
IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 1

Combining UCT and Nested Monte-Carlo
Search for Single-Player General Game Playing

Jean Méhat and Tristan Cazenave

Abstract—Monte-Carlo tree search has recently been very successful for game playing particularly for games where
the evaluation of a state is difficult to compute, such as Go or General Games. We compare Nested Monte-Carlo Search
(NMC), Upper Confidence bounds for Trees (UCT-T), UCT with transposition tables (UCT+T) and a simple combination
of NMC and UCT+T (MAX) on single-player games of the past GGP competitions. We show that transposition tables
improve UCT and that MAX is the best of these four algorithms. Using UCT+T, the program Ary won the 2009 GGP
competition. MAX and NMC are slight improvements over this 2009 version.

Index Terms—General Game Playing, UCT, Nested Monte-Carlo Search, Single-player games.

F

1 INTRODUCTION
General Game Playing (GGP) tries to address
the shortcomings of current specialized game
playing programs that cannot adapt to other
domains than the game they were programmed
for. The goal is to find general algorithms for
games, or to automatically classify games ac-
cording to the algorithms that play them well.
In GGP the programs are required to have
more general intelligence than game-specific
programs.

Programs play games they have never seen
before. They are given the rules of the game,
and after an initial autonomous analysis per-
formed in a predefined time, they play the
game. A specificity of GGP is that programs
are given the rules of the game explicitly, in
the Game Description Language (GDL), hence
they can analyze and manipulate these rules.

GGP addresses single-player, two-player and
multi-player games with simultaneous or turn
taking moves. Games may be zero sum or
not. GGP does not currently address incom-
plete information games and infinite games.

• J. Méhat is at LIASD, Université Paris 8, Saint-Denis, France.
E-mail: jm@ai.univ-paris8.fr

• T. Cazenave is at LAMSADE, Université Paris-Dauphine, 75016
Paris, France.
E-mail: cazenave@lamsade.dauphine.fr

The Stanford Logic Group organizes an annual
GGP competition between GGP players at the
AAAI conference.

In this paper we focus on Monte-Carlo Tree
Search algorithms. The basis of Monte-Carlo
Tree Search is to play random games called
playouts. Using the results of the previous
playouts in order to improve the future play-
outs was shown by Rémi Coulom to be very
efficient in the game of Go [10]. A simple and
related algorithm named UCT was published
the same year [16] and is now widely used as
a basis for Monte-Carlo Tree Search algorithms,
even though some of the best programs do not
use the UCT formula anymore [17], [6], [7]. Im-
provements on the basic UCT algorithm came
from learning patterns to direct the search and
to bias the playouts [11] and from biasing the
choice of moves in the tree with statistics on the
results of the previous playouts where a move
was played [13]. Building on these successes
in two-player games, Monte-Carlo Tree Search
algorithm were also recently used in single-
player games [4], [20], [5]. In single-player
General Game Playing, other approaches such
as Answer Set Programming are also possible
[22].

In this paper we address single player Gen-
eral Game Playing. The second section is about
the Game Description Language. The third
section deals with UCT. The fourth section



IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 2

TABLE 1
The GDL representation of simultaneous play,
binary version of the game My father has more

money that yours.

(ROLE left) (ROLE right) ; players
(INIT (played no)) ; initial
(LEGAL (DOES ?player (tell 0))); moves
(LEGAL (DOES ?player (tell 1)))
(<= (NEXT (value ?p ?x))

(DOES ?p (tell ?x)))
(<= (NEXT (played yes)))
(<= TERMINAL (TRUE (played yes)))
(<= (other ?x ?y) (role ?x) (role ?y)

(DISTINCT ?x ?y))
(<= (GOAL ?p 0) (TRUE (value ?p 0))

(other ?p ?op) (TRUE (value ?op 1)))
(<= (GOAL ?p 50) (TRUE (value ?p ?x))

(other ?p ?op) (TRUE (value ?op ?x)))
(<= (GOAL ?p 100) (TRUE (value ?p 1))

(other ?p ?op) (TRUE (value ?op 0)))

deals with Nested Monte-Carlo Search. The
fifth section details the structure of Ary. The
sixth section details experimental results.

2 THE GAME DESCRIPTION
LANGUAGE

The Game Description Language (GDL) [19]
is used to describe a game. It is based on
first order logic, hence cannot easily express
arithmetic computations.

The rules indicate the players with ROLE, the
initial state with INIT, the legal moves with
LEGAL, the effects of moves with NEXT, and the
reward with GOAL. The game is ended when
TERMINAL is provable.

We give in table 1 a very simple example
in GDL of a binary version of the simultane-
ous play game My father has more money than
yours [2]: each player names a figure, here 0
or 1 and the winner is the player naming the
bigger number. Keywords of GDL are written
in upper case.

In the following, we call the current situation
of the game the board status, even for games
that are not played on a board like the one
described in table 1.

3 THE UCT ALGORITHM

The basic idea of UCT [16] is to add to Monte-
Carlo explorations of the abstract move tree
an informed way to choose the branches that
will be explored. A move tree is constructed
incrementally, with a new node added for each
Monte-Carlo exploration. On the next explo-
ration, a path is chosen in the already built
move tree by choosing the branch whose esti-
mated gain is maximum. This gain is estimated
by the mean result of the previous Monte-
Carlo explorations plus the Upper Confidence
Bound in the estimation. The Upper Confi-
dence Bound is calculated by a function of the
number of explorations of the node t and of
the number of exploration of the branch s as√

log(t)
s

. When arriving at a leaf node of the
move tree, if it is not a terminal state, a new
node is added to the tree and a Monte-Carlo
simulation is started to obtain an evaluation
of this node and update the evaluation of its
parent nodes.

UCT is used with success as a basis for
Monte-Carlo Go programs [10], [14], [17] and
to many other games. Different ways to use a
transposition table with UCT were investigated
in [8]. UCT was also successfully applied to the
single-player game SameGame [20].

When there are some unexplored moves,
UCT will choose to explore them. When all
the branches from a node have been explored,
UCT will tend to re-explore the most promising
ones: this tendency is controlled by a constant
C, that is used to multiply the Upper Confi-
dence Bound

√
log(t)
s

. The exact formula used

for UCT is m+C×
√

log(t)
s

where m is the mean
of the playouts under the node. The higher
the constant C, the more UCT will explore un-
promising nodes. At the limit, when the whole
game tree has been explored, UCT is favoring
the better branches and tend to converge to the
same choice as a Minimax exploration.

3.1 Representation of the UCT move tree
The game tree is stored as a set of nodes.
Each node contains the current situation, the
legal moves for each player when the node is
not terminal, an evaluation of the gain of each



IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 3

player and the number of explorations of this
node.

At the beginning of the match, the root node
is seeded with the initial situation.

3.2 UCT path selection
For each exploration, a path is followed from
the root of the game tree with UCT, until
arriving either at the root of a fully explored
subtree or at a node where some children have
not yet been tried at least once. For multiplayer
games, we use a UCT constant of 40 while for
one player games the larger value 100 is used
to favor exploration. In GGP, scores range from
0 to 100. These constants were experimentally
determined: they are the ones that gave the best
mean outcomes out of many experiments on
many different games. Trying to adapt the con-
stant to the game after an analysis of the game
properties did not give satisfactory results.

When a node is terminal, the score of each
player is stored in the node. When the selected
node is the root of a fully explored subtree, a
value is computed using the maximum value
for the player among the children. This value is
exact for sequential moves games. The selected
move and its exact reward are stored in the
node for use by future playouts.

When the selected node has at least one
unexplored edge, the tree explorator selects
pseudo-randomly one of these unexplored arcs,
applies its moves to the game situation de-
scribed by the node, obtaining a new game
situation. It then searches for a transposition:
in the existing nodes, if one does contain the
same situation, it is a transposition: an edge
is added from the selected node to the newly
found one and the descent in the tree proceeds
from there.

The known advantages of the transposition
tables in move tree exploration work well for
GGP: the nodes can use a large quantity of
memory and the moves generation and appli-
cation via the interpretation of GDL are costly.
Using the transposition tables helps reducing
both the number of nodes and the number
of move generations and applications. It also
protects somewhat the program against game
descriptions that would offer many different

but completely equivalent moves. In GDL the
current situation is fully described by the liter-
als and in GGP the games are required not to
have cycles so the transposition table is free of
the graph history interaction problem.

There are multiple ways to implement a
transposition table with UCT [8]. We have
chosen to store the results of the playout and
the number of visits in the nodes and not in
the edges between nodes. We update only the
nodes visited during the playout and not all
the parents of a node. The number of visits
of a parent node used in the UCT formula is
obtained summing the number of visits of all
its children. This way, when a children has been
visited many times by other parents, the UCT
formula will drive the exploration towards less
explored children.

If no transposition is found, a new node is
built. If it is terminal the gain of each player
is computed via GDL interpretation. For non
terminal nodes, a playout is run, giving an
initial evaluation.

In single-player games UCT memorizes the
best playout and its score. When the program
has to send back a move, it selects the first
move of this playout.

3.3 Update of nodes values
Once an evaluation is obtained, either by reach-
ing a terminal node or the root of an explored
subtree, or with a playout, the estimated value
of each node traversed during the descent is
updated and the number of explorations of
these nodes is incremented. The value is up-
dated computing the mean results of the play-
outs that went through the node (i.e. dividing
the sum of the results of the playouts by the
number of explorations).

The transposition tables are not used in this
step: the values are updated only in the parent
node used in this playout. Doing otherwise
could lead UCT to avoid some nodes as ex-
plained in Figure 1.

3.4 Update of the move tree after player
moves
When our program receives a notification of the
moves from the Game Master, it sets the child



IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 4

25 50 0 100

s0

s1 s2

s3 s4 s5 s6

Fig. 1. This simple one player game illustrates a
situation where updating the reward estimation
in all the parents of a node could induce UCT in
error. If all the nodes are visited before s6, UCT
will favor the branch s0s1 over s0s2. If both s4 par-
ents were updated, the number of experiments
in s1 and s2 would grow simultaneously and the
branch s0s2s6 would not be explored.

from this branch as the new root. If the child
does not already exist in the tree, it is computed
and created. Then all nodes unreachable from
this new root are discarded.

4 THE NESTED MONTE-CARLO
SEARCH ALGORITHM

The basic idea of Nested Monte-Carlo (NMC)
is to perform a principal playout with a bias on
the selection of each move based on the results
of a Monte-Carlo tree search [5].

Figure 2 illustrates a level n Nested Monte-
Carlo search. Three selections of moves at level
n are shown. The leftmost tree shows that
Nested Monte-Carlo searches of level n − 1
starting with each legal move are performed.
The rightmost move has the best result of 20,
therefore this is the first move played at level n
in the middle tree. After this first move, Nested
Monte-Carlo searches of level n − 1 are again
performed for each possible move following
the first move. One of the moves has result
30 which is the best playout result among his
siblings. So the game continues with this move
as shown in the rightmost tree.

The algorithm for higher levels is algorithm
1. At each move of a playout of level 1 it
chooses the move that gives the best score
when followed by a single random playout.
Similarly for a playout of level n it chooses the
move that gives the best score when followed
by a playout of level n− 1.

For a tree of height h and branching factor
a, the total number of playout steps of a NMC

30 10201010 20 10 30 40

Fig. 2. This figure explains three steps of a level
n search. At each step of the playout of level n
shown here with a bold line, an NMC of level n
performs an NMC of level n−1 (shown with wavy
lines) for each available move and selects the
best one. At level 0, a simple pseudo-random
playout is used. For example in the third step on
the tree to the right of the figure, the move that
starts the playout with result 40 will be chosen
and played at level n.

Algorithm 1 Nested Monte-Carlo search
nested (position, level)
best playout ← {}
while not end of game do

if level = 1 then
move ← argmaxm(sample (play
(position, m)))

else
move← argmaxm(nested (play (position,
m), level − 1))

end if
if score of playout after move > score of
the best playout then

best playout ← playout after move
end if
position← play (position, move of the best
playout)

end while
return score (position)

of level n will be tn(h, a) = a×∑0<i<h tn−1(i, a)
with t0(h, n) = h. So a NMC of level 1 will
perform a×h2/2 playout steps. The complexity
of a NMC of level n is O(anhn+1).

Searches at the highest level are repeatedly
performed until the thinking time is elapsed.

Nested Monte-Carlo search has been suc-
cessful in establishing world records in sin-
gle player games such as Morpion Solitaire
or SameGame. It provides a good balance be-
tween exploration and exploitation and it au-
tomatically adapts its search behavior to the



IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 5

problem at hand without parameters tuning.
When a Monte-Carlo engine is available im-

plementing Nested Monte-Carlo search is sim-
ple and straightforward; in our program, it is
done in about 200 lines of C. NMC makes
a good compromise between exploration and
exploitation on many games. At each level, it is
important to memorize the best playout found
so far in order to play its moves if no better
playout is found.

5 THE STRUCTURE OF ARY

In this section we present Ary, the program
used for the experiments.

Ary is written in C. It uses Monte-Carlo
Tree Search (MCTS) and a Prolog interpreter
as an inference engine. Ary won the 2009 GGP
competition.

Its architecture is somewhat similar to the
one of CadiaPlayer [12], [3] since it also uses
UCT and Prolog, however it implements trans-
position tables and NMC. It is different from
the winners of the 2005 and 2006 competitions,
ClunePlayer and FluxPlayer [9], [21] that used
evaluation functions.

5.1 Data structures used in Ary
The basic objects are atoms, used to represent
all the constituents of the game description:
keywords of GDL, operators of the logic, predi-
cates, names, integers and variables used in the
description of the game. On its creation, each
atom receives a random 64 bits hash key.

The basic objects are combined in lists, rep-
resented with a cell containing two pointers
on the head and tail of the list. Each cell has
also a hash code: the hashcode of the head is
shifted and xored with the hashcode of the tail.
This hashcode is used to compare quickly lists
that differ (elements of identical lists have to be
compared, as different lists may have the same
hash code) and find them in hash tables. We
did not implement garbage collection: the core
of the program identifies lists that will not be
referenced and adds them explicitly to the free
list.

Most of the lists are stored in list tables. The
table contains an array and a hash table. In the

array, the elements are stored sequentially, giv-
ing an easy way to iterate over all the elements.
The hash table allows to quickly verify if an
element is already present in the table. When
a table is full, it is reallocated with a greater
number of slots.

A node data structure is used to represent
the move tree built by the UCT algorithm, as
described in the section on UCT.

5.2 Interface with Prolog
We use a Prolog Interpreter as an inference
engine. We currently use YAP Prolog or SWI
Prolog because of their availability, speed and
good interface with the C language.

After loading, the game is translated from
GDL to Prolog. Similarly, we have a function
that is used to translate back the answers of
the Prolog interpreter into the internal form.

The game description in Prolog is sent once
for all to the interpreter, with the initial board
status. The Prolog interpreter is then used to
identify terminated games, find the scores of
the players in these states, enumerate the legal
moves and the consequences of moves on the
board status, and modify the image of the
board status in the interpreter.

The transition from one board status to an-
other is done incrementally: Ary retracts what
is present only in the old state, and asserts
what appears only in the new state. Unmod-
ified characteristics of the board status do not
imply exchange with the Prolog interpreter.
So in games like Tic Tac Toe where a move
modifies the status of one cell described by one
assertion, the transition from one board status
to the next is done with one retraction and one
assertion.

6 EXPERIMENTAL RESULTS

We tested Ary on all the single player games
of the competitions of the last three years that
were available on the Dresden GGP server [1].
We conducted two different sets of experiments
with the following algorithms: UCT without
transposition tables (UCT-T), UCT with trans-
position tables (UCT+T) and Nested Monte-
Carlo Search at level 1 (NMC).



IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 6

TABLE 2
The average scores of four Monte-Carlo tree search algorithms on twenty single player games

from the GGP competitions
MAX2 MAX1 NMC UCT+T UCT-T # experiences

asteroidsparallel 71 ±9 67 ±11 68 ±10 60 ±12 59 ±12 156/233/157/157/157/
asteroidsserial 85 ±12 84 ±12 85 ±12 87 ±12 86 ±12 157/233/157/157/157/
duplicatestatelarge 67 ±11 67 ±8 51 ±9 62 ±17 42 ±10 156/231/157/157/157/
duplicatestatemedium 95 ±5 96 ±5 84 ±11 93 ±12 53 ±14 156/233/156/156/156/
hanoi 80 ±0 80 ±0 80 ±0 80 ±0 80 ±2 156/232/156/156/156/
hanoi7 bugfix 70 ±9 70 ±9 58 ±5 70 ±10 49 ±9 156/231/156/156/156/
incredible 75 ±11 74 ±15 71 ±14 73 ±11 50 ±11 156/232/156/156/156/
knightmove 97 ±4 97 ±4 97 ±4 95 ±5 95 ±5 157/232/157/157/156/
knightstour 100 ±0 99 ±1 96 ±3 100 ±1 100 ±1 157/232/157/157/157/
lightsout 6 ±23 2 ±13 2 ±13 3 ±15 4 ±19 155/232/156/156/156/
lightsout2 8 ±26 3 ±17 1 ±11 5 ±21 4 ±20 157/232/157/157/157/
max knights 95 ±8 87 ±13 95 ±9 68 ±18 67 ±18 156/232/642/619/620/
pancakes6 89 ±1 89 ±1 81 ±4 89 ±1 87 ±3 156/232/156/156/156/
pancakes88 59 ±9 54 ±7 50 ±4 61 ±9 57 ±9 157/231/157/157/157/
peg bugfixed 92 ±3 91 ±2 91 ±2 90 ±3 90 ±3 156/232/156/156/156/
queens 76 ±9 74 ±9 79 ±8 68 ±10 70 ±11 157/232/157/157/157/
statespacelarge 52 ±8 50 ±9 51 ±8 42 ±10 42 ±11 156/232/156/156/156/
statespacemedium 84 ±9 81 ±11 83 ±11 52 ±12 50 ±10 157/232/157/157/157/
sudoku simple 40 ±7 36 ±7 39 ±7 32 ±7 32 ±7 157/231/530/467/467/
tpeg 99 ±3 97 ±4 98 ±3 95 ±7 94 ±6 156/232/156/156/156/
total 1440 1398 1360 1325 1211

We added a fourth algorithm, MAX, a com-
bination of UCT+T and NMC. For each move,
both of the algorithms which make up MAX
evaluate independently the position and pro-
vide their evaluation of the best move found.
The move with the best associated score is then
transmitted to the Game Master. Both algo-
rithms were run in two separate processes on
the same multicore machine used for the other
experiments, effectively competing for memory
(NMC only uses very little memory and UCT
stops creating nodes when memory is filled).

MAX was run in two configurations:

• in MAX1, both processes ran for half of the
time given to NMC and UCT, so MAX1
had the same total amount of CPU time
than NMC or UCT.

• in MAX2, both processes ran for the same
time as NMC and UCT, giving a fair es-
timation of what can be expected on a
dual core machine under real tournament
conditions.

The version of Ary that won the 2009 com-
petition at IJCAI used UCT+T. We added some
code to handle UCT-T, NMC and MAX so as
to compare with the same underlying GGP
engine.

The MAX approach is basically a portfolio
approach [15], [18] which is becoming very
popular in many areas such as SAT [23] and
planning.

All tests were run on a multicore PC at 2.33
GHz with 4 Gigabytes of memory, running
Linux 2.6.28. In the MAX experiments, two
cores were used independently by NMC and
UCT. In all others experiments only one core
was used by the programs. It is the same
machine that we used during the 2009 com-
petition.

6.1 Experiments under tournament-like
conditions
The first set of experiments consists in test-
ing the algorithms under realistic time limits
for competition conditions. The initial thinking
time is set to ten seconds, then the program is
given ten seconds for each move. The results
are given in table 2.

This table contains only the games that are
not too hard nor too simple for Monte-Carlo
tree search (either NMC or UCT). In games
such as maze for example, MCTS always scores
100, so these games are not included in the
table. On other games such as 8puzzle for ex-



IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 7

ample, MCTS always scores 0, so these games
are not included in the table either. On these
games it is a property of Monte-Carlo Tree
Search algorithms to score either 0 or 100 since
UCT-T, UCT+T, NMC and MAX all give the
same results. The twenty games that are not too
hard and not too easy are given in table 2, with
the results of NMC, UCT-T, UCT+T, MAX1 and
MAX2.

On some games such as max knights, the
standard error is high even if many games
have been played. Figure 3 gives the number
of occurrences of the scores for max knights.
UCT+T and UCT-T behave similarly with three
local maxima at 50, 75 and 100. NMC and
MAX2 have a maximum at 100 and a smaller
local maximum at 75. The distribution of the
scores for UCT+T and UCT-T explains the
large standard error (18) of these algorithms at
max knights. Max knights consists in placing
as many knights as possible on an 8x8 chess
board. As soon as a knight can capture another
one, the game is over. The score is based on the
number of placed knights. An optimal solution
consists in placing all the knights on squares of
the same color. The distribution of the scores is
due to the structure of the game: bad moves at
the beginning cannot be recovered and lead to
a local maximum.

Fig. 3. Percentage of occurrence of scores for
the four algorithms at max knights.

Particular games are lightsout and light-
sout2. The only possible scores are 0 and 100.
All the algorithms found a few solutions, and
the associated error is very high. It seems
nonetheless that the better scores of UCT are

due to the reuse of the previous explorations in
the UCT tree, that speeds up the explorations,
and MAX2 advantage is due to the still greater
number of explorations as it uses twice more
CPU time.

The first conclusion we can draw from ta-
ble 2 is that UCT+T is equivalent or slightly
better than UCT-T on almost all of the games.
It is clearly better at duplicatestatelarge (62
vs. 42), duplicatestatemedium (93 vs. 53),
hanoi7 bugfix (70 vs. 49) and incredible (73
vs. 50). Concerning duplicatestatelarge and du-
plicatestatemedium, it is not surprising that
UCT+T is better because detecting duplicate
states is an important property of these games.

The second conclusion is that NMC has
overall results that are better than UCT-T and
slightly better than UCT+T. However the re-
sults differ according to the games. In some
games it is clearly better (statespacemedium,
max knights, statespacelarge) and in other
clearly worse (duplicatestatelarge, pancakes6,
hanoi7 bugfix). NMC is better than UCT+T at
asteroidsparallel (68 vs 60), sudoku simple (39
vs 32), statespacemedium (83 vs 51), queens
(79 vs 68), max knights (95 vs 68), statespace-
large (51 vs 42). An explanation concerning
max knights is that it behaves like a constraint
satisfaction problem. The way it is defined in
GGP is that once a losing move is played the
game is over. UCT does not avoid direct losing
moves in its playouts while NMC naturally
avoids them. In queens the bad moves are
also avoided due to the nested playouts. This
could be an explanation of why NMC is better
than UCT in these games. In five other games
UCT+T gets better results than NMC: dupli-
catestatelarge (62 vs 52), duplicatestatemedium
(93 vs 84) pancakes88 (61 vs 51), pancakes6 (89
vs 81), hanoi7 bugfix (70 vs 58). Concerning
duplicatestatelarge and duplicatestatemedium
this is clearly due to the detection of duplicate
states. On the other eight games NMC and
UCT+T are more or less equivalent.

Despite having less CPU time for each algo-
rithm, MAX1 almost always scores better than
the worst of UCT+T and NMC. It is usually
close to the best of UCT+T and NMC on most
of the games. Overall it is slightly better than
both NMC and UCT+T.



IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 8

MAX2 gets similar or slightly better results
than MAX1 thanks to its additional CPU time.
The benefit of using more CPU time is par-
ticularly clear for lightsout and lightsout2. In
these games that are hard for Monte-Carlo Tree
Search, the doubling of CPU time increases the
chances of randomly finding a solution.

In addition to the increase in score due to
the chances of randomly finding a solution, the
score also increases due to the mix of NMC and
UCT+T at each move. If we take for each game
the best score between UCT+T and NMC, the
scores sum to 1424. This is better than the score
of MAX1 (1398) but worse than the score of
MAX2 (1440). What we see here is that calling
UCT+T and NMC at each move of the game
and choosing the best is better than running
them completely separate.

6.2 Experiments on the evolution of the
evaluation with time
The first set of experiments evaluates the algo-
rithms on current competition standards and
on current hardware. The hardware might im-
prove and the algorithms could be parallelized.
To foresee the behavior of the algorithms with
these possible evolutions, we performed a sec-
ond set of experiments. It consists in observing
the evolution of the results of the algorithms
with thinking time. The basic algorithms were
run a hundred times for 12.8 seconds on each
problem. The best score was recorded after
each power of two multiplied by 0.1 second.
We give figures that plot the average best score
over the hundred runs for each recorded time.
The MAX2 algorithm behaves as the best algo-
rithm for each game.

We have identified four different patterns
that occur in multiple games. For each pattern
we only show its behavior on one or two games
using only one or two figures, however the
behavior is similar for multiple games.

In multiple games UCT+T, UCT-T and NMC
behave very similarly. In other games such
as as tpeg, queens, snake 2008, duplicatestate-
large, pancakes6, asteroidsserial, knightmove,
peg bugfixed and max knight, NMC has better
results than UCT+T and UCT-T and dominates
for all thinking times except very short ones:

at the beginning the score only moderately
increases since the playouts of level 0 rapidly
ends with low scores. When the playout of
level 1 advances, the score increases since it
avoids losing moves and makes the game last
and score higher. The evolution of the average
best score for tpeg and max knights is given
in Figures 9 and 5. The figures for the other
games are similar.

Another class of games are the games where
NMC starts with lower best scores than UCT
but gets better than UCT. This is the case for ex-
ample in statespacemedium as shown in Figure
6. The games where it happens are statespace
and duplicatestate (without considering the re-
sults of UCT+T). In these games the rewards
have a non standard distribution: in a subtree, a
leaf with a 100 reward is alone among 0 reward
leaves. UCT is not likely to explore this subtree
while NMC has better chances to explore it due
to its restart strategy.

On the contrary, at knightstour, NMC starts
better than UCT but it is only at the end of the
considered thinking time that both UCT+T and
UCT-T get better (Figure 8). UCT performs well
in this type of puzzles where it is possible to
obtain a better solution by improving a good
one.

There are games where using the transpo-
sition tables definitely improves UCT and en-
ables it to become better than NMC. This is
the case for hanoi (Figure 7) and duplicates-
tatemedium (Figure 4).

Fig. 4. Average score with time at duplicates-
tatemedium.



IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 9

Fig. 5. Average score with time at max knight.

Fig. 6. Average score with time at states-
pacemedium.

7 CONCLUSION

We have compared four different algorithms
for twenty single player games of the previ-
ous GGP competitions: UCT without transpo-
sition tables (UCT-T), UCT with transposition

Fig. 7. Average score with time at hanoi.

Fig. 8. Average score with time at knightstour.

Fig. 9. Average score with time at tpeg.

tables (UCT+T), Nested Monte-Carlo Search
(NMC) and a simple combination of UCT+T
and Nested Monte-Carlo Search (MAX).

On these games, UCT+T always gets better
or equivalent results to UCT-T.

UCT+T works better in some games than
NMC while it is the contrary in other games.
On average NMC works slightly better.

The evolution of the scores of UCT+T and
NMC with time is shown to be problem de-
pendent. On some problems, one algorithm is
always better than the other, while on other
problems one algorithm starts worse and gets
better than the other within a longer period of
time.

MAX gets the performances of both algo-
rithms by taking at each step the move with
the best independent evaluation.

We combined UCT+T and NMC the most
simple way, spending equal time for both al-
gorithms. It could also be interesting to use



IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 10

different ratios of the times spent for UCT+T
and NMC. For example, 30% for UCT+T and
70% for NMC, or other ratios.

REFERENCES
[1] Dresden GGP server. web page, http://euklid.inf.tu-

dresden.de:8180/ggpserver/, 2010.
[2] E. Berlekamp, J. H. Conway, and R. K. Guy. Winning Ways.

Academic Press, 1982.
[3] Yngvi Björnsson and Hilmar Finnsson. Cadiaplayer: A

simulation-based general game player. IEEE Transactions
on Computational Intelligence and AI in Games, 1(1):4–15,
2009.

[4] T. Cazenave. Reflexive Monte-Carlo search. In Computer
Games Workshop, pages 165–173, Amsterdam, The Nether-
lands, 2007.

[5] Tristan Cazenave. Nested Monte-Carlo search. In IJCAI,
pages 456–461, 2009.

[6] Tristan Cazenave and Abdallah Saffidine. Utilisation de
la recherche arborescente Monte-Carlo au Hex. Revue
d’Intelligence Artificielle, 23(2-3):183–202, 2009.

[7] Guillaume Chaslot, L. Chatriot, Christophe Fiter, Sylvain
Gelly, Jean-Baptiste Hoock, Julien Perez, Arpad Rimmel,
and Olivier Teytaud. Combiner connaissances expertes,
hors-ligne, transientes et en ligne pour l’exploration
Monte-Carlo. apprentissage et mc. Revue d’Intelligence
Artificielle, 23(2-3):203–220, 2009.

[8] B. E. Childs, J H. Brodeur, and L. Kocsis. Transpositions
and move groups in Monte Carlo tree search. In CIG-08,
pages 389–395, 2008.

[9] James Clune. Heuristic evaluation functions for general
game playing. In AAAI, pages 1134–1139, 2007.

[10] R. Coulom. Efficient selectivity and back-up operators in
Monte-Carlo tree search. In Computers and Games 2006,
Volume 4630 of LNCS, pages 72–83, Torino, Italy, 2006.
Springer.

[11] Rémi Coulom. Computing ”elo ratings” of move patterns
in the game of go. ICGA Journal, 30(4):198–208, 2007.

[12] Hilmar Finnsson and Yngvi Björnsson. Simulation-based
approach to general game playing. In AAAI, pages 259–
264, 2008.

[13] Sylvain Gelly and David Silver. Combining online and
offline knowledge in UCT. In ICML, pages 273–280, 2007.

[14] Sylvain Gelly and David Silver. Achieving master level
play in 9 x 9 computer go. In AAAI, pages 1537–1540,
2008.

[15] C.P. Gomes and B. Selman. Algorithm portfolio design:
Theory vs. practice. In Proceedings of UAI-97, pages 190–
197, 1997.

[16] L. Kocsis and C. Szepesvàri. Bandit based Monte-Carlo
planning. In ECML, volume 4212 of Lecture Notes in
Computer Science, pages 282–293. Springer, 2006.

[17] C. S. Lee, M. H. Wang, G. Chaslot, J. B. Hoock, A. Rimmel,
O. Teytaud, S. R. Tsai, S. C. Hsu, and T. P. Hong. The
computational intelligence of mogo revealed in taiwan’s
computer go tournaments. IEEE Transactions on Computa-
tional Intelligence and AI in Games, 1(1):73–89, 2009.

[18] K. Leyton-Brown, E. Nudelman, G. Andrew, J. McFadden,
and Y. Shoham. A portfolio approach to algorithm
selection. In International Joint Conference on Artificial
Intelligence, volume 18, pages 1542–1543. Citeseer, 2003.

[19] N. Love, T. Hinrichs, and M. Genesereth. General game
playing: Game description language specification. Tech-
nical report, Stanford University, 2006.

[20] Maarten P. D. Schadd, Mark H. M. Winands, H. Jaap
van den Herik, Guillaume Chaslot, and Jos W. H. M.
Uiterwijk. Single-player Monte-Carlo tree search. In
Computers and Games, pages 1–12, 2008.

[21] Stephan Schiffel and Michael Thielscher. Fluxplayer: A
successful general game player. In AAAI, pages 1191–
1196, 2007.

[22] Michael Thielscher. Answer set programming for single-
player games in general game playing. In ICLP, pages
327–341, 2009.

[23] L. Xu, F. Hutter, H.H. Hoos, and K. Leyton-Brown.
SATzilla: portfolio-based algorithm selection for SAT.
Journal of Artificial Intelligence Research, 32(1):565–606, 2008.


