
1

Parallel Nested Monte-Carlo Search
Tristan Cazenave Nicolas Jouandeau

Abstract—We address the parallelization of a Monte-

Carlo search algorithm. On a cluster of 64 cores we obtain

a speedup of 56 for the parallelization of Morpion Solitaire.

An algorithm that behaves better than a naive one on het-

erogeneous clusters is also detailed.

Index Terms—Monte-Carlo, Search, Parallelization, Mor-

pion Solitaire

I. Introduction

MONTE-CARLO methods can be used to search prob-
lems that have a large state space and no good

heuristics. Nested Monte-Carlo search [7] improves Monte-
Carlo search using a lower level Monte-Carlo Search to
choose move at the upper level. For problems that do
not have good heuristics to guide the search, the use of
nested levels of Monte-Carlo search amplifies the results of
the search and makes it better than a simple Monte-Carlo
search. A similar algorithm has already been applied with
success to Morpion Solitaire [6]. We address the paral-
lelization of the Nested Monte-Carlo Search algorithm on
a cluster.

Section 2 describes related work, section 3 explains the
sequential Nested Monte-Carlo Search algorithm, section
4 presents two parallel algorithms: the Round-Robin al-
gorithm and the Last-Minute algorithm, section 5 details
experimental results.

II. Related works

Parallel algorithms have been developed for many differ-
ent metaheuristics [1], [19], [2].

Rollout algorithms were first proposed by Tesauro and
Galperin for improving a Backgammon program [20]. The
idea of a rollout is to improve a heuristic playing games
that follow the heuristic and using the result of these games
to evaluate moves. Rollouts were applied to different opti-
mization problems [4], [3], [12], [18].

Nested rollouts were found effective for the game of
Klondike solitaire [21]. The base level uses a domain
specific heuristic to guide the samples. Nested rollouts
have also been used for Thoughtful Solitaire, a version of
Klondike Solitaire in which the locations of all cards is
known. In this case they were used with heuristics that
change with the stage of the game [5].

Recently there has been interest in the parallelization of
Monte-Carlo tree search, especially for the game of Go [8],
[14], [9], [10], [17].

Morpion Solitaire is an NP-hard puzzle [11]. A move
consists in adding a circle such that a line containing five

LAMSADE, Université Paris-Dauphine
Place Maréchal de Lattre de Tassigny, 75775 Paris Cedex 16, France
email: cazenave@lamsade.dauphine.fr

Université Paris 8, LIASD
2 rue de la liberté, 93526, Saint-Denis, France
email: n@ai.univ-paris8.fr

Fig. 1. A world record found by Parallel Nested Monte-Carlo Search
at Morpion Solitaire disjoint version

circles can be drawn. Lines can either be horizontal, ver-
tical or diagonal. The starting position already contains
circles disposed as in figure 1. In the disjoint version a
circle cannot be a part of two lines that have the same
direction. The best human score at Morpion Solitaire dis-
joint version is 68 moves [11]. The previous best computer
score was 79 obtained with Simulated Annealing [16]. A
reflexive Monte-Carlo algorithm was shown to be effective
for Morpion Solitaire [6]. Reflexive Monte-Carlo search is
close in spirit to nested rollouts except that the base level
plays random games and does not follow a heuristic.

Guerriero and Mancini have proposed two parallel
strategies for rollout algorithms [15]. They were tested on
the Traveling Salesman Problem (TSP) and the Sequential
Ordering Problem (SOP). With their speculative strategy
they obtained a modest average speedup of 2.53 on 8 pro-
cessors for SOP and TSP. They obtained speedup ranging
from 3.89 to 6.64 on 8 processors depending on the size of
the neighborhood for SOP.

In this paper we propose the parallelization of a nested
rollout algorithm on a cluster.

III. The sequential algorithm

The basic sample function just plays a random game
from a given position:



2

int sample (position)

1 while not end of game

2 play random move

3 return score

The score is the score of the game in the terminal posi-
tion. For example at Morpion Solitaire the goal is to play
as many moves as possible, so the score is the number of
moves played in the game. In other games where the algo-
rithm is of interest, the score can be computed completely
differently. The idea of the score function is that the algo-
rithm tries to find the sequence of moves that maximizes
it.

The nested rollout function plays a game, choosing at
each step of the game the move that has the highest score
of the lower level nested rollout. A level 1 rollout uses
the sample function to choose its moves. The argmaxm

command sends back the move that returns the best score
of a lower level search, over all possible moves:

int nested (position, level)

1 best score = -1

2 while not end of game

3 if level is 1

4 move = argmax_m (sample (

play (position, m)))

5 else

6 move = argmax_m (nested (

play (position, m), level - 1))

7 if score of move > best score

8 best score = score of move

9 best sequence = seq. after move

10 bestMove = move of best sequence

11 position = play (position,bestMove)

12 return score

IV. Parallel algorithms

In order to parallelize nested rollouts we define four types
of processes: the root process, the median node processes,
the dispatcher process and the client processes. These pro-
cesses work at different levels of nesting: the root process
at the first level (the highest level of nesting), the median
process at the second level and the client processes at the
third level. The root process plays a game at the first level
and calls the median processes to play games at the sec-
ond level. The median processes ask the client processes
to play games at the third level in parallel. The dispatcher
process is used to tell median nodes which clients to use.

A. The Round-Robin algorithm

Figure 2 details the Round-Robin algorithm. There are
four possible communications. The first one (fig. 2(a))
consists in a message from the root node to a median node
that asks the median node to perform a nested search at
the lower level.

During the second communication (fig. 2(b)), the me-
dian node asks to the dispatcher which clients it should use,
once it has received a client, it asks this client to perform
a nested search at the lower level.

(a)

(d)

(c)

(b)

Fig. 2. Communication between processes during the Round-Robin
algorithm

The third communication (fig. 2(c)) occurs when a client
of a median node has finished its search. It then sends back
the result to the median node that has asked for this search.
Once the median node has all its results, it can choose the
best move, play it and continue its game going back to the
second communication. When the game is over, it uses the



Cazenave Jouandeau: PARALLEL NESTED MONTE-CARLO SEARCH 3

fourth communication (fig. 2(d)) which consists in sending
the result of the game to the root node.

(e)

Fig. 3. Parallel communications that can occur during the Round-
Robin algorithm

Figure 3 shows that the second, third and fourth com-
munications can occur in parallel.

The root process plays a game until the end at the high-
est level. The number of median nodes is greater than the
number of possible moves. Median nodes are mainly used
to dispatch the computation at a lower level on the client
nodes, they are not used for long computation. Starting
from the current position of the game, the root process
tries each possible move and sends the resulting position
to a different median node. Then it waits for all answers
from median nodes previously chosen. Once it has all an-
swers, it can choose the move that has the highest score,
play it and loop until the end of the game.

The pseudo code for the root process is :

1 while not end of game

2 node = first median node

3 for m in all possible moves

4 p = play (position, m)

5 send p to node

6 node = next median node

7 for m in all possible moves

8 receive score from node

9 position = play (position,

move with best score)

10 return score

The Round-Robin dispatcher consists in choosing the
next client in the list of clients for each request. It receives
messages from median nodes that ask it on which client to
send their computation. It simply sends back clients one
after another, always in the same order.

The code for the Round-Robin dispatcher is:

1 client = first client

2 while true

3 receive median node from any median node

4 send client to median node

5 if client is last client

6 client = first client

7 else

8 client = next client

A median process receives a position to play from the
root process. At each step of a game, it tries all possi-
ble moves and asks the dispatcher which client to use to
evaluate each move. It then waits for the client node from
the dispatcher, and once it has received it, it sends to the
client node the position to evaluate. After having sent all
the positions (one for each possible move), it waits for all
the corresponding answers from the clients. Each answer
consists in a score. When it has received all the scores,
it chooses the move that has the highest score and plays
it. Then it loops until the end of the game. Eventually, it
sends back the score of the game to the root process.

The code for a median process is:

1 while true

2 receive position from root process

3 while not end of game

4 for m in all possible moves

5 p = play (position, m)

6 send self id and

number of moves played in p

to dispatcher

7 receive client from dispatcher

8 send p to client

9 for m in all possible moves

10 receive score from client

11 position = play (position,

move with best score)

12 send score to root

A client process waits for a position from a median node.
When it receives the position, it plays a nested rollout at a
predefined level, and sends back the resulting score to the
median node. In the case of the Last-Minute algorithm it
also warns the dispatcher that it is available, sending its
own identifier.

The code for a client process is:

1 while true

2 receive position from median node

3 score = nestedRollout (position, level)

4 if LastMinute

5 send self node to dispatcher

6 send score to median node

B. The Last-Minute algorithm

Figure 4 shows the difference between the Round-Robin
algorithm and the Last-Minute algorithm. Instead of only
sending back the result of a search to its median node (fig.
2(c)), a client also warns the dispatcher that it is free (fig.
4(c’)). The dispatcher maintains a list of free clients and
a list of jobs. Jobs are ordered by expected computation
time. The expected computation time is estimated with
the number of moves already played in a game. When a
request is received by the dispatcher, either there are free
clients and it sends back the first free client, or there are no
free clients and the job is added to the list of jobs. When it
is notified by a client that the client is free, either it sends
this client to the median node of the longest expected job,



4

(c’)

Fig. 4. Communication between processes during the Last-Minute
algorithm

or if there are no available jobs it adds it to the list of
free clients. The other communications are similar to the
Round-Robin algorithm.

Figure 5(e’) shows that communications can occur in
parallel.

The Last-Minute dispatcher waits for a node from any
client. If it receives a client node, it means that this client
node is waiting for a new job, therefore if there are pending
jobs it sends the job with the smallest number of moves to
this client. If there are no pending job, it simply adds
the client to the list of free clients. If it receives a median
node, it also receives the number of moves of the position
to analyze. If there are no free clients, it adds the job to
the list of pending jobs. If there is a free client it sends the
free client to the median node and removes the client from
the list of free clients.

The pseudo-code for the Last-Minute dispatcher:

1 listFreeClients = all Clients

2 jobs = empty list

3 while true

4 receive node from any node

5 if node is a client node

6 add node to listFreeClients

7 if jobs is not empty

8 find j in jobs with

the smallest number of moves

9 send j.sender to the node

10 remove j from jobs

11 remove node from listFreeClients

12 else if node is a median node

13 receive number of moves from node

14 addNewJob = true

15 if listFreeClients is empty

16 add {node, number of moves} to jobs

17 else

18 client = first element of listFreeClients

19 send client to node

20 remove client from listFreeClients

V. Experimental Results

Our cluster is composed of 20 1.86 GHz dual core
PCs, 12 2.33 GHz dual core PCs and one quad core

(e’)

Fig. 5. Parallel communications that can occur during the Last-
Minute algorithm

server connected with a Gigabit network. We used mes-
sage passing with Open MPI [13] as parallel program-
ming model. Open MPI is designed to achieve high
performance computing on heterogeneous clusters. All
communications are done with the global communicator
MPI COMM WORLD. Each node runs two client pro-
cesses. Processes are created at the beginning of the exe-
cution, via the use of the master-slave model. The server
runs the root process as well as all the median processes
and the dispatcher. Most of the computation is performed
by the clients. We run the 40 median processes on the
server and the client nodes on the dual core PCs.

All experiments use Morpion Solitaire disjoint model.
All the time results are a mean over multiple runs of each
algorithm, except for results in parenthesis which were run
only once. The standard deviation is given between paren-
thesis after the time results. The algorithms were tested
on playing only the first move of a game, and on playing
an entire game. All experiments consist in testing the al-
gorithms at level 3 and 4 of nesting. Each rollout needs
a time that is slightly different from others since random
games inside each rollout can have different lengths. Times
taken by two rollouts can be different. Standard deviations
show these times variations.

The results for the sequential algorithm are given in ta-
ble I. We can observe that level 4 takes approximately 207
times more time than level 3. One rollout takes approxi-
mately 9 times more time than the first move.

level first move one rollout
3 08m03s (19s) 1h07m33s (42s)
4 28h00m06s (58m55s) (09d18h58m)

TABLE I

Times for the sequential algorithm

Table II gives the times for playing the first move with
the Round-Robin algorithm at level 3 and 4. The speedup
of the algorithm for 64 clients is 56 (in fact it should be a
little less since the time with one client is on a 1.86 GHz
PC), if we use the ratio of the mean cluster frequency on



Cazenave Jouandeau: PARALLEL NESTED MONTE-CARLO SEARCH 5

clients level 3 level 4
64 10s (1s) 33m11s (1m33s)
32 20s (2s) 1h04m44s (3m02s)
16 37s (5s) (2h10m)
8 01m11s (8s) —
4 02m22s (11s) —
1 09m07s (28s) (29h56m14s)

TABLE II

First move times for the Round-Robin algorithm

clients level 3 level 4
64 01m52s (8s) 5h09m16s (5m40s)
32 03m08s (26s) (6h31m)
16 05m22s (29s) —
8 10m18s (1m21s) —
4 21m41s (3m13s) —
1 1h26m28s —

TABLE III

Rollout times for the Round-Robin algorithm

the single client frequency we obtain r = ((20×1.86+12×
2.33)/32)/1.86 = 1.09. So the speedup should rather be
closer to 56/1.09 = 51. The result for 32 clients is obtained
using only 1.86 GHz PCs, and this time the speedup is 29.8.
Concerning level 4 the speedup is 28.50 for 32 clients.

Table III gives the times for playing a rollout with the
Round-Robin algorithm at level 3 and 4. The speedup of
the algorithm for 64 clients is 44.

Table IV gives the results of the Last-Minute algorithm
for the first move at levels 3 and 4. Results are similar to
the Round-Robin algorithm at level 3. The speedup for
level 4 is 30 which is a little higher than the Round-Robin
algorithm.

Table V gives the results of the Last-Minute algorithm
for rollouts at levels 3 and 4. Results are slightly better
than the Round-Robin algorithm.

Table VI compares the two algorithms with an heteroge-
neous repartition (where 16x4+16x2 means that there are
16 PCs with 4 clients and 16 PCs with 2 clients and where
8x4+8x2 means there are 8 PCs with 4 clients and 8 PCs

clients level 3 level 4
64 09s (2s) 27m20s (1m22s)
32 19s (1s) 59m44s (2m21s)
16 37s (4s) (2h05m17s)
8 01m12s (5s) —
4 02m23s (4s) —
1 09m30s (21s) (33h06m57s)

TABLE IV

First move times for the Last-Minute algorithm

clients level 3 level 4
64 01m32s (5s) 4h10m09s (24m04s)
32 02m43s (16s) 6h58m21s (52m42s)
16 05m35s (40s) —
8 11m33s (1m34s) —
4 19m51s (3m34s) —
1 1h31m40s —

TABLE V

Rollout times for the Last-Minute algorithm

clients alg level 3 level 4
16x4+16x2 LM 14s (2s) 28m37s (1m30s)
16x4+16x2 RR 16s (2s) 45m17s (1m19s)
8x4+8x2 LM 18s (3s) 58m21s (2m44s)
8x4+8x2 RR 25s (2s) 1h24m11s (3m24s)

TABLE VI

First move times on an heterogeneous cluster

with 2 clients). At level 4 the Last-Minute algorithm (LM)
has better results than the Round-Robin algorithm (RR).

The Last-Minute algorithm gives better results than the
Round-Robin algorithm in an heterogeneous environment.
The speedup of the Last-Minute algorithm for rollouts of
level 4 with 64 clients is approximately 56 which is quite
good.

Running the algorithm at level 4 on our cluster, we have
discovered two new sequences of 80 moves which is the
current world record.

VI. Conclusion

We have presented two algorithms that parallelize
Nested Monte-Carlo Search on a cluster. The speedup for
64 clients is approximately 56 for Morpion Solitaire which
is a problem with a large state space and no good known
heuristic. The Last-Minute algorithm is more adapted to
heterogeneous clusters. The parallel algorithm run at level
4 has found sequences of length 80 which is the current
world record at Morpion Solitaire disjoint version (see for
example figure 1).

References

[1] E. Alba. Parallel Metaheuristics: A New Class of Algorithms.
Wiley, 2005.

[2] Enrique Alba, El-Ghazali Talbi, and Albert Y. Zomaya. Nature-
inspired distributed computing. Computer Communications,
30(4):653–655, 2007.

[3] Dimitri P. Bertsekas and David A. Castañon. Rollout algorithms
for stochastic scheduling problems. J. Heuristics, 5(1):89–108,
1999.

[4] Dimitri P. Bertsekas, John N. Tsitsiklis, and Cynara Wu. Roll-
out algorithms for combinatorial optimization. J. Heuristics,
3(3):245–262, 1997.

[5] R. Bjarnason, P. Tadepalli, and A. Fern. Searching solitaire in
real time. ICGA Journal, 30(3):131–142, 2007.

[6] T. Cazenave. Reflexive monte-carlo search. In Computer Games
Workshop, pages 165–173, Amsterdam, The Netherlands, 2007.

[7] T. Cazenave. Nested Monte-Carlo search. In IJCAI 2009,
Pasadena, USA, July 2009.



6

[8] T. Cazenave and N. Jouandeau. On the parallelization of UCT.
In Computer Games Workshop 2007, pages 93–101, Amster-
dam, The Netherlands, June 2007.

[9] T. Cazenave and N. Jouandeau. A parallel monte-carlo tree
search algorithm. In Computers and Games, LNCS, pages 72–
80, Beijing, China, 2008. Springer.

[10] Guillaume Chaslot, Mark H. M. Winands, and H. Jaap van den
Herik. Parallel monte-carlo tree search. In Computers and
Games, volume 5131 of Lecture Notes in Computer Science,
pages 60–71. Springer, 2008.

[11] E. D. Demaine, M. L. Demaine, A. Langerman, and S. Langer-
man. Morpion solitaire. Theory Comput. Syst., 39(3):439–453,
2006.

[12] M. Mancini F. Guerriero and R. Musmanno. New rollout algo-
rithms for combinatorial optimization problems. Optimization
Methods and Software, 17:627–654, 2002.

[13] Edgar Gabriel, Graham E. Fagg, George Bosilca, Thara
Angskun, Jack J. Dongarra, Jeffrey M. Squyres, Vishal Sa-
hay, Prabhanjan Kambadur, Brian Barrett, Andrew Lumsdaine,
Ralph H. Castain, David J. Daniel, Richard L. Graham, and
Timothy S. Woodall. Open MPI: Goals, concept, and design
of a next generation MPI implementation. In Proceedings, 11th
European PVM/MPI Users’ Group Meeting, pages 97–104, Bu-
dapest, Hungary, September 2004.

[14] Sylvain Gelly, Jean-Baptiste Hoock, Arpad Rimmel, Olivier
Teytaud, and Yann Kalemkarian. The parallelization of monte-
carlo planning. In ICINCO, 2008.

[15] F. Guerriero and M. Mancini. Parallelization strategies for roll-
out algorithms. Computational Optimization and Applications,
31(2):221–244, 2005.

[16] H. Hyyro and T. Poranen. New heuristics for morpion solitaire.
Technical report, University of Tampere, Finland, 2007.

[17] H. Kato and I. Takeuchi. Parallel monte-carlo tree search
with simulation servers. In 13th Game Programming Workshop
(GPW-08), November 2008.

[18] Nicola Secomandi. Analysis of a rollout approach to sequencing
problems with stochastic routing applications. J. Heuristics,
9(4):321–352, 2003.

[19] Alexandru-Adrian Tantar, Nouredine Melab, and El-Ghazali
Talbi. A comparative study of parallel metaheuristics for pro-
tein structure prediction on the computational grid. In IPDPS,
pages 1–10, 2007.

[20] G. Tesauro and G. Galperin. On-line policy improvement using
monte-carlo search. In Advances in Neural Information Process-
ing Systems 9, pages 1068–1074, Cambridge, MA, 1996. MIT
Press.

[21] X. Yan, P. Diaconis, P. Rusmevichientong, and B. Van Roy.
Solitaire: Man versus machine. In Advances in Neural Informa-
tion Processing Systems 17, pages 1553–1560, Cambridge, MA,
2005. MIT Press.


