
Iterative Widening

Tristan Cazenave1

Abstract. We propose a method to graduall y expand the moves to consider at
the nodes of game search trees. The algorithm begins with an iterative deep-
ening search using the minimal set of moves, and if the search does not suc-
ceed, iteratively widens the set of possible moves, performing a complete it-
erative deepening search after each widening. When designing carefull y the
different sets of possible moves, the algorithm can save some time in the
game of Go tree search, as shown by experimental results.

Key words: Computer Go, Search.

1 Introduction

We propose a method to gradually expand the moves to consider at the nodes of
game search trees. The algorithm begins with an iterative deepening search using
the minimal set of moves, and if the search does not succeed, iteratively widens the
set of possible moves, performing a complete iterative deepening search after each
widening. When designing carefull y the different sets of possible moves, the algo-
rithm can save some time in the game of Go tree search, as shown by experimental
results.

The second section describes the search algorithm and compares it with related
existing algorithms. The third section gives hints on how to define and combine the
gradually expanding sets of moves and defines some of these sets for the capture
game in the game of Go. The fourth section detail s experimental results and under-
lines future work.

1 Laboratoire d'Intelli gence Artificielle, Département Informatique, Université Paris 8, 2

rue de la Liberté, 93526 Saint Denis, France. e-mail: cazenave@ai.univ-paris8.fr tel: 33 1 49
40 64 04 fax: 33 1 49 40 64 00

2 The search algorithm

We use Abstract Proof Search [Cazenave 2000] to develop AND/OR proof trees
for the game of Go. This is an iterative deepening Null Window Search [Marsland
& Björnsson 2000], that uses some game specific functions to eff iciently prove
theorems about goals in games.

We define sets of abstract possible moves, that can be tried at the node of the
search tree at a given widening threshold. Sets are numbered, the following set al-
ways contains the previous set. Our algorithm uses the sets of moves in their number
order.

For example, if the sets of possible moves to be tried at different widening
threshold are the sets S1, S2,…,Sn. We have S1⊂S2⊂…⊂Sn. The algorithm begins
with an Abstract Proof Search, trying the moves in the set S1. If this search fail s, it
then makes another search with the S2 set. And so on until all the possible searches
have failed, or the allotted time is elapsed.

For each goal to compute, two searches have to be performed. The first one with
White playing first and the second one with Black playing first. However, when the
goal can be reached by one player and prevented by the other, depending on who
plays first, it is also very important to know all the moves that reach (i.e. prevent)
the goal. It is more eff icient to begin with a simple search that stops as soon as the
goal is reached or prevented, and then to check if the goal can still be reached or
prevented even if the opponent plays first. If so, it is useless to find all the working
moves, as there is no need to play them because the goal is reached/prevented even
if they are not played. On the contrary, if reaching the goal depends on who plays
first, it is necessary to know all the working moves. In this case only, the same
search is performed again, except that it is not stopped after the first working move,
it continues until a predefined threshold .

First call the search algorithm with the first move function that sends back the
moves of the first set. If the search does not succeed, continue with the following
sets until the search succeeds or the time threshold is finished, or the search fail s
with the ultimate set.

In our experiments, the search are performed looking for all the working moves.
So at the root, all the possibly interesting moves are tried, whatever the widening
threshold is.

When a search fail s at a given widening threshold, the transposition table is re-
initiali zed and a new search is performed with the next set if possible. This can be
improved by reusing the same transposition table for all the searches.

After having designed the method, we found that it has links with Iterative
Broadening [Ginsberg & Harvey 1992]. This method is successful in constraint
satisfaction search [Meseguer & Walsh 1998]. However, Iterative broadening is not
the same algorithm as ours because it sets an artificial breadth cutoff c, and back-
tracks at most c times at any node of the tree. It iteratively increases c, and informa-
tion can be memorized for the next iteration. Experiments by Ginsberg and Harvey
in applying Iterative Broadening to Chess gave disappointing results because the
move ordering of current Chess program is already near the optimum.

3 Designing the gradual sets of moves

It is quite important to carefully choose the sets of moves. The first set is better if
it contains the moves that have high chances to reach the goal. Typically, the last set
contains all the moves worth trying. We have separated the sets for the OR nodes
and the AND nodes of the tree, as they have completely different properties.

We have defined two sets of moves at OR nodes: OR1 is constituted by the liber-
ties of the string to capture only. OR2 is constituted by all the moves worth trying,
including the liberties of the string to capture, the liberties of the liberties of the
string to capture and, the liberties of the strings adjacent to the string to capture that
have less liberties than it.

Similarly, we have defined two sets of moves at AND nodes : AND1 is consti-
tuted by the ip1 and ip2 moves, AND2 is constituted by the ip1, ip2 and ip3 moves.
the ipn moves are the moves that prevent a string to be captured in n moves by the
opponent. For example, the ip1 moves are the moves that may prevent a string in
atari to be captured in one move (i. e. playing the liberty, or capturing an adjacent
string).

There are different orders in which the widening can be performed. Here are the
one we have tested:

- OR2-2AND2-2: This is the original non-widening, iterative deepening Null
Window Search algorithm. The OR2 set of moves is used at OR nodes, and
the AND2 set of moves is used at AND nodes.

- OR1-2AND2-2: The algorithm begins with the OR1 and AND2 sets of
moves, and if the search fails, it searches again with the OR2 and AND2 sets
of moves.

- OR2-2AND1-2: The algorithm begins with the OR2 and AND1 sets of
moves, and if the search fails, it searches again with the OR2 and AND2 sets
of moves.

- AND1-2OR1-2: The algorithm begins with the OR1 and AND1 sets of
moves, and if the search fails, it searches again with the OR1 and AND2 sets
of moves. If the search fails again, it searches again with the OR2 and AND2
sets of moves.

- OR1-2AND1-2: The algorithm begins with the OR1 and AND1 sets of
moves, and if the search fails, it searches again with the OR2 and AND1 sets
of moves. If the search fails again, it searches again with the OR2 and AND2
sets of moves.

- ORAND1-2: The algorithm begins with the OR1 and AND1 sets of moves,
and if the search fails, it searches again with the OR2 and AND2 sets of
moves.

- OR1-2ANDOR1-2: The algorithm begins with the OR1 and AND1 sets of
moves, and if the search fails, it searches again with the OR2 and AND1 sets
of moves. If the search fails again, it searches again with the OR1 and AND2
sets of moves. If the search fails again, it eventually searches with the OR2
and AND2 sets of moves.

- ORAND1-2AND1-2: The algorithm begins with the OR1 and AND1 sets of
moves, and if the search fails, it searches again with the OR1 and AND2 sets
of moves. If the search fails again, it searches again with the OR2 and AND1
sets of moves. If the search fails again, it eventually searches with the OR2
and AND2 sets of moves.

4 Experimental results and future work

This section gives experimental results on a standard test set for capturing strings in
Go: we call them ggv1 [Kano 1985a], ggv2 [Kano 1985b] and ggv3 [Kano 1987].
We have selected all the problems involving a capture of a string, including semeai
and some connection problems. There are 114 capture problems in ggv1, 144 in
ggv2 and 75 in ggv3. Experiments were performed on a Pentium 266 MHz micro-
processor.

Algorithm Total time Number of nodes % of problems
OR2-2AND2-2 18.15 4809 99.12%
OR1-2AND2-2 17.67 2667 99.12%
OR2-2AND1-2 12.81 4291 99.12%
AND1-2OR1-2 12.26 2576 99.12%
OR1-2AND1-2 12.38 3044 99.12%
ORAND1-2 12.11 2730 99.12%
OR1-2ANDOR1-2 12.31 2913 99.12%
ORAND1-2AND1-2 12.13 2587 99.12%

Table 1. Results for ggv1

Algorithm Total time Number of nodes % of problems
OR2-2AND2-2 62.96 30182 86.81%
OR1-2AND2-2 47.99 19096 86.11%
OR2-2AND1-2 32.62 28008 86.81%
AND1-2OR1-2 39.74 19721 86.11%
OR1-2AND1-2 37.15 24244 87.50%
ORAND1-2 39.57 19566 87.50%
OR1-2ANDOR1-2 35.99 23450 87.50%
ORAND1-2AND1-2 45.85 19544 85.42%

Table 2. Results for ggv2

Algorithm Total time Number of nodes % of problems
OR2-2AND2-2 41.43 21226 78.67%
OR1-2AND2-2 30.03 15526 77.33%
OR2-2AND1-2 23.70 22647 81.33%
AND1-2OR1-2 23.78 15073 77.33%
OR1-2AND1-2 20.68 16281 81.33%
ORAND1-2 25.11 13206 78.67%
OR1-2ANDOR1-2 21.85 18106 80.00%
ORAND1-2AND1-2 32.74 13844 74.67%

Table 3. Results for ggv3

Every combination of widening sets gives speed-ups compared to the original al-
gorithm. However, some combinations also decrease the percentage of solved prob-
lems. Luckily, some combinations both decrease the time to solve problems and
increase the percentage of solved problems. In particular, OR1-2AND1-2 seems to
be the combination of choice. It does not only reduce significantly the computation
time, it also solves more problem than the original non iterative widening algorithm
(OR2-2AND2-2).

In the original non iterative widening algorithm, the liberties of the string are
tried first, and the order of the moves at each node is the same as in the iterative
widening algorithm, therefore the observed speed-ups are due to the iterative wid-
ening, not to another factor such as move ordering.

In these experiments, the transposition table is completely initialized before each
widening. It would me more clever, to keep the same transposition table, and to put
a flag on the transpositions, memorizing the widening step of the transposed board.
Therefore reusing the information from the previous and less wide search in order to
save computation time.

5 Conclusion

Gradually widening the sets of moves in the game of Go search trees enables to
reduce the search time when performing an iterative deepening Null Window
Search. It also appears that some more problems can be solved by using this tech-
nique. However, one has to be careful when choosing the widening sets, only some
combinations of them give good results. Results could be even better by reusing
transposition table information from the previous and less wide search.

6 References

Cazenave T.: Abstract Proof Search. Submitted. 2000.

Ginsberg M. L., Harvey W. D. : Iterative Broadening. Artificial Intelli gence 55 (2-3), pp.
367-383. 1992.

Kano Y.: Graded Go Problems For Beginners. Volume One. The Nihon Ki-in. ISBN 4-8182-
0228-2 C2376. 1985.

Kano Y.: Graded Go Problems For Beginners. Volume Two. The Nihon Ki-in. ISBN 4-
906574-47-5. 1985.

Kano Y.: Graded Go Problems For Beginners. Volume Three. The Nihon Ki-in. ISBN 4-
8182-0230-4. 1987.

Marsland T. A., Björnsson Y.: From Minimax to Manhattan. Games in AI Research, pp. 5-
17. Edited by H.J. van den Herik and H. Iida, Universiteit Maastricht. ISBN 90-621-6416-
1. 2000.

Meseguer P., Walsh T. : Interleaved and Discrepancy Based Search. Proceedings ECAI98
(ed. H. Prade). John Wiley & Sons Ltd., Chichester, England. ISBN 0-471-98431-0. 1998.

