
Monte-Carlo Hex

Tristan Cazenave1 and Abdallah Saffidine2

1 LAMSADE, Université Paris-Dauphine
Place Maréchal de Lattre de Tassigny, 75775 Paris Cedex 16, France

email: cazenave@lamsade.dauphine.fr
2 Ecole normale supérieure de Lyon

46 allée d’Italie, 69364 Lyon cedex 07, France
email: abdallah.saffidine@ens-lyon.fr

Abstract. We present YOPT a program that plays Hex using Monte-Carlo tree
search. We describe heuristics that improve simulations and tree search. We also
address the combination of Monte-Carlo tree search with virtual connection search.

1 Introduction

Hex is a two-player board game that was invented by Piet Hein in 1942 and reinvented
by Nobel-prize John Nash in 1948. Hex is the most famous connection game. Although
one could definitely view it as a mathematical game, numerous theorems have indeed
involved Hex, this game has succeeded on developing a strong playing community. The
first book dedicated to Hex strategy was released a few years ago [2].

Fig. 1. Game of Hex won by Black

Rules are simple, the board is made of hexagons and is diamond-shaped. Opposing
borders belong to the same player. Figure 1 gives a 6x6 board where the game is won by
Black. Computer championships are held on 11x11 boards. Players take turns putting
pieces of their color on the board. Once set, a piece is never moved nor removed. The

winner is the one player that manages to link his side with a continuous string of his
pieces.

The simplicity of the rules helps proving some theoretical facts. Draws are impossi-
ble, that is every full board contains one and only one winning chain [20]. There exist a
winning strategy for first player at the beginning of the game. The proof of this property
is not constructive and uses John Nash strategy-stealing argument. One can understand
how difficult it may be to construct an efficient Artificial Intelligence playing Hex by
taking a look at the complexity of the associated decision problem: PSPACE-complete
[12, 21].

Two pieces of advice are to be given to the beginner. On the one hand it is far quicker
to cross the board with bridges, using bridges however provides the same resistance to
being cut than the side to side travelling. On the second hand one’s position value is that
of its weakest link, because it is this weak link that the opponent may exploit to make
his way. Finally it seems that a beginner may improve their playing level by trying to
prevent their opponent to connect instead of trying to create their own connection.

1.1 Templates

As soon as a bridge is on the board, the groups it joins can be mentally linked. Remem-
bering this shape makes it unnecessary to calculate that the groups are linked. The shape
idea leads to the wider concept of template. Edge templates link groups to borders and
inner templates link groups together. The Ziggurat is such an edge template 2.

Fig. 2. The Ziggurat template links the White piece to the side.

The easiest way to show that a template truly links its groups is to make the con-
nection threats explicit. To each of these threat is associated its carrier which is the set
of locations whom owner may influence the outcome of the threat. Therefore to prevent
the connection, the opponent needs to play one of the carrier locations. If there are many
threats then the opponent has to play in the intersection of the carriers to prevent the
template connection. If the intersection is the empty set, the template is proved valid.
Or else it is still possible to try the few remaining moves, and study the case for each
of them (see figure 5). A bridge connected to the side is a level two template since the
distance to the side is two. The Ziggurat is a level three template that can be deduced
from bridges based connection threats. Higher level templates also exist. Figure 3 gives
a level four template. It can be deduced from bridges and Ziggurats (see figure 4).

Fig. 3. The distance four template

Fig. 4. Two White threats and their carriers.

Fig. 5. Analysis of a Black response in the remaining cell.

1.2 Hex Programs

Surprisingly enough the evaluation function that lead to the best playing level up to now
dates back to 1953 [1], it makes an analogy between the board and an electric circuit
and then measure the electric resistance between opposite borders. Programs such as
SIX, use a method of virtual connections in a way similar to that of V. Anshelevich.

When building our program YOPT, we chose to test a completely different method
that uses Monte-Carlo simulations. Back in 2000 when we first tried Monte-Carlo meth-
ods with Hex, we did not use tree search and V. Anselevich virtual connections used to
achieve better results. Recently however, the interest for Monte-Carlo methods for Hex
raised with the success of methods developing trees along with Monte-Carlo simula-
tions in the game of Go [10, 19, 13, 15]. Rémi Coulom, Lille 3 University, or Philip
Henderson, Alberta University, among other researchers of this field have shown such
an interest. As a consequence we developed a Monte-Carlo search program for Hex.

The following is organized as such: second section deals with Monte-Carlo tree
search, third section presents its application to Hex, fourth section reveals experimental
results

2 Monte-Carlo tree search

Recent improvements of Monte-Carlo methods applied to board games will be dis-
cussed in this section. We will particularly concentrate over UCT (Upper Confidence
bounds for Trees) and RAVE (Rapid Action Value Estimation) algorithms.

2.1 Simulations

Numerous random simulations are required when applying Monte-Carlo methods to
board games. A random simulation is random played game. Knowledge can be added
to improve the reliability of the simulations. The random choices of move are biased
towards good moves [10, 13, 4]. However, using knowledge during simulations does not
always lead to an improvement of the playing strength. In our Go program, it happened
indeed that while a knowledge-based pseudo-random player A usually played better
than a random player B, once incorporated to the Monte-Carlo algorithm, the results
were different. The Monte-Carlo player using simulations of player A was far worse a
player than the Monte-Carlo player using player B. Using carefully chosen knowledge
clearly improves the Monte-Carlo algorithm; some knowledge may look interesting at
first sight, but happen to be counter productive.

In Hex, the knowledge used in random simulations is to always answer to moves
that try to disconnect a bridge.

More elaborate knowledge such as inferior moves of the 4-3-2 edge template [17]
could also be used to bias simulations.

We can detect the Ziggurat during simulations so as to always connect it. When the
position of figure 6 occurs in a game, the simulation player will always win the game
as Black if it uses the bridges and the Zigurrat.

Fig. 6. A Hex game won by Black

2.2 Tree search

The UCT (Upper Confidence bounds for Trees) algorithm [19] consists in creating a
tree whose root is the position to evaluate. Each branch is associated to a move and each
node is associated to a position. For each node then number s of simulations that went
through this node is registered altogether with the sum of the score of these simulations.
Hence the average score µ of each node is available. It possible to associate a UCT value
to each node using the formula:

µ+ C ×
√

log(parent→s)
s

At the beginning of each random simulation, the algorithm UCT chooses to develop
the moves that lead to the node which has the highest UCT value . TheC constant allows
to tune the exploration policy of the algorithm. The higher C is, the more the algorithm
is likely to try moves with a relatively bad mean score.

In the RAVE (Rapid Action Value Estimation) algorithm [15], each node of the
UCT tree is given a RAVE-value. The RAVE-value of a node n is the average score of
the simulations in which the move associated to n has been played.

The heuristic that evaluates the mean of the simulations in which a move has been
played whenever in the simulation, was already used in the first Monte-Carlo Go pro-
gram GOBBLE [3]. It is usually named AMAF (All Moves As First). Sylvain Gelly
improvement is to calculate AMAF at each node of the UCT tree and to combine effi-
ciently UCT and AMAF values. Indeed when only a few simulations have been done
for a node, the average score cannot estimate precisely the position’s value, whereas
the AMAF value for the associated move is calculated over a much higher number of
simulations and therefore has a lower variance.

A bias is used to combine AMAF and UCT values. If rc is the number of games
where the move was played, rw the number of games where it was played and the game
was won (rwrc is then the AMAF value of the node), c the number of games of the node
and m the mean value of this games, a coefficient coef is calculated:

coef = 1.0− rc
rc+c+rc∗c∗bias

The value of a move is then given by the formula:

val = m× coef + (1.0− coef)× rw
rc

RAVE uses this formula to choose which move should be explored during the de-
scent of the tree before each simulation.

Monte-Carlo tree search gave very good results in the game of Go. The current best
Go programs such as MOGO [13, 15] and CRAZY STONE [10, 11] use Monte-Carlo tree
search.

2.3 Combining Monte-Carlo Tree Search with a solver

At Hex it is important to detect virtual connections. We reimplemented Anshelevich
algorithm [1]. The obvious way to combine with Monte-Carlo tree search is to call the
virtual connection algorithm before the Monte-Carlo search in order to detect winning
moves. A more elaborate combination is to use the mustplay regions [16] found by
the solver in order to reduce the possible moves of the Monte-Carlo search. Analyzing
virtual connections could be used at each node of the Monte-Carlo search. However,
analyzing a position using virtual connections takes a non negligible time, so we only
analyze nodes that have a sufficient number of simulations.

Combining exact values of solved position with Monte-Carlo tree search has been
addressed by M. Winands et al. [22] and we reused their algorithm for the combination.

Combining the results of tactical search and Monte-Carlo search has already been
successfully used for connections in the game of Go [5].

3 Experimental results

In order to test the different algorithms we have proposed we make them play against
each other. Each match consists in 200 11x11 games, 100 with White and 100 with
Black.

We first tested if giving the program more simulations improves it. The reference
programs plays 16,000 simulations. Results are given in table 1. Clearly the level in-
creases with the number of simulations.

The next experiment consists in finding the best constant for UCT. Using RAVE in
Hex clearly improves on the UCT algorithm [8]. We see in table 2 that when RAVE is
used the best UCT constant becomes 0 (the reference program in this experiment uses
a 0.3 UCT constant).

In order to find if the use of templates was beneficial we tested the program with a
fixed number of simulations and different templates use during the simulations:

Simulations 1000 2000 4000 8000 32000 64000
Percentage of wins 6% 11.5% 20% 33% 61% 68.5%

Table 1. Increasing the number of simulation improves the level.

Constant 0 0.1 0.2 0.4 0.5 0.6 0.7
Percentage of wins 61% 60% 55.5% 42% 41% 35.5% 32.5%

Table 2. Variation of the UCT constant.

– type1: completely random
– type2: only bridges
– type3: bridges and level 2 templates
– type4: bridges, level 2 templates and Ziggurats.

Results against type 3 are in table 3. However the time to match the Ziggurat makes
the sequential algorithm slower and experiments with a fixed time per move resulted in
a low winning percentage (32 %). Checking for Ziggurats during simulations could still
be interesting using a parallel Monte-Carlo tree search algorithm [6, 14, 7, 9, 18] since
parallel algorithms make simulations cost-less.

Templates type1 type2 type4
Percentage of wins 22% 42% 71.5%

Table 3. Using templates during simulations

Table 4 makes the program with a RAVE bias of 0.001 play against programs with
different biases. The best bias we found is 0.00025.

The next experiment consists in evaluating the combination with a solver. Both pro-
grams use bridges and level two templates during simulations. Virtual connection search
is computed and used to prune nodes after 1,000 simulations. The program using virtual
connections wins 69.5% of its games against the program not using virtual connections.

4 Conclusion

We have presented YOPT, a Monte-Carlo Hex playing program. Monte-Carlo tree search
and the RAVE algorithm give good results at Hex. Moreover the combination of virtual
connection search with Monte-Carlo search gives even better results.

In future work, we will work on a tighter integration of both paradigms as well as
on the improvement of the simulations.

bias 0.0005 0.00025 0.000125
Percentage of wins 50.5% 59% 53.5%

Table 4. RAVE bias

5 Acknowledgement

We thank Philip Henderson, Rémi Coulom and Ryan Hayward for interesting discus-
sion about Monte-Carlo Hex.

References

1. Vadim V. Anshelevich. A hierarchical approach to computer hex. Artificial Intelligence,
134(1-2):101–120, 2002.

2. Cameron Browne. Hex Strategy. Making the Right Connections. A K PETERS, 2000.
3. B. Bruegmann. Monte Carlo Go. Technical Report, http://citeseer.ist.psu.edu/637134.html,

1993.
4. T. Cazenave. Playing the right atari. ICGA Journal, 30(1):35–42, March 2007.
5. T. Cazenave and B. Helmstetter. Combining tactical search and Monte-Carlo in the game of

go. In CIG’05, pages 171–175, Colchester, UK, 2005.
6. T. Cazenave and N. Jouandeau. On the parallelization of UCT. In Computer Games Work-

shop 2007, pages 93–101, Amsterdam, The Netherlands, June 2007.
7. T. Cazenave and N. Jouandeau. A parallel monte-carlo tree search algorithm. In Computers

and Games, LNCS, pages 72–80, Beijing, China, 2008. Springer.
8. T. Cazenave and A. Saffidine. Utilisation de la recherche arborescente Monte-Carlo au Hex.

Revue d’Intelligence Artificielle, 29(2), 2009.
9. Guillaume Chaslot, Mark H. M. Winands, and H. Jaap van den Herik. Parallel monte-carlo

tree search. In Computers and Games, volume 5131 of Lecture Notes in Computer Science,
pages 60–71. Springer, 2008.

10. R. Coulom. Efficient selectivity and back-up operators in monte-carlo tree search. In Com-
puters and Games 2006, Volume 4630 of LNCS, pages 72–83, Torino, Italy, 2006. Springer.

11. R. Coulom. Computing elo ratings of move patterns in the game of go. ICGA Journal, 31(1),
March 2008.

12. S. Even and R. E. Tarjan. A combinatorial problem which is complete in polynomial space.
Journal of the Association for Computing Machinery, 23, October 1976.

13. S. Gelly, Y. Wang, R. Munos, and O. Teytaud. Modification of UCT with patterns in monte-
carlo go. Technical Report 6062, INRIA, 2006.

14. Sylvain Gelly, Jean-Baptiste Hoock, Arpad Rimmel, Olivier Teytaud, and Yann Kalemkar-
ian. The parallelization of monte-carlo planning. In ICINCO, 2008.

15. Sylvain Gelly and David Silver. Combining online and offline knowledge in UCT. In ICML,
pages 273–280, 2007.

16. R. Hayward. A puzzling hex primer. In Games of No Chance 3, volume 56 of MSRI Publi-
cations, pages 151–161, 2009.

17. P. Henderson and R. Hayward. Probing the 4-3-2 edge template in hex. In H.J. van den
Herik et al., editor, CG 2008, volume 5131 of LNCS, pages 229–240, Beijing, China, 2008.
Springer-Verlag.

18. H. Kato and I. Takeuchi. Parallel monte-carlo tree search with simulation servers. In 13th
Game Programming Workshop (GPW-08), November 2008.

19. L. Kocsis and C. Szepesvàri. Bandit based monte-carlo planning. In ECML, volume 4212 of
Lecture Notes in Computer Science, pages 282–293. Springer, 2006.

20. T. Maarup. Hex everything you always wanted to know about hex but were afraid to ask.
Master’s thesis, University of Southern Denmark, 2005.

21. Stefan Reisch. Hex ist pspace-vollständig. Acta Inf., 15:167–191, 1981.
22. Mark H. M. Winands, Yngvi Björnsson, and Jahn-Takeshi Saito. Monte-carlo tree search

solver. In Computers and Games, volume 5131 of LNCS, pages 25–36. Springer, 2008.

