Score Bounded Monte-Carlo Tree Search

Tristan Cazenave and Abdallah Saffidine

LAMSADE
Université Paris-Dauphine
Paris, France
cazenave@ ansade. dauphi ne. fr
Abdal | ah. Saf fi di ne@nuil . com

Abstract. Monte-Carlo Tree Search (MCTS) is a successful algorithm used in
many state of the art game engines. We propose to improve a MCTS wdigar

a game has more than two outcomes. It is for example the case in gameartha
end in draw positions. In this case it improves significantly a MCTS solver to
take into account bounds on the possible scores of a node in order ¢btbele
nodes to explore. We apply our algorithm to solving Seki in the game of @o an
to Connect Four.

1 Introduction

Monte-Carlo Tree Search algorithms have been very suadhsapplied to the game
of Go [7, 11]. They have also been used in state of the art progifor General Game
Playing [9], for games with incomplete information such d&aftom Go [3], or for
puzzles [4,17,5].

MCTS has also been used with an evaluation function instéeahdom playouts,
in games such as Amazons [15] and Lines of Action [18].

In Lines of Action, MCTS has been successfully combined withct results in a
MCTS solver [19]. We propose to further extend this combamato games that have
more than two outcomes. Example of such a game is playing idrstle game of Go:
the game can be either lost, won or draw (i.e. Seki). ImpgpWICTS for Seki and
Semeai is important for Monte-Carlo Go since this is one efrtiain weaknesses of
current Monte-Carlo Go programs. We also address the apiplicof our algorithm to
Connect Four that can also end in a draw.

The second section deals with the state of the art in MCTSesdlve third section
details our algorithm that takes bounds into account in a B&dlver, the fourth section
explains why Seki and Semeai are difficult for Monte-Carlo @ograms, the fifth
section gives experimental results.

2 Monte-Carlo tree search solver

As the name suggests, MCTS builds a game tree in which eaahis@$sociated to
a player, eitheMax or Min, and accordingly to value®,,.. and@,..,. As the tree
grows and more information is availablg,,, ., and@,,;,, are updated. The node value

function is usually based on a combination of the mean of Mdurlo playouts that
went through the node [7, 13], and various heuristics sudkllanoves as first [10], or
move urgencies [8, 6]. It can also involve an evaluation fiamcas in [15, 18].

Monte-Carlo Tree Search is composed of four steps. Firgstends a tree choos-
ing at each node the child ofn maximizing the value for the player in. When it
reaches a nodes with that has unexplored children, it adésvdeaf to the tree. Then
the corresponding position is scored through the resulhadvaluation function or a
random playout. The score is backpropagated to the nodesdlwe been traversed
during the descent of the tree.

MCTS is able to converge to the optimal play given infinitedirhowever it is not
able to prove the value of a position if it is not associated solver. MCTS is not good
at finding narrow lines of tactical play. The association teofver enables MCTS to
alleviate this weakness and to find some of them.

Combining exact values with MCTS has been addressed by \Wnetnal. in their
MCTS solver [19]. Two special values can be assigned to nodes and—oco. When a
node is associated to a solved position (for example a tadrposition) it is associated
to +oo for a won position and te-oco for a lost position. When a max node has a won
child, the node is solved and the node value is set¢o. When a max node has all
its children equal to-oo it is lost and set to-oco. The descent of the tree is stopped
as soon as a solved node is reached, in this case no simulalies place and 1.0 is
backpropagated for won positions, whereas -1.0 is backgated for lost ones.

Combining such a solver to MCTS improved a Lines Of Action A)rogram,
winning 65% of the time against the MCTS version without assplWinands et al. did
not try to prove draws since draws are exceptional in LOA.

3 Integration of scoreboundsin MCTS

We assume the outcomes of the game belong to an intenéalscore, maxscore] of
R, the playeMaxis trying to maximize the outcome while the playéin is trying to
minimize the outcome.

In the following we are supposing that the tree is a minimag tit can be a partial
tree of a sequential perfect information deterministicozamm game in which each
node is either anax-nodewhen the playeMax is to play in the associated position
or amin-nodeotherwise. Note that we do not require the child ohax-nodeto be a
min-node so a step-based approach to MCTS (for instance in Arimga i gossible.
It can also be a partial tree of a perfect information deteistic one player puzzle. In
this latter case, each node is a max-nodeMad is the only player considered.

We assume that there are legal moves in a game position if @gdfdhe game
position is non terminal. Nodes corresponding to termireahg positions are called
terminal nodesOther nodes are calledternal nodes

Our algorithm adds score bounds to nodes in the MCTS treeel$ slight modi-
fications of the backpropagation and descent steps. We @éfistedthe bounds that we
consider and express a few desired properties. Then we sbavibbunds can be ini-
tially set and then incrementally adapted as the availatfteration grows. We then

show how such knowledge can be used to safely prune nodesiatrdess and how the
bounds can be used to heuristically bias the descent ofdbe tr

3.1 Pessimistic and optimistic bounds

For each node:, we attach a pessimistic (noteess(n)) and an optimistic (noted
opti(n)) bound ton. Note that optimistic and pessimistic bounds in the contéxt
game tree search were first introduced by Hans Berliner iBhialgorithm [2]. The
names of the bounds are defined afaxs point of view, for instance in both max-
and min-nodes, the pessimistic bound is a lower bound of ésedchievable outcome
for Max (assuming rational play frorlin). For a fixed node:, the boundpess(n) is
increasing (resppti(n) is decreasing) as more and more information is availablis. Th
evolution is such that no false assumption is made on thecépen ofrn : the outcome
of optimal play from node: on, notedreal(n), is always betweepess(n) andopti(n).
That ispess(n) < real(n) < opti(n). If there is enough time allocated to informa-
tion discovering inn, pess(n) andopti(n) will converge towardseal(n). A position
corresponding to a nodeis solved if and only ifpess(n) = real(n) = opti(n).

If the noden is terminal then the pessimistic and the optimistic vali@saspond to
the score of the terminal positigress(n) = opti(n) = score(n). Initial bounds for in-
ternal nodes can either be set to the lowest and highestssaesgn) = minscore and
opti(n) = maxscore, or to some values given by an appropriate admissible h&uris
[12]. At a given time, the optimistic value of an internal ®od the best possible out-
come thaMax can hope for, taking into account the information presethéntree and
assuming rational play for both player. Conversely the ipgistic value of an internal
node is the worst possible outcome t&x can fear, with the same hypothesis. There-
fore it is sensible to update bounds of internal nodes indleviing way.

If nis an internal max-node then If n is an internal min-node then
pess(n) ‘= IMaXgs¢cchildren(n) peSS(S) pess(n) = IninsEchildren(n) peSS(S)
Optl(n) ‘= INaXgscchildren(n) Optl(s) Optl(n) = minsechildrcn(n) Optl(s)

3.2 Updatingthetree

Knowledge about bounds appears at terminal nodes, for gsmistic and optimistic
values of a terminal node match its real value. This knowdgdghen recursively up-
wards propagated as long as it adds information to some kusiieg a fast incremental
algorithm enables not to slow down the MCTS procedure.

Let s be a recently updated node whose parent is a max-nollepess(s) has just
been increased, then we might want to incregase(n) as well. It happens when the
new pessimistic bound far is greater than the pessimistic bound for pess(n) :=
max(pess(n), pess(s)). If opti(s) has just been decreased, then we might want to de-
creasepti(n) as well. It happens when the old optimistic bound favas the greatest
among the optimistic bounds of all childrenfopti(n) := maxcchiidren(n) OPti(s).
The converse update process takes place whgthe child of a min-node.

Whenn is not fully expanded, that is when some childremdfave not been created
yet, a dummy childi such thapess(d) = minscore andopti(d) = maxscore can be
added ton to be able to compute conservative boundsrfatespite bounds for some
children being unavailable.

Algorithm 1 Pseudo-code for propagating pessimistic bounds

procedur e prop-pess
argumentsnodes
if s is not the root nodéhen
Letn be the parent of
Letold_pess := pess(n)
if old_pess < pess(s) then
if n is aMaxnodethen
pess(n) := pess(s)
prop-pessg)
else
pess(n) = mins’EChildren(n) pess(s’)
if old_pess > pess(n) then
prop-pesst)
end if
end if
end if
end if

Algorithm 2 Pseudo-code for propagating optimistic bounds

procedure prop-opti
arguments nodes
if s is not the root nodéhen
Letn be the parent of
Letold_opti := opti(n)
if old_opti > opti(s) then
if n is aMaxnodethen
opti(n) := max cchildren(n) OPti(s’)
if old_opti > opti(n) then
prop-optif)
end if
ese
opti(n) := opti(s)
prop-optig)
end if
end if
end if

3.3 Pruning nodeswith alpha-beta style cuts

Once pessimistic and optimistic bounds are available, foissible to prune subtrees
using simple rules. Given a max-node (resp. min-neda)d a childs of n, the subtree
starting ats can safely be pruned ifpti(s) < pess(n) (resp.pess(s) > opti(n)).

To prove that the rules are safe, let's suppose an unsolved max-node ands a
child of n such thabpti(s) < pess(n). We want to prove it is not useful to explore the
child s. On the one handy has at least one child left unpruned. That is, there is at leas
a child ofn, s*, such thabpti(s’) > pess(n). This comes directly from the fact that
asn is unsolvedopti(n) > pess(n), or equivalentlymax,+ ccniiaren(n) OPti(sT) >
pess(n). s is not solved. On the other hand, let us show that there exideast one
other child ofn better worth choosing than By definition of the pessimistic bound
of n, there is at least a child of, s’, such thatpess(s’) = pess(n). The optimistic
outcome ins is smaller than the pessimistic outcomesin: real(s) < opti(s) <
pess(s’) < real(s’). Now eithers # s’ ands’ can be explored instead efvith no loss,
or s = s’ ands is solved and does not need to be explored any further, iratter case
sT could be explored instead ef

An example of a cut node is given in Figure 1. In this figure,nfin-noded has a
solved child (f) with a 0.5 score, therefore the b&sax can hope for this node is 0.5.
Nodea has also a solved child)that scores 0.5. This makes natlaseless to explore
since it cannot improve upan

e f
pess = 0.0 pess = 0.5
opti = 1.0 opti = 0.5

Fig. 1. Example of a cut. Thd node is cut because its optimistic value is smaller or equal to the
pessimistic value of its father.

3.4 Boundsbased nodevaluebias

The pessimistic and optimistic bounds of nodes can alsodtesnfluence the choice
among uncut children in a complementary heuristic mannea.rhax-node:, the cho-
sen node is the one maximizing a value functign,...

In the following example, we assume the outcomes to be reads [, 1] and for
sake of simplicity th&) function is assumed to be the mean of random playouts. Figure
2 shows an artificial tree with given bounds and given resafifglonte-Carlo evalua-
tions. The node has two childrerd andc. Random simulations seem to indicate that
the position corresponding to nodas less favorable tdlax than the position corre-
sponding tah. However the lower and upper bounds of the outcomeandb seem to
mitigate this estimation.

©n=0.58
n = 500
pess = 0.5
opti = 1.0

Fig. 2. Artificial tree in which the bounds could be useful to guide the selection.

This example intuitively shows that taking bounds into astacould improve the
node selection process. It is possible to add bound induesdd the node values of a
sons of n by setting two bias terms andd, and rather using adaptéyl node values
defined aSleax(S) = Qmam(s) + 'ypess(s) + §Opti(8) andlem(S) = Qrmn(s) -
~v opti(s) — d pess(s).

4 Why Seki and Semeai are hard for MCTS

The figure 3 shows two Semeai. The first one is unsettled, tteplatyer wins. In this
position, random playouts give a probability of 0.5 for Bd@o win the Semeai if he
plays the first move of the playout. However if Black playsfpetly he always wins the
Semeai.

The second Semeai of figure 3 is won for Black even if White pfagt The prob-
ability for White to win the Semeai in a random game startinthvei White move is
0.45. The true value with perfect play should be 0.0.

We have written a dynamic programming program to computexiaet probabili-
ties of winning the Semeai for Black if he plays first. A probigpp of playing in the

Fig. 3. An unsettled Semeai and Semeai lost for White.

Semeai is used to model what would happen on a 19x19 boarewieSemeai is only
a part of the board. In this case playing moves outside of émeeai during the playout
has to be modeled.

The table 1 gives the probabilities of winning the SemeaBiaick if he plays first
according to the number of liberties of Black (the rows) amelnumber of liberties of
White (the column). The table was computed with the dynamagg@amming algorithm
and with a probabilityp = 0.0 of playing outside the Semeai. We can now confirm,
looking at row 9, column 9 that the probability for Black tondihe first Semeai of
figure 3is 0.50.

Own liberties Opponent liberties
1 2 3 4 5 6 7 8 9

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1.00 0.50 0.30 0.20 0.14 0.11 0.08 0.07 0.05
1.00 0.70 0.50 0.37 0.29 0.23 0.18 0.15 0.13
1.00 0.80 0.63 0.50 0.40 0.33 0.28 0.24 0.20
1.00 0.86 0.71 0.60 0.50 0.42 0.36 0.31 0.27
1.00 0.89 0.77 0.67 0.58 0.50 0.44 0.38 0.34
1.00 0.92 0.82 0.72 0.64 0.56 0.50 0.45 0.40
1.00 0.93 0.85 0.76 0.69 0.62 0.55 0.50 0.45
1.00 0.95 0.87 0.80 0.73 0.66 0.60 0.55 0.50

O©oO~NOOOD WNPE

Table 1. Proportion of wins for random play on the liberties when always playingérSthmeai

In this table, when the strings have six liberties or more Milues for lost positions
are close to the values for won positions, so MCTS is not walled by the mean of
the playouts.

5 Experimental Results

In order to apply the score bounded MCTS algorithm, we haese&h games that can
often finish as draws. Such two games are playing a Seki inghe@f Go and Connect
Four. The first subsection details the application to Sékisiecond subsection is about
Connect Four.

5.1 Seki problems

We have tested Monte-Carlo with bounds on Seki problem&sghere are three possi-
ble exact values for a Seki: Won, Lost or Draw. Monte-Carlthvaiounds can only cut
nodes when there are exact values, and if the values are amyat Lost the nodes
are directly cut without any need for bounds.

Solving Seki problems has been addressed in [16]. We use siopde and easy
to define problems than in [16]. Our aim is to show that Monggl€with bounds can
improve on Monte-Carlo without bounds as used in [19].

We used Seki problems with liberties for the players randingh one to six lib-
erties. The number of shared liberties is always two. Wax player (usually Black)
plays first. The figure 4 shows the problem that has threetidzefor Max (Black),
four liberties forMin (White) and two shared liberties. The other problems of tee te
suite are very similar except for the number of liberties tH#Hd& and White. The results
of these Seki problems are given in table 2. We can see that il has the same
number of liberties thaMin or one liberty less, the result is Draw.

Min liberties Max liberties
1 2 3 4 5 6

Draw Won Won Won Won Won
Draw Draw Won Won Won Won
Lost Draw Draw Won Won Won
Lost Lost Draw Draw Won Won
Lost Lost Lost Draw Draw Won
Lost Lost Lost Lost Draw Draw

OO WNPE

Table 2. Results for Sekis with two shared liberties

The first algorithm we have tested is simply to use a solver¢hts nodes when
a child is won for the color to play as in [19]. The search wasitkd to 1 000000
playouts. Each problem is solved thirty times and the resulthe tables are the average

Fig.4. A test seki with two shared liberties, three liberties for Max player (Black) and four
liberties for theMin player (White).

number of playouts required to solve a problem. An optimixkmhte-Carlo tree search
algorithm using the Rave heuristic is used. The results i@engn table 3. The result
corresponding to the problem of figure 4 is at row labededhin lib and at column
labeled3 max lih it is not solved in 1 000 000 playouts.

Min liberties Max liberties

1 2 3 4 5 6
1 359 479 1535 2059 10566 25670
2 1389 11047 12627 68718 98155 289324
3 7219 60755 541065 283782 516514 791945
4 41385 422975 >1000000 >1000000 =>989407 >999395
5 275670 >1 000000 >1 000000 >1 000 000 >1 000 000 >1 000 000
6 >1 000 000 >1 000 000 >1 000 000 >1 000 000 >1 000 000 >1 000 000

Table 3. Number of playouts for solving Sekis with two shared liberties

The next algorithm uses bounds on score, node pruning andgasmh move se-
lection (i.e.+ = 0 and§ = 0). Its results are given in table 4. Table 4 shows that
Monte-Carlo with bounds and node pruning works better thamoate-Carlo solver
without bounds.

Comparing table 4 to table 3 we can also observe that Montk@éth bounds and
node pruning is up to five time faster than a simple Monte-&solver. The problem
with threeMin liberties and thre®ax liberties is solved in 107 353 playouts when it is
solved in 541 065 playouts by a plain Monte-Carlo solver.

Min liberties Max liberties

1 2 3 4 5 6
1 192 421 864 2000 4605 14521
2 786 3665 3427 17902 40364 116749
3 4232 22021 107353 94844 263485 588912
4 21581 177693 >964871 >1000000 878072 >1000000
5 125793 >1 000000 >1 000000 >1 000 000 >1 000 000 >1 000 000
6

825760 >1000 000 >1 000000 >1 000000 >1 000000 >1 000000

Table 4. Number of playouts for solving Sekis with two shared liberties, boundsoresnode
pruning, no bias

The third algorithm uses bounds on score, node pruning asgbimove selection
with 6 = 10000. The results are given in table 5. We can see in this tabletkigat
number of playouts is divided by up to ten. For example thédlerm with threeMax
lib and threeMin lib is now solved in 9208 playouts (it was 107 353 playoutshaitt
biasing move selection and 541 065 playouts without boundfg)can see that eight
more problems can be solved within the 1 000 000 playouts.limi

Min liberties Max liberties

1 2 3 4 5 6
1 137 259 391 1135 2808 7164
2 501 1098 1525 3284 13034 29182
3 1026 5118 9208 19523 31584 141440
4 2269 10094 58397 102314 224109 412043
5 6907 27947 127588 737774 >999587 >1 000000
6 16461 85542 372366 >1 000000 >1 000000 >1 000000

Table 5. Number of playouts for solving Sekis with two shared liberties, boundsoresnode
pruning, biasing withy = 0 andé = 10000

5.2 Connect Four

Connect Four was solved for the standard size 7x6 by L. VsAdli1988 [1]. We tested
a plain MCTS Solver as described in [19] (plain), a score lbednMCTS with alpha-

beta style cuts but no selection guidance that is with 0 andd = 0 (cuts) and a score
bounded MCTS with cuts and selection guidance with- 0 andé = —0.1 (guided
cuts). We tried multiple values forands and we observed that the value-ofloes not
matter much and that the best valuedavas consistently = —0.1. We solved various
small sizes of Connect Four. We recorded the average ovér thins of the number of
playouts needed to solve each size. The results are givablm .

Size
3x3 3x4 4x3 4 x4
plain MCTS Solver 2700.9 26 042.7 227 617.6 >5000 000
MCTS Solver with cuts 2529.2 12496.7 31772.9 386324.3

MCTS Solver with guided cuts 1607.1 9792.7 24340.2 351320.3

Table 6. Comparison of solvers for various sizes of Connect Four

Concerning 7x6 Connect Four we did a 200 games match betwistEmge-Carlo
with alpha-beta style cuts on bounds and a Monte-Carlo withio Each program
played 10000 playouts before choosing each move. The rassltthat the program
with cuts scored 114.5 out of 200 against the program witleatg (a win scores 1, a
draw scores 0.5 and a loss scores 0).

6 Conclusion and Future Works

We have presented an algorithm that takes into account lsoomthe possible values
of a node to select nodes to explore in a MCTS solver. For gdha¢save more than
two outcomes, the algorithm improves significantly on a MGb&er that does not use
bounds.

In our solver we avoided solved nodes during the descenedfi@TS tree. As [19]
points out, it may be problematic for a heuristic progranMoié solved nodes as it can
lead MCTS to overestimate a node.

It could be interesting to make andé vary with the number of playout of a node
as in RAVE. We may also investigate alternative ways to letesbounds influence the
child selection process, possibly taking into account tgrlds of the father.

We currently backpropagate the real score of a playout,utdcbe interesting to
adjust the propagated score to keep it consistent with thedsof each node during
the backpropagation.

Acknowledgments

This work has been supported by French National Researchog@NR) through
COSINUS program (project EXPLO-RA ANR-08-COSI-004)

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

L. Victor Allis. A knowledge-based approach of connect-four thmmgas solved: White
wins. Masters thesis, Vrije Universitat Amsterdam, Amsterdam, Theeddethds, October
1988.

. Hans J. Berliner. The Btree search algorithm: A best-first proof procedubetif. Intell.,

12(1):23-40, 1979.

. Tristan Cazenave. A Phantom-Go programAdtvances in Computer Games 2008lume

4250 ofLecture Notes in Computer Scienpages 120-125. Springer, 2006.

. Tristan Cazenave. Reflexive monte-carlo searcdmputer Games Workshggages 165—

173, Amsterdam, The Netherlands, 2007.

. Tristan Cazenave. Nested monte-carlo searchlGAl, pages 456-461, 2009.
. Guillaume Chaslot, L. Chatriot, C. Fiter, Sylvain Gelly, Jean-Baptiste Klab®erez, Arpad

Rimmel, and Olivier Teytaud. Combiner connaissances expertes|ifpoes transientes et
en ligne pour I'exploration Monte-Carlo. Apprentissage et MR&vue d’'Intelligence Artifi-
cielle, 23(2-3):203-220, 2009.

. Rémi Coulom. Efficient selectivity and back-up operators in moatsdree search. In

Computers and Games 2008lume 4630 of LNCS, pages 72-83, Torino, Italy, 2006.
Springer.

. Rémi Coulom. Computing Elo ratings of move patterns in the game of GBA Journal

30(4):198-208, December 2007.

. Hilmar Finnsson and Yngvi Bjérnsson. Simulation-based approagérteral game playing.

In AAAI, pages 259-264, 2008.

Sylvain Gelly and David Silver. Combining online and offline knowledgd@T. InICML,
pages 273-280, 2007.

Sylvain Gelly and David Silver. Achieving master level play in 9 x 9 cotepgo. InAAA,
pages 1537-1540, 2008.

P. Hart, N. Nilsson, and B. Raphael. A formal basis for the heudstiermination of mini-
mum cost pathslEEE Trans. Syst. Sci. Cybernet(2):100-107, 1968.

L. Kocsis and C. Szepesvari. Bandit based monte-carlo planmniigCML, volume 4212 of
Lecture Notes in Computer Scienpages 282—293. Springer, 2006.

Tomas Kozelek. Methods of MCTS and the game Arimaa. Mastessstieharles Univer-
sity in Prague, 2009.

Richard J. Lorentz. Amazons discover monte-carlé€Cdmputers and Gamggages 13-24,
2008.

Xiaozhen Niu, Akihiro Kishimoto, and Martin Mller. Recognizing sekcamputer go. In
ACG, pages 88-103, 2006.

Maarten P. D. Schadd, Mark H. M. Winands, H. Jaap van den Haullaume Chaslot, and
Jos W. H. M. Uiterwijk. Single-player monte-carlo tree searchCtimputers and Games
pages 1-12, 2008.

Mark H. M. Winands and Yngvi Bjornsson. Evaluation function bagiente-Carlo LOA.
In Advances in Computer Game09.

Mark H. M. Winands, Yngvi Bjornsson, and Jahn-Takeshi Sailente-carlo tree search
solver. InComputers and Gamgpages 25—-36, 2008.

