
to prevent V1 to win have the color V4. The next condition
'setofconditions (R, SET2)' puts into SET2 the set of conditions of
the rule R selected. Then the condition 'setofmodifyingmoves
(SET, SET1, SET2)' call s a metaprogram specific to the rules of
the game that fill s SET with the forced move to prevent V1 to
make the winning move, and that fill s SET1 with a set of
conditions that ensure that the moves in SET are the complete set
of forced moves. After that, the metarule verifies that there are less
than 5 forced moves, creates a new rule R1 and adds SET1 and
SET2 to the set of conditions of R1. Eventuall y, the metarule adds
in the conclusion of the rule R1 the predicate containing the set of
forced moves.

We enforce rules to select less than five forced moves. This has
two justifications: having simple rules with a small number of
conditions (less than 200), and not searching too many forced
moves. Forced moves are used to develop the AND nodes of the
AND/OR  search tree. So all the branches of an AND node have to
be proved before the node can be set to 1. Therefore it is
reasonable to try to keep the number of branches at an AND node
low. Otherwise the search will be less successful, wasting time
proving unnecessary things, and will solve less problems.

The set of forced moves is complete, because all the possible
moves to destroy each condition of the rule R, are added to SET.
The completeness ensures that all the moves that are not
considered at an AND node, do not need to be considered.
Therefore, if all the move to prevent to achieve a goal at an AND
node are refuted, no other move can refute the goal, and the goal
can be achieved for every move played to try to prevent it.
Eventuall y, it ensures that the results of the proof trees returning 1
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are theorems of the position: they are always true, the goal can
always be achieved whatever the opponent plays.

The rule created with the example rule of the previous section,
using a metarule similar to the previous one, is:

forcedmovetodisconnect (S1, S2, I, C1) :-
color (C), color (S1, C), color (S2, C),
oppositecolors (C, C1), liberty (I, S1),
liberty (I, S2).

It means that I is the only move to prevent S1 and S2 from being
connected. This is because no moves can change the conditions
'color (C)', 'color (S1, C)', 'color (S2, C)' and 'oppositecolors (C,
C1)' of the example rule, and only a move on I can change the
condition 'liberty (I, S1)' and the condition 'liberty (I, S2)'.

This created rule gives the last rule of Figure 7. It is even more
general because it also applies to Figure 8, with only one forced
White move on ∆ to prevent the two Black strings to connect.

Note that rules about achieved goals are used to create rules
about winning moves, that are themselves used to create rules
about forced moves, that are in turn used to create rule about
achieved goals (when no forced move works). This enables the
system to incrementall y create more and more complex rules, until
no more rules can be created. The actual li mits are set to five
forced moves and less than 200 conditions in the created rules.

7 RESULTS

The rules resulting of metaprogramming enable to safely consider
only between 1 and 5 moves out of the 250 possible moves on a
board. They strongly decrease the size of the brute force search tree
and the time to develop proof search trees. This enables our Go
program to look as far as 60 moves ahead in some tactical
positions.

The Go program plays a move in 10 seconds on a Pentium 133
MHz, for each move it proves about 450 tactical theorems, each
theorem requires between 4 and 600 nodes in a search tree to be
proved, at each node of each tree, the rules learned by Introspect
are called to find the useful moves to try. Introspect has learned
thousands of tactical rules. All the learned rules are compiled into
a 1 000 000 lines C++ program.

Gogol competed in the international computer Go tournament
held during IJCAI97 together with 40 other participants. It finished
6 out of 40 participants [7]. The five first programs are commercial
programs that have required a lot of person*years of work. It has
outperformed other commercial systems that have required more
than 10 person*years of work.

8 CONCLUSION

We have shown that metaprogramming forced moves enables to
drasticall y reduce the number of nodes of the search trees and the
time to compute the search trees. It is an improvement on the
search algorithms used in Go playing programs that rely on many
hand-coded rule to heuristicall y cut search trees. Our approach has
two advantages over the traditional approach : we automaticall y
create the rules that otherwise take a lot of time to create, and the
results of our search trees are more reliable than the results of the
search trees developed using traditional heuristic and hand-coded
rules.

The Go program that uses the rules resulting of the
metaprogramming has good results in international competiti ons (6

out of 40, best non-commercial program). We are currently
applying Introspect to other domains [5]. Our approach is
particularly suited to automaticall y create complex, eff icient and
reliable programs in domains that are complex enough to require a
lot of knowledge to cut search trees.
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