Automatic Acquisition of
Tactical Go Rules

Tristan Cazenave
LAFORIA-IBP
Université Pierre et Marie Curie
4, place Jussieu
75252 PARIS CEDEX 05, FRANCE
cazenave@laforia.ibp.fr

Abstract
Gogd isarule-based computer Go program. It uses alot of reliable tadicd rules. Tadicd rules are rules about
simple goals guch as conreding and making an eye. Gogd uses a simplified game theory to represent the
degree of achievement of the goals. The attomatic aquisition o tadicd rules follows a three step process:
Pattern generation, Game evaluation, Generalisation. Gogd has metainformation about the wrred use of the
rules in global Go positions.

Key words: Game of Go, Machine Learning, Metaknowledge,Knowledge Acquisition, Game Theory.

1 Introduction

Gogd is a computer Go program which uses gymbdlic rule-based techniques. It uses
thousands of rulesto know if sometadica goals can be adieved. This paper describes these
tadicd rules and hav they have been automaticadly aaquired. It shoud interest every Go
programmer using a rule-based program. It provides them with a complete and reliable set of
tactical rules.

Most of the dgorithm developed to lean in Go are Similarity Based Leaning algorithms
[Stoutamire 1991, [Pell 1991, [Enderton 1991, [Schrauddph 1994, [Brigmann 1993,
[Enzenberger 1999. | believe Go is a domain which shodd better be gproached by
deductive leaning algorithms such as those described in [Kojima 1994 and as the gpproac
described in this paper.

The first part of the paper is concerned with the representation o rules using a simplified
game theory. The second fart is abou the leaning process: automatic generation d patterns,
evauation d these patterns, generalisation d the resulting rules. The third part shows how
these rules siodd be used in a Go program. The extension d the work is discussed and

perspedives for future work are shown. A short representative listing o the rulesis given in
the annex.

2 Therules
2.1 The goals concerned by therules

The rules concern two goaldake an eye andConnect two stones.

In all the paper, Black is assumed to be the friend colour and white the enemy colour.

The goalM ake an eyeis reached when one of these three patterns is recognised

£33 s s

Using rotations and symmetries, there are 12 patterns to match.

The goal Connect is readied when two stones are part of the same block. Gogd uses a
recursive function to decide whether two stones are connected.

Eadh gl defined gves birth to its oppasite goal, which prevents from reading the main
god. The oppasite goal of Make an eye is Remove an eye , and the oppasite goa of
Connect is Disconnect.

These four goals are used in most of the Go programs and their use seans necessary to the
development of a rule-based Go playing program.

2.2 A smplified Game Theory

To represent the state of achievement of a goal, | use asimplified Conway Game Theory
[Conway 1976], [Berlekamp 1982], [Bouap95].

A game is associated to a goal. It can have different states :
- If the player can reach the goal whatever the opponent plays, the state is

- If the player can read the goal if he plays first, but his opporent can prevent him to
reach the goal by playing first, the stat&is

- If the player cannot reach the goal whatever he plays, the stdte is

- If the player canna read the goal if he plays first, bu his opporent canna prevent
him to reach the goal by playing first, the stat®'is

2.3 Format of therules

The If-part of rules is a pattern. To construct patterns, Gogol uses various symbols :

@ : Friend stone O : Enemy stone

+ - Empty intersection - . Exterior of the Goban
| : Exterior of he Goban \ : Exterior of the Goban
A '@ or '+ E 'O or '+

P '@ or 'O’ . '@'or'O' or '+

"

'@ or'O'or'+or'-or'lor'\

It gives the following hierarchies :

AN ANANAWAWAWA

A pattern isincluded in atwo-dimensional redangle. In arule they are given as aredanguar
matrix of charaders, eat charader in the same line is ®parated by a space ad ead lineis
separated by a cariage return. The key word pattern is placel before the pattern and a *V’
determines the end of the pattern.

The then-part is compaosed of agoal and d agame value & defined previoudly. If the gameis
*'. the move allowing to change the value of the game is also given.

A goal is the keyword 'Goal' followed by the name of the goal and by information onthe
blocks involved.
The end of a rule is determined by a slash.

Example of a rule :

Q
=
@
=
>

-+ +@7T
(ORI
+ + +

Goal Connect blockl1 0 0 block2 1 2 end
Game >
/

The rule says that if the pattern is encountered onthe Goban, the block containing the upper
left stone is connected to the block containing the lower stone.

3 Automatic Acquisition of Rules

The attomatic aquisition d rules is a three step process : Pattern generation, Game
evaluation and then Generalisation.

3.1 Pattern generation

Example of a metarule used to generate patterns :

Q@

+

@

In this example, ead ".'is siccessvely replacal by @', 'O' and *+'. Therefore 36=729 mtterns
are generated.

It is passbleto filter the patterns to be evaluated. A usuad filter isto prevent from cdculating
too spedfic patterns. The spedficity of a pattern is cdculated using the dements of the

3

pattern. A '+' countsfor 1,a'0O' or a'@' for 4. adding all the wurts gives the spedficity of the
pattern. Gogol usually forgets patterns which have a specificity superior to 40.

3.2 Game evaluation

Gogd makes alist of the goalsto cdculate on eat pattern. If the goal is Conred, he takes all
the pairs of friend stones and evaluates the game for eat pair, if the goal is Make an eye, he
evaluates the game for each intersection not on the edge of the pattern.

For eat pettern-goal association, Gogd cdculates two MinMax on the pattern. The
evaluation function keing 1if the god is adiieved, 0 dherwise. The seach ends when no
more moves are possble. The first treeis cdculated with afriend move first. The secondtree
is cdculated with an opporent move first. Given the two roct values, Gogd dedde uponthe
value of the game for the pattern :

Root value Root value Value of the (
Friend plays first Enemy plays first

1 1 >

1 0 *

0 1 0

0 0 <

When a game is '*, it give birth to sets of rules. One set of rules for the fri
reaching the goal and one set of rules for the enemy moves preventing to

3.3 Generalisation

Generdlisation is useful for at least two reasons. The first reason is that it saves time for
matching to have the most possible general rules.

Example :
pattern pattern pattern
@ @ @ @ @ O @ @ +
+ + o+ + + o+ + + o+
+ @ + + @ + + @ +
I I I

Matching the three previous patterns takes three times longer than matching the
following one :

pattern

@ @
+ o+
+ @
!

+
+

and they all have the same conclusion :

Goal Connect blockl1 0 0 block2 1 2 end
Game >

The second reason is that it is easier for the developer of a system to verify a small set of
generalised rules than a large set of specific rules.

For ead cdculated rule, Gogd has two ways to generalise its knowledge. The first way isto
match the new rule against all the drealy leaned rules. If the new rule is more general than
an drealy cdculated ore, the lessgeneral is removed from the set of rules. The other way is
to generdise using the hierarchies presented in sedion 2.3.1f two rules have the same
conclusion and orly differ by ore dement in the pattern, and if the two elements have a
common antecalent and if this antecadent has only two kranches. It then generali ses the new
rule by replacing the element by the antecedent and it removes the old rule.

4 The use of thelearned rulesin Gogol

Gogd is written in C++, it has 40 000lines of code and wses thirty clases. It participates to
the computer Go ladder [Pettersen 1994]

Gogd has leaned thousands of tadicad Go rules using the method described in this article.
Hunded of them are very useful and wsed in most of the game it plays, others are too spedfic
to be used while playing, the st in time of matching them is too high compared to the
increase in level they give.

4.1 Meaning of the game valuein a global context

In this sdion, | will present some metaknowledge used by Gogd. Metaknowledge is
knowledge @ou knowledge [Pitrat 90]. The metarules described here ae rules abou the
validity in aglobal context of locdly proven rules. To know the validity in agloba context of
a game calculated locally, goals must be classified in two distinct categories :

- Achievable goals, the goals for which a desired state is known. This goals are
Connect and Make an eye.

- Unadhievable gaods, the goals which prevent from reading a readable goal. This
goals are Disconnect and Remove an eye.

For achievable goals, the following rules can be applied :

If a game is locally proven '>'
Then it is also globally proven ">'

If a game is locally proven ™'
Then it is also globally proven ** or '>'

If a game is locally proven '<'
Then it is also globally proven '<' or **' or ">'

For unachievable goals, the following rules can be applied :

If a game is locally proven '<'
Then it is also globally proven ‘<’

If a game is locally proven ™'
Then it is also globally proven * or '<'

If a game is locally proven >'
Then it is also globally proven '>' or *' or '<'

Example :

Figure 1 Figure 2

In Figure 1, the following local rule applies :

pattern

S

@ +

!

Goal Connect bldd 1 0 block2 0 2 end

Game *

Move @ inl1l

/

Hence the game is locdly ‘*’. However the game can be proved dgobaly ‘> as gown in
figure 2. As Conred is an achievable goal, this result was predicted by the metarule saying
that an achievable goal locdly proved ‘*’ can be globally either “*’ or ‘>'. These metarules
can be viewed as admissible heuristics upon the game theory.

4.2 Limitations of the lear ning method

Gogd has a way to represent information onliberties in its rules, the condtions on liberties
begin with the key word ‘liberty’ and end with the keyword ‘end. The described way of
leaning daes nat alow Gogd to lean rules containing condtions exterior to the pattern. As
an example, he cannot learn with this method the following rule :

pattern

@ @

O +
@ +
1

liberty01=1

Goal Connect blockl1 0 0 block2 0 2 end
Game *

Move @ in11

/

The described method will evaluate the pattern as having a game '<'. This problem will be
solved in the next version of Gogol using a type of Explanation Based Learning method.

5 Conclusion

| have shown haw to lean many useful tadicd rules on eyes and conredions. This leaning
approach alows to find al the rules contained in a spedfied damain. The tadicd rules
cdculated by the program are rules on eyes and conredions. It provides a goodstarting pant
for Go programmers desiring to write arule-based Go program. The interest of the work is to
alow to find al the rules correspondng to the spedficaions given by the programmer,
preventing hm to enter by hand thousands rules which are necessary to al rule-based
programs, and providing a way not to forget anyone.

My main work now is to adapt Explanation Based Leaning techniques to Go. | will use
databases of problems [Wolf 1994], [MUIE995] to learn from.

Bibliography

[Berlekamp 1983 - E. Berlekamp, JH. Conway, R.K. Guy. Winning Ways. Academic Press
London 1982.

[Bouzy 1993 - Bruno Bouzy. Modélisation cogritive du joueur de Go. These de l'université
Paris 6, 1995.

[Brigmann 1993 - Bernd Briigmann. Monte Carlo Go. On server ftp.bsdserver.ucsf.edu,
1993.

[Conway 1979 - J. Conway, On Numbers and Games, Academic Press Londres/New-Y ork,
1976.

[Enderton 199] - Herbert Enderton. The Golem Go program. Technicd Report Carnegie
Mellon University, 1992.

[Enzenberger 1995 - Markus Enzenberger. Neural networks and Go. Message sent to the
Computer Go mailing list, 30 Jan. 1995.

[Kojima 1994 - Takuya Kojima, Kazuhiro Ueda, Saburo Nagano. A case study on acquisition
and refinement of deductive rules based on EBG in an adiersary game . how to capture
stones in GoProceedings of the Game Programming Workshop in Japan’94, pp. 34-43.

[Miller 1995 - Martin Miller. Computer Go as a Sum of Local Games : An Application o
Combinatorial Game Theory. Thesis og the Swiss Federal Institute of Tedindogy Zirich,
1995.

[Pell 1997 - Barney Pell. Exploratory Learningin the Game of GO. InD.N.L. Levy and D.F.
Bed, editors, Heuristic Programming in Artificial Intelligence 2 - The Second Computer
Olympiad. Ellis Horwood, 1991.

[Pettersen 1994 - Eric Pettersen. The Computer Go Ladder. Page WWW
http://cgl.ucsf.edu/go/ladder.html, 1994.

[Pitrat 1990 - Jaaques Pitrat. Méaconnassance futur de I'intelli gence artificielle. Hermes,
1990.

[Schrauddph 1994 - N. Schrauddph, Temporal Difference Learning d Position Evaluation
in the Game of Go, Neura Information Pocesang Systems 6, Morgan Kaufmann, 1994.
Available by ftp bsdserver.ucsf.edu.

[Stoutamire 1997 - D. Stoutamire, Machine learning, Game Play, and Go. MS thesis, Case
Western Reserve University, 1991.

[Wolf 1994 - T. Wolf, The program GoToods and its computer-generated tsume-go
databaseFirst Game Programming Workshop in Japan, Hakone, Octobre 1994.

ANNEX

The following rules were created using the metarule :

and the goal Make an eye. To save place the format of the rules was a littl e modified in this

listing.

pattern / /

QO@ pattern pattern

@0 @ @@@ @@@

@+ . @0 + @+ @

! . 0@ oO@+

Eye @ Gane ! !

Mve @1 2 Eye @ Gane * Eye @ Gane *
end Mve @2 1 Mve @2 2

/ end end

pattern / /

QO@ pattern pattern

@0 @ @@@ @@@

.+ @ @0 + @+ @

! + @+ . @@

Eye @ Gane * ! !

Mve @1 2 Eye @ Gane Eye @ Gane >
end Mve @2 1 end

/ end /

pattern / pattern
@@@ pattern @@@

@0 @ @@@ @+ @

+ + + @+ @ + @O0

! Q@. !

Eye @ Gane ! Eye @ Gane *
Mve @1 2 Eye @ Gane > Move @0 2
end end end

/ / /

pattern pattern pattern
@@@ @@@ @@@

@O + @+ @ @+ @

'@@. |@+. '+@+

Eye @ Gane * Eye @ Gane Eye @ Gane >
Mve @2 1 Mve @1 2 end

end end /

* * * N * * * * * * *
go go go g mo g g g g g g
mV o mV o m o nnw o @ o @ o m o m c m o m o m o
® 2+®+ ©® +0® ® +0® ® o+0®+ @ o +0® @ s .+® ©® o+++ © T+ + ® s .0® ® 2+®+ ©® o +0®
095 Z@++ 035 Z0+0® 0¥v £0+0® ov Z@®+® o3c t@++ 0225 Z0+0® 02%c Z0+® 02c Z0+0® ovov SZB0® 0ic Z®0® 02v -®0®
85 _3000_ 085 _S3000_085_200+_ 06 m@@+!amm/m@@+!amm/p@@@!amm/m@@@ 085 200+ _ 085 _80+0_085_S0+0_085_ 80+ +_
* * * * * * * * A * A
I S N I T T R - R
c c c c c c c c c c c
0®:s 82 so0e® @° 5 ®® @° s.e. @° 5.0 @@ 5 .e @° 5.is @9 5..0 0% s e® ® 5.0 9 5.0. ® 5 .@®
®+® e%d 20+ ® e%d 200 + e%d 200 + e%d 200 + e%d -B80® ewd -80® ewd -80® ewd Z®+® ov ZO®+® ewd 2®+® owo O+ +
®00_ 085 _ 200+ 085 3000_ 085 _S000_ 085300+ _ 0S5 _3000_ 085 S000_ 085 300+ 085 S000_05_ S000_ 0S5 3000 _ 5. 3000
go go g g g g g g g g g
c 8 = 8 = & = & = & = 8 = 8 = 8 < 8 < 8 < =
000 ® 500+ ®_ 50+ . O 50:0 ® 50++ O F00. ® 000 © 00+ © 500. © 5000 © 500+ ®

CO++ 0%c Z@++ 0ot Z0+0® 0¥8c Z0+0® 02%c Z0+0® 0¥c Z00® 0lv =00 0 v ZB00® 0lv Z@+® ovov Z0+0® 0¥s Z®+0® o32c
300 .25 _300+_ 025 _3000_ 085 200 .05 _200+_0°5_80+0_085_80+ ._085_80++_085_80+0_0865_ 80+ ._ 085 _8®++_DE5_

pattern

Mve @0 1
end
/

pattern
++@
@@@
Eye @ Gane

Mve @0 1
end
/

pattern
@+

++ @

pattern
+
@0 @
+ @+
!
Eye @ Gane

Mve @1 0
end
/

pattern

pattern
@+ @
@+ @

+ @+

|

Eye @ Gane
Mve @1 0
;end

pattern

+ .
@0 @
@@@
Eye @ Gane
Mve @1 0
end
/
pattern

+ +
@0 @
oo

Eye @ Gane
Mve @1 0

end
/

pattern
@+ +
@0 @
r@@
iEye @ Gane
Mve @1 0
end

pattern
@+ .

@+ @
@@@

iEye @ Gane
Mve @1 0
end

pattern
@+ +
@+ @
oo

iEye @ Gane
Move @1 0
end

pattern
@+ +
@+ @
r@@

.o\
QD
®*tex
T2
=}

o< o
°®
%9
o3

®*tex
® 0002
=}

a<ao
)
®
IS
N

SELTT*ROE TS EI M0
%
3

at

—_
)

rn

1-©@0F ~
0*®
® ee*

ye
Mve @

N
o3

()
=}
o

0 Z0-@O+g ™
“al 900
@ E
o3

1,\
QD
[S]elop
® ©+O%
=]

507 r@*
a< o
@
®
N

&
-3

~o
>

- -~
QD
-
P
()
=
=]

0+t

25Ot
a<o

)

Q®

IS)

1,\
QD
(SR
teO%

®
®
3

++Q
® 900

230700 §T3L 00"
5
&") =]
n

azo
)
Q®
=

250-eO*+g ™
2<a ++Q-
‘e +e0°
b 3
NY- |

1,\
QD
(SR
Q@ ©R0%
=]

o< o
(v}
e
o3

250 "0@*

- -~
QD
-
P
=

2T+
oMo ©+©
@ QRO<%
9
3

QD
-
—
=

PZTHE+T TS
Q_é('b ©+®

® *tTOOS%
e

o3

REEUART-ES-
a<ao ++@%
® [}
®© @@@;
29
o3

-
P
=

® 3
*®
e

10

1,\
QD
®*tez
Q ©+0%
S

o< m
(0]
e
N

3350 rer
0z
® 900%
S

o< o
(0]
e
o3

3258 0
0=
@ *ROS%
>

o< m
(0]
e
o3

33500~
Q0=
Q@ 900%
S

o< m
(0]
e
o3

R
®+®5
® 0002
S

o< m
(v]
e
o3

325870+
@+e=
@ *RO%
>

o< m
(v]
e
o3

33500~
Q+ez
® 900%
=

o< o
(v]
e
o3

R
®+05
® ©®02
=

soTeer
=

)

®

IS)

&
od

)
>
o

pattern
+ @+
@O+
Q@@

!

Eye @ Gane
Mve @2 1
end

pattern
+ @+

@+ @
@@@

iEye @ Gane
end

/
pattern
+ @+
@+ @
oo

Eye @ Gane
Move @0 O
end

/

pattern

+ @+

@+ @
e+ @

Eye @ Gane
Mve @1 2
end

/

pattern

+ @+
@+ @
ree
Eye @ Gane
Move @0 O
end

/

pattern

+ @+

@+ +
@@@

Eye @ Gane
Mve @2 1
end

/

pattern

+ @+

+ 0@
@@@

Eye @ Gane
Mve @0 1
end

/

pattern

+ @+

++ @
@@@

Eye @ Gane
Mve @0 1
end
/
pattern

+

@0 @
cee

Eye @ Gane
Mve @1 0
end

/

pattern

+ +
@0 @
06+

Eye @ Gane
Mve @1 0
end
/
pattern
+ +
@0 @
r@@
Eye @ Gane
Move @1 O
end
/
pattern

+ @

@+ @
cee

iEye @ Gane

Mve @1 0
end

/

pattern
++ @
@+ @
Lk

Eye @ Gane
Mve @1 0
end

/

pattern
++ @

@+ @
Cle
Eye @ Gane
Mve @1 0
end

/

pattern

+ + +
@0 @
@@@
Eye @ Gane
Mve @1 0
end

/

pattern

+ + +

@+ @
@@@
Eye @ Gane
Mve @1 0
;end

11

