
A Forward Chaining Based Game Description Language Compiler

Abdallah Saffidine and Tristan Cazenave
LAMSADE, Université Paris-Dauphine

Paris, France

Abstract

We present a first attempt at the compilation of the Game De-
scription Language (GDL) using a bottom-up strategy. GDL
is transformed into a normal form in which rules contain at
most two predicates. The rules are then inverted to allow for-
ward chaining and each predicate will turn into a function in
the target language. Adding a fact to the knowledge base cor-
responds to triggering a function call.
Permanent and persistent facts are detected and enable to
speed up the deductions. The resulting program performs
playouts at a competitive level. Experimental results show
that a speed-up of more than 40% can be obtained without
sacrificing scalability.

1 Introduction
General Game Playing (GGP) has been described as a Grand
Artificial Intelligence (AI) Challenge (Genesereth and Love
2005; Thielscher 2009) and it has spanned research in sev-
eral directions. Some works aim at extracting knowledge
from the rules (Clune 2007), while GGP can also be used to
study the behavior of a general algorithm on several differ-
ent games (Méhat and Cazenave 2010). Another possibil-
ity is studying the possible interpretation and compilation
of the Game Description Language (GDL) (Waugh 2009;
Kissmann and Edelkamp 2010) in order to process game
events faster.

While the third direction mentioned does not directly con-
tribute to AI, it is important for several reasons. It can en-
able easier integration with playing programs and let other
researchers work on GGP without bothering with interface
writing, GDL interpreting and such non-AI details. Having
a faster state machine may move the speed bottleneck of
the program from the GGP module to the AI module and
can help performance distinction between different AI algo-
rithms. Finally, as GDL is a high level language, compiling
the rules to a fast state machine and extracting knowledge
from the rules are sometimes similar things. For instance,
factoring a game (Günther, Schiffel, and Thielscher 2009)
can be considered a part of the compilation scheme.

GDL is compiled into forward chaining rules that contain
only two predicates. As an optimization, a so-called tem-
porization procedure is carried on in which permanent and
persistent predicates are detected. The whole compilation

process is very quick even and the resulting program per-
forms playouts at a competitive level.

1.1 Game Automaton
The underlying model of games assumed in GGP is the
Game Automaton (GA). It is a general and abstract way
of defining games to encompass puzzles and multiplayer
games, be it turn-taking or simultaneous. Informally, a GA
is a kind of automaton with an initial state and at least one
final state. The set of outgoing transitions in a state is the
cross-product of the legal moves of each player in the state
(non-turn players play a no-operation move). Final states
are labelled with a reward for each player.

1.2 Objective and previous work
We focus on the compilation of rulesheets in the GDL into
GAs. More precisely, the compiler described in this work
takes a game rulesheet written in GDL as an input and out-
puts an OCAML module that can be interfaced with our play-
ing program also written in OCAML. The module and the
playing program are then compiled to native code by the
standard OCAML compiler (Leroy et al. 1996) so that the
resulting program runs in reasonable time. The generated
module exhibits a GA-like interface. Figure 1 sums up the
normal usage of our compiler and Figure 2 details the vari-
ous steps between a rulesheet and an executable.

The usual approach to the compilation of GDL is to com-
pile it to PROLOG and to use resolution to interpret it (Méhat
and Cazenave 2011). Other approaches have been tried such
as specialization and compilation of the resolution mecha-
nism to the C language (Waugh 2009).

1.3 Outline of the paper
The remaining of this article is organized as follows: we first
recall the definition of the Game Description Language, then
we present the organization of the knowledge base. Sec-
tion 4 describes the various passes used by our compiler
to generate target code from GDL source code. Finally, we
briefly present some experimental considerations.

2 Game Description Language
The Game Description Language (Love, Hinrichs, and
Genesereth 2006) is based on DATALOG and allows to define



User

Output Compilation

Linking

Interfacing

Source file

Compilation

Executable

GDL compiler

OCAML compiler

Playing program

GA

GDL rulesheet

Figure 1: Interactions between a user and the GDL compiler.

Name Arity Appearance

does 2 body
goal 2 base, body, head
init 1 base, head
legal 2 base, body, head
next 1 head
role 1 base
terminal 0 base, body, head
true 1 body

Table 1: Predefined predicates in GDL with their arity and
restriction on their appearance.

a large class of GAs (see Section for a formal definition of a
GA). It is a rule based language that features function con-
stants, negation-as-a-failure and variables. Some predefined
predicates confer the dynamics of a GA to the language.

2.1 Syntax
A limited number of syntactic constructs appear in GDL.1
Predefined predicates are presented in Table 1. Function
constants may appear and have a fixed arity determined by
context of the first appearance. Logic operators are simply
or, and and not; they appear only in the body of rules.
Existentially quantified variables may also be used bearing
some restrictions defined in Section 2.1. Rules are compose
of a head term and a body made of logic terms.

A GDL source file is composed of a set of grounded terms
that we will call B for base facts and a set of rules. The
Knowledge Interchange Format is used for the concrete syn-
tax of GDL.

The definition of GDL (Love, Hinrichs, and Genesereth
2006) makes sure that each variable of a negative literal also
appears in a positive literal. The goal of this restriction is
probably to make efficient implementations of GDL easier.
Indeed, it is possible to wait until every variable in a negative
literal are bound before checking if the corresponding fact is
in the knowledge base. Put another way, it enables to deal
with the negation by only checking for ground terms in the
knowledge base. This property is called safety.

2.2 Semantics
The base facts B defined in the source file are always con-
sidered to hold. The semantics also make use of the logical
closure over the rules defined in the files, that is at a time τ ,
the rules allow to deduce more facts that are true at τ based
on facts that are known to hold at τ .

The semantics of a program in the GDL can be described
through the GA formalism as follows

• The set of players participating to the game is the set of
arguments to the predicate role.

• A state of the GA is defined by a set of facts that is closed
under application of the rules in the source files.

1We depart a bit from the presentation in (Love, Hinrichs, and
Genesereth 2006) to ease the sketch of our compiler.



• The initial state is the closure over the facts that are argu-
ments to the predicate init.

• Final states are those in which the fact terminal holds.

• For each player p and each final state s, exactly one fact
of the form goal(p, op) holds. We say that 0 ≤ op ≤ 100
is the reward for player p in s. The outcome o in the final
state is the tuple (op1 , . . . , opk

).

• For each player p and each state s, the legal moves for p
in a state s are Ls(p) = {mp|legal(p, mp) holds in s}

• The transition relation is defined by using the predicates
does and next. For a move m = (mp1 , . . . ,mpk

) in
a state s, let q be the closure of the following set of facts
: s ∪ {does(p1, mp1

), . . . ,does(pk, mpk
)}. Let n be

the set of fact f such that next(f ) holds in n. The re-
sulting state of applying m to s is the closure of the set
{true(f )|f ∈ n} ∪B.

2.3 Stratification
Game rules written in GDL are stratified. It means that all
the facts of the lower strate have to be deduced before start-
ing to deduce the facts of the upper strate. Stratification is a
way of coping with negation as a failure. When using back-
ward chaining the user does not need to pay much attention
to the stratification of GDL. However when using forward
chaining, stratification is important since the absence of a
fact cannot be concluded until every deduction on the lower
strates have been carried on.

3 Runtime environment
3.1 Managing the knowledge base
In a bottom-up evaluation scheme, it is necessary to keep a
data structure containing the ground facts that were found to
hold in the current state. This knowledge base constitutes
the biggest part of the runtime of our system. It needs to
satisfy the following interface.

• An add procedure taking a ground fact f and adding f to
the knowledge base.

• An exists function taking a ground fact f and indicat-
ing whether f belongs to the knowledge base.

• A unify function taking a fact f with free variables and
returning the set of ground facts belonging to the knowl-
edge base that can be unified with f .

It is possible to implement such a module based on a hash-
ing of the ground facts. It allows an implementation of add
and exists in constant time, but unify is linear in the
number of present ground facts as it consists in trying to
unify every fact present in the knowledge base one after an-
other.

It is also possible to implement such a module based on a
trie by first linearizing the ground facts into lists. unify is
in this case logarithmic, but add and exists are slower.

We implemented both approaches and the first one per-
formed slightly better. It is probably far from optimal but a
better alternative could not be found yet.

3.2 Temporization of the facts

Permanent facts are facts that are present at the beginning
of a game in the rule and that never change during a game.
For example in some games there is a need to compare small
numbers. A set of facts describes the comparison of all pairs
of numbers. These facts never change and they are always
present. It is not necessary to remove them and deduce them
again after playing a move. Separating them from the set of
facts that can change and considering them as always true
can gain some time.

Persistent facts (Thielscher and Voigt 2010) are facts that
always remain true once they are deduced. They are not
present at the beginning of a game. They are deduced af-
ter some moves, and once they have been deduced they are
present in all the following states. An example of a persis-
tent fact is the alignment of two pieces of the same color
in the game doubletictactoe. Once an alignment has
been deduced, it will remain valid until the end of the game.
So avoiding to deduce it again can gain some time.

We call ephemeral facts the remaining facts. That is,
ephemeral facts can appear at some point in the knowledge
base and then disappear as the game proceeds.

3.3 Labelling the predicates

Let B, P, and E be respectively the sets of permanent, per-
sistent, and ephemeral facts that can appear in game. In the
following, we assume the sets are disjoint and every possible
fact belongs to either set.

It is not straightforward to compute theses sets at compile
time without instantiating the rules. On the other hand, it
is possible to use approximation for theses sets. We will
call B′, P′, and E′ the approximated sets. An approximation
is conservative if the following relations hold : E ⊆ E′,
E ∪ P ⊆ E′ ∪ P′, and E ∪ P ∪ B ⊆ E′ ∪ P′ ∪ B′.

By default, it is possible to consider that every fact is
ephemeral. This approximation takes E′ = E ∪ P ∪ B and
P′ = B′ = ∅ and is clearly conservative. Distinguishing per-
sistent facts can accelerate the resulting engine since it acts
as some sort of tabling or memoization. Similarly, when
a game is restarted, persistent facts are removed from the
knowledge base but permanent facts can be kept.

A more elaborate approximation consists in labelling each
predicate with b, p, or e and assigning a fact f to B′, P′ or
E′ depending on the predicate it is based on. We use the
fixpoint procedure presented in Algorithm 1. The algorithm
begins with pattern matching to have a few starting persis-
tent labels and asserts that predicates in the upper strates are
considered ephemeral. The fixpoint part then deduces the
label of the predicate in a conclusion part of a rule based
on the labels of the hypotheses. It uses the following order
on temporal labels : b < p < e. Permanent labels are first
obtained from rules with no hypothesis. The update opera-
tor in the fixpoint procedure is increasing which ensures its
termination. Finally, predicates that could not be proved to
belong to B or P are labelled ephemeral.



Input: set of rules Γ
Result: A mapping from predicates to {b, p, e}
Start with an empty mapping;
Bind next to e;
for each rule next(q(args))⇐ q(args) do

Bind q to p;
end
for each rule q← hyps do

if hyps contains a negative literal then
Bind q to e;

end
end
while A fixpoint has not bee reached do

for each rule q← r∧ · · · ∧r′ do
if r∧ · · · ∧r′ are bound then

let β be the set of bindings for r∧ · · · ∧r′;
Add the current binding of q to β if it exists;
Bind q to the maximal element of β or to b
if β is empty;

end
end

end
for each rule q← . . . do

if q is not bound then
Bind q to e;

end
end
return the completed mapping

Algorithm 1: Fixpoint to label predicate with temporal sta-
tus. We sometimes omit predicate arguments for the sake
of presentation.

GDL compiler

Decomposition

Temporisation

Grouping

Inversion

Backend

Desugaring

Lexing and Parsing

Stratification

NORMAL-GDL

GDL AST

INVERTED-GDL

GA

GDL

MINI-GDL

Figure 2: Steps and transformations between a GGP pro-
gram written in GDL and the GA written in the output lan-
guage.

4 Intermediate languages
Translating GDL programs to programs in the target lan-
guage can be decomposed into several steps (see Figure 2).
Each of these steps corresponds to the translation from one
language to another. We used three intermediate languages
in this work. The first one, MINI-GDL, is a version of
GDL without syntactic sugar. In the second intermediate
language, NORMAL-GDL, the rules are decomposed un-
til a normal form with at most two hypotheses per rule is
reached. The transition between a declarative language and
an imperative one takes place when the program is trans-
formed into INVERTED-GDL. Finally the program in the
INVERTED-GDL is transformed in an abstract syntax tree
of the target language.

4.1 Desugaring
MINI-GDL is a subset of GDL that has the same expressive
power. For instance, there is no equal predicate in GDL and
many rulesheets use the negation of the distinct pred-



icate to express equality. On the other hand, a literal in a
MINI-GDL rule is therefore either a regular predicate, the
negation of a regular predicate or the special distinct
predicate. Disjunctions in rules are no longer possible.

The right hand side of a rule in GDL contains a logical for-
mula made of an arbitrary nesting of conjunctions, disjunc-
tions and negations.2 The first step in transforming a rule
from GDL to MINI-GDL is to put it in Disjunctive Normal
Form (DNF).

A rule in DNF can now be split over as many subrules as
the number of disjunctions it is made of. Indeed a rule with
a conclusion c and a right hand side made of the disjunction
of two hypotheses h1 and h2 is logically equivalent to two
rules with h1 and h2 as hypotheses and the same conclusion
c : {c← h1 ∨ h2} ≡ {c← h1, c← h2}.

A rule involving equalities can be turned into an equiva-
lent rule without any equality. The transformation is made
of two recursive processes, a substitution and a decomposi-
tion. When we are faced with an equality between t1 and t2
in a rule r, either at least one of the two terms is a variable
(wlog. we will assume t1 is a variable) or both are made of
a function constant and a list of subterms. In the former case
the substitution takes place: we obtain an equivalent rule
by replacing every instance of t1 in r by t2 and dropping
the equality. In the latter case, if the function constants are
different then the equality is unsatisfiable and r cannot fire.
Otherwise, we can replace the equality between t1 and t2 by
equalities between the subterms of t1 and the subterms of t2.
Note that function constants with different arities are always
considered to be different. We can carry this operation until
the obtained rule does not have any equality left.

4.2 Ensuring stratification
We have seen in Section 2.3 that it was necessary to take
care of stratification in our bottom-up approach. We start by
labelling each predicate with its strate number. The labels
can be obtained with a simple fixpoint algorithm that we do
not detail. Then, we can use the following trick: we create
a new predicate strate(s) for each possible strate s, we
modify slightly the rules so that before the negation of each
predicate p labelled with strate s the predicate strate(s)
appears.

For instance, assume in the rule foo ← bar ∧ ¬ baz
that the predicate baz is labelled with strate 1. The trans-
formation results in the rule foo← bar ∧ strate(1) ∧
¬ baz.

After the rules are thus explicitly stratified, the evaluation
scheme becomes straightforward. Apply the rules to obtain
every possible fact, then add the fact corresponding to the
first strate to the knowledge base, apply the rules again, then
add the fact corresponding to the second strate and so on
until the last strate fact is added.

4.3 Decomposition
GDL is built upon DATALOG, therefore techniques applied
to DATALOG are often worth considering in GDL. Liu and

2Although there are some restriction on the negation possibili-
ties.

Stoller (2009) presented a decomposition such that each rule
in normal form is made of at most two literals in the right
hand side.

Let r = c← t1 ∧ t2 ∧ t3 ∧ · · · ∧ tn be a rule with n > 2
hypotheses. We create a new term tnew and replace r by the
following two rules. r1 = tnew ← t1 ∧ t2 and r2 = c ←
tnew∧ t3∧· · ·∧ tn. Since variables can occur in the different
terms and in c, tnew needs to carry the right variables so that c
is instantiated with the same value when r is fired and when
r1 then r2 are fired. This is achieved by embedding in tnew
exactly the variables that appear on the one hand in t1 or t2
and on the other hand in c or any of t3, . . . , tn. The fact that
variables that appear in t1 or t2 but not in t3, . . . , tn or c do
not appear in tnew ensures that the number of intermediate
facts is kept relatively low.

The decomposition of rules calls for an order of the lit-
erals, the simplest such order is the one inherited from the
MINI-GDL rule. However, it is necessary that the safety
property (see Section 2.1) holds after the rules are decom-
posed. Consequently, literals might need to be reordered
so that every variable appearing in a negative literal m ap-
pears in a positive literal before m. The programmer who
wrote the game in Knowledge Interchange Format (KIF)
might have ordered the literals to strive for efficiency or the
literals might have been reordered by optimizations at the
MINI-GDL stage. In order to minimize interferences with
the original ordering, only negative literals are moved.

4.4 Inversion

After the decomposition is performed, the inversion trans-
formation takes place. Each predicate pwill generate a func-
tion in the target language. This function would in turn trig-
ger the functions corresponding to head of rules in the body
of which p appeared. The arguments of the target function
correspond to the arguments of the predicate in NORMAL-
GDL.

The inversion transformation must also take into account
the fact that a given predicate can naturally appear in several
rule bodies. Such a predicate need still to be translated into
a single function in the target language. Therefore, an im-
portant step of the inversion transformation is to associate to
each function constant f the couples (rule head, remaining
rule body) of the rules that can be triggered by f .

4.5 Target language

Once the game has been translated to INVERTED-GDL, it
can be processed by the back-end to have a legitimate target
language program. Our implementation generates OCAML
code, but it is relatively straightforward to extend it to other
target languages, provided the appropriate runtime is writ-
ten.

OCAML (Leroy et al. 1996) is a compiled and strongly
typed functional programming language supporting impera-
tive and object oriented styles. Some key features of OCAML
simplify the back-end, particularly algebraic data types and
pattern matching.



Game YAP GaDeLaC Factor

Breakthrough 1395 340 24%
Connect4 3249 990 30%
Nim1 26066 17500 67%
Sum15 36329 37300 103%
Roshambo2 68252 70900 104%
Bunk_t 17620 22950 130%
Doubletictactoe 17713 23600 133%
Tictactoeserial 8248 11200 135%
Tictactoe 31370 45800 146%

Table 3: Comparison of the number of random playouts per-
formed in 30 seconds by YAP and GaDeLaC based engines.

5 Experimental results
The usual interpretation of GDL is done through an off the
shelf PROLOG interpreter such as YAP (Costa et al. 2006).
We implemented the proposed compiler using an OCAML
back-end. We named it GaDeLaC and performed two sets
of experiments described hereafter. The experiments were
run on a 2.5 GHz Intel Xeon.

Table 2 shows the time needed in seconds (s) to trans-
form various GDL source files to the corresponding OCAML
files and the time needed by the OCAML compiler to com-
pile the resulting files into an executable. We also provide
the size of the main files involved in kilo-byte (KB). Namely
the original GDL source file with extension .gdl, the trans-
lated OCAML file with extension .ml and the executable file.

As can be seen from Table 2, the proposed compi-
lation scheme is pretty efficient since the whole pro-
cess takes less than one second for typical games. The
compilation scheme proposed in this article scales very-
well as can be seen from the time needed to compile
the most stressing games Duplicatestatelarge and
Statespacelarge which is less than thirty seconds.

We then need to measure the speed of the resulting ex-
ecutable. A simple benchmark to test the speed of a GGP
engine is to play a large number of games using a random
policy. The second set of experiments (see Table 3) con-
sists in counting the number of random playouts that can be
played from the initial state during 30 seconds. Jean Méhat
was kind enough to provide us with comparative data from
his state of the art player Ary (Méhat and Cazenave 2011)
which uses YAP to interpret GDL. The comparative data was
obtained on a 2 GHz Intel CPU.

To gain reasonable confidence in the data presented in Ta-
ble 3, the following care was taken. Each number in the
GaDeLaC column is the average of ten runs of 30 seconds
each. As can be expected, GaDeLaC is not bug free, how-
ever, we recorded the average playout length as well as the
frequency of each possible game outcome and compared
these statistics to the equivalent ones provided in the Ary
data set. The playout statistics of GaDeLaC matched those
of Ary for each game in Table 3.

GaDeLaC is only a proof-of-concept implementation but
the results presented in Table 3 are very encouraging. A
GaDeLaC based engine is significantly faster than a PRO-

LOG based engine on several games but it is also slower on
a couple of other games. Unfortunately we do not have any
definitive characterization of game rules that would allow to
decide whether a resolution-based engine would be quicker
than a bottom-up engine.

6 Discussion and future work
The translation in GaDeLaC keeps the first-order nature of
the rules, as a consequence the improvement factor is less
than what Kevin Waugh could obtain in Waugh (2009), on
the other hand using an instantiation pass to preprocess the
rules such as suggested by Kissmann and Edelkamp (2010)
remains a possibility and is likely to lead to further acceler-
ation.

Several extensions to this work are anticipated. Devising
a more adapted runtime data structure would surely allow a
considerable speed gain. Partial instantiation of well-chosen
predicate would allow more predicates to be considered per-
sistent without compromising scalability. To the best of our
knowledge this work is the first first-order forward chaining
approach to GGP and GDL rulesheets are tested and opti-
mized with resolution based engines, it could therefore be
interesting to see if optimizing the GDL rules of a game
towards bottom-up based engines would change much the
rulesheet and accordingly the performance. It might also be
interesting to test methods to direct the bottom-up evaluation
from the deductive databases community, for instance magic
sets (Kemp, Stuckey, and Srivastava 1991) or demand trans-
formation (Tekle and Liu 2010, Section 4) could prove ap-
propriate. Finally, writing back-ends for different languages
is envisioned, for instance, generating C code might improve
the performance even further and would enhance compati-
bility with other artificial players.

7 Conclusion
We have presented a bottom-up based Game Description
Language compiler. It transforms GDL into rules that have
only two conditions. It then uses OCAML to perform for-
ward chaining with these rules. It performs playouts at a
speed competitive with Ary for most of the games we tested.
This is a promising result since more optimizations are still
possible.

Acknowledgements
The authors would like to thank Jean Méhat for contributing
comparative data from his competitive player, Peter Kiss-
mann for his insights on the intricacies of the Game Descrip-
tion Language, and Bruno De Fraine for his various advice.
The authors would also like to thank the anonymous review-
ers for their detailed comments.

References
[1] Clune, J. 2007. Heuristic evaluation functions for gen-

eral game playing. In AAAI, 1134–1139. AAAI Press.

[2] Costa, V.; Damas, L.; Reis, R.; and Azevedo, R. 2006.
YAP Prolog user’s manual. Universidade do Porto.



Game Size of the Size of the Size of the Transformation time Compilation time
.gdl file (KB) .ml file (KB) object file (KB) GDL→ OCAML (s) OCaml→ object file (s)

Breakthrough 3.6 48 115 0.024 0.46
Tictactoe 3.2 22 55 0.012 0.27
Duplicatestatesmall 3.7 47 108 0.022 0.43
Duplicatestatemedium 23 337 755 0.170 3.6
Duplicatestatelarge 73 1100 2500 0.980 28
Statespacesmall 2.0 34 76 0.018 0.33
Statespacemedium 13 236 516 0.108 2.3
Statespacelarge 45 825 1700 0.620 16

Table 2: Measuring the compilation times and file sizes.

[3] Genesereth, M., and Love, N. 2005. General game play-
ing: Overview of the AAAI competition. AI Magazine
26:62–72.

[4] Günther, M.; Schiffel, S.; and Thielscher, M. 2009. Fac-
toring general games. In Proceedings of the IJCAI-09
Workshop on General Game Playing (GIGA’09), 27–34.

[5] Kemp, D.; Stuckey, P.; and Srivastava, D. 1991. Magic
sets and bottom-up evaluation of well-founded models.
In Proceedings of the 1991 Int. Symposium on Logic Pro-
gramming, 337–351.

[6] Kissmann, P., and Edelkamp, S. 2010. Instantiating
general games using prolog or dependency graphs. In
KI 2010: Advances in Artificial Intelligence, 255–262.
Springer.

[7] Leroy, X.; Doligez, D.; Garrigue, J.; Rémy, D.; and
Vouillon, J. 1996. The Objective Caml system. Soft-
ware and documentation available from http://pauillac.
inria. fr/ocaml.

[8] Liu, Y. A., and Stoller, S. D. 2009. From datalog rules to
efficient programs with time and space guarantees. ACM
Trans. Program. Lang. Syst. 31(6):1–38.

[9] Love, N. C.; Hinrichs, T. L.; and Genesereth, M. R.
2006. General Game Playing: Game Description Lan-
guage specification. Technical report, LG-2006-01, Stan-
ford Logic Group.

[10] Méhat, J., and Cazenave, T. 2010. Combining UCT
and nested Monte-Carlo search for single-player general
game playing. IEEE Trans. on Comput. Intell. and AI in
Games 2(4):271–277.

[11] Méhat, J., and Cazenave, T. 2011. A Parallel General
Game Player. KI-Künstliche Intelligenz 25(1):43–47.

[12] Tekle, K., and Liu, Y. 2010. Precise complexity anal-
ysis for efficient datalog queries. In Proceedings of the
12th international ACM SIGPLAN symposium on Prin-
ciples and practice of declarative programming, 35–44.
ACM.

[13] Thielscher, M., and Voigt, S. 2010. A temporal proof
system for general game playing. In AAAI.

[14] Thielscher, M. 2009. Answer set programming for
single-player games in general game playing. In ICLP,
327–341. Springer.

[15] Waugh, K. 2009. Faster state manipulation in
general games using generated code. In Proceedings
of the IJCAI-09 Workshop on General Game Playing
(GIGA’09).


