Progressive Random Broadening

Tristan Cazenave

Labo TA, Université Paris 8, 2 rue de la Liberté, 93526, St-Denis, France
cazenave@ai.univ-paris8.fr

Abstract. We describe a new algorithm that progressively broadens
the number of values that can be tried for some variables in a backtrack
style search. The algorithm is more progressive than similar algorithms
such as iterative broadening or limited discrepancy search, and performs
better than them and forward checking for the quasi-group completion
problem. The algorithm uses random choices to select the variables to
broaden. It is compatible with variable and value ordering heuristics, and
enables randomization while retaining the performance of the heuristics.
Experimental results are given for the quasi-group completion problem.

1 Introduction

The paper describes a search algorithm that progressively increases the number
of variables that can be searched with a maximum broadening threshold. The
variables that are allowed to increase their threshold are chosen randomly. The
algorithm performs better than forward checking, iterative broadening [1] and
limited discrepancy search [2] for various value ordering heuristics. The original-
ity of the algorithm is that it randomly chooses variables to broaden, instead of
randomly choosing variables to instantiate as previously tried [3,4].

The second section presents the quasi-group completion problem, the third
section details related search algorithms, the fourth section deals with the pro-
gressive random broadening algorithm, the fifth section presents experimental
results, the last section concludes and outlines future work.

2 The Quasi-group Completion Problem

This section starts with describing the quasi-group completion problem, the sec-
ond subsection details how problems have been generated, the third subsection
explains how redundant modeling can help solving the problem.

2.1 Description of the problem

A quasi-group is an n x n multiplication table which defines a Latin square. It
is a matrix such that each row and each column contains n different elements.
There are only n possible values for the cells of the matrix. The size of an n x n
quasi-group is n.



The quasi-group completion problem (QCP) consists in completing a quasi-
group with holes (unassigned variables).

QCP is an ideal testbed for constraint satisfaction algorithms as it has struc-
ture and it is easy to generate arbitrarily hard problem instances [5]. The problem
has a phase transition phenomenon which follows an easy-hard-easy pattern, de-
pending on the number of unassigned variables. This phase transition follows
the backbones of the problems: i.e. the variables that are fully constrained and
take the same value in all solutions.

QCP has also been used to discover important properties of search algorithms
such as heavy-tailed behavior [6] and the associated rapid randomized restarts
(RRR) strategies [3,4].

Moreover, it is related to real world applications such as statistical design,
error correcting codes, conflict free wavelength routing and timetabling [7, 8].

2.2 Problem generation

In order to generate a problem, our algorithm progressive random broadening
with random value ordering is used to generate a complete quasi-group of a given
size. Then variables are randomly selected among the assigned variables (initially
all the variables) and are unassigned until the number of holes (unassigned vari-
ables) corresponds to the desired percentage of the total number of variables.
For each size, and for each percentage, 50 problems have been generated.

2.3 Redundant modeling

Redundant modeling has been used with success for QCP [7]. The primal and
natural model for a QCP of order n is to take as the n? variables the cells of the
matrix, the common initial domain for the variables being D = {k|1 < k < n}.
The variables can be named z;; where i is the row and j the column of the
variable. The n? constraints for the rows are z;; # z; with j # [, and the n?
constraints for the columns are x;; # x;; with ¢ # [. The row dual model consists
in considering in which column in a given row is a given color. There are n?
constraints of the form r;;, # r; with [ # k, and n? constraints of the form r;, #
rjr with ¢ # j. The column dual model consists in considering in which row in a
given column is a given color. There are n? constraints of the form ¢; # ¢;j; with
k # 1, and n? constraints of the form cj # c;x with j # I. The row channeling
constraints are: z;; = k < 1 = j. The column channeling constraints are:
zi; = k ¢ c¢jr = 4. This is exactly the redundant modeling used in [7]. A
good value ordering heuristic associated to this redundant modeling is the min-
domain-sum value selection heuristic (vdom+). It consists in choosing the value
whose corresponding two variables have a minimal sum of domains sizes. It is
also interesting to note that Forward Checking with redundant models is almost
equivalent to Arc Consistency for QCP, except for the order of instantiation of
the singleton variables.

An alternative modeling of the problem is to use 2n all different n-ary con-
straints [9].



3 Related Search Algorithms

Related algorithms are Rapid Randomized Restarts, Iterative Broadening and
Limited Discrepancy Search which are presented in this order in this section.

3.1 Rapid Randomized Restarts

Rapid Randomized Restarts [3,4] adds randomization to a constraint satisfac-
tion algorithm by randomly choosing the next variable to assign when several
variables are ranked equally, or randomly choosing a variable between variables
that are ranked within H-percent of the highest scoring variable. The algorithm
consists in stopping the search for a given threshold and restarting it, possi-
bly increasing the threshold. It has been shown to eliminate the heavy-tailed
behavior of backtrack style search [6].

3.2 Iterative broadening

Iterative broadening (IB) [1] consists in imposing an artificial breadth limit on
the search. If the breadth cutoff is n, it stops searching at every node when n
values have been tried. Iterative broadening starts searching with an artificial
breadth cutoff of 2, then try with a breadth cutoff of 3, and so on, until an
answer is found.

3.3 Limited discrepancy search

Limited Discrepancy Search (LDS) was proposed by Harvey and Ginsberg [2].
A discrepancy is a node in the search tree where the algorithm does not follow
the heuristic. Given a leaf in a search tree, its discrepancy order is the number
of discrepancies that have been necessary to reach it. LDS explores leaves in
increasing discrepancy orders. Korf improved LDS with Improved Limited Dis-
crepancy Search (ILDS) [10] which avoids revisiting leaf nodes at the depth limit
with lower discrepancy orders. T. Walsh proposes. Depth-bounded limited dis-
crepancy search (DDS) [11] which focus on branching decisions at the top of the
search tree where solution are more likely to be wrong.. A closely related algo-
rithm is Interleaved and Discrepancy Based Search [12] which has been applied
with success to the quasi-group completion problem.

4 Progressive Random Broadening

Progressive random broadening (PRB) retains from iterative broadening the idea
of searching trees of higher complexity at each step, enlarging the breadth cutoff
of some variables at each broadening step. Unlike iterative broadening, it does
not increase the cutoff by one for all the nodes, but only for a subset of them.
The number of nodes that are selected for the increased breadth cutoff is limited.
Let the order of a leaf for a given cutoff be the number of nodes above the leaf



that are associated to the cutoff. PRB only visits the leaves that have less than
a fixed order (named max_order in the algorithm below).
A PRB search depends on three parameters:

— Tts order, which is the maximal artificial breadth cutoff allowed at any node.

— Its nb_order_max, which is the maximum number of nodes in a path from
the root to a leaf that are allowed to have the order cutoff. All the other
nodes on the path (i.e. at least depth of the search - nb_order_maz nodes)
have an artificial cutoff of order — 1.

— Its probability proba, which is the probability that a variable is associated
to the order cutoff. The probability is related to nb_order_max as it is equal
to nb_order_mazx/maz_depth, maz_depth being the number of variables in
the problem.

Given a function rnd(0) that sends back pseudo-random real numbers be-
tween 0.0 and 1.0, the core of the algorithm is as follows:

bool prand (order, proba, nb_order_max) {
if (timeout ())
return false;
d = chooseVariable ();
if (d == NULL)
return true;
if ((nb_order_max == 0) || (rnd (0) > proba))
localorder = order - 1;
else {
localorder = order;
nb_order_max--;
}
for (k = 0; ((k < localorder) && (k < nb_values)); k++) {
value = chooseValue (k);
affectValue (d, value);
if (consistent (d, value))
if (prand (order, proba, nb_order_max))
return true;
restoreVariable ();
undoAffectValue (d, value);
}

return false;

In the function prand, order is the maximum number of values that will be
considered for each variable assignment during the search. The function prand
allows nb_order_max variable assignments with a given order, it implies that
when all the variables are assigned, at most nb_order_mazx of them are being
assigned with the value that comes in the order place in the value ordering.
An important feature of the function is that the places where the variables are



branched on order times are chosen randomly. Given the proba probability, each
time the algorithm has to choose the number of values it will search, it chooses
to search order values with a probability proba, and to search order — 1 values
with a probability 1 — proba, provided less than nb_order_max variables above
the nodes are associated to the order cutoff, in which case, it always chooses to
search only order values.

The prand function corresponds to one step of the PRB algorithm. A function
to progressively increase the nb_order_max and the order is needed. We have
tested basic functions for finding the next values of nb_order_maz and order.
The nb_order_max parameter is increased by a constant at each step, and when
it becomes greater than max_depth, it is set back to 1, and order is increased
by one. This is achieved with the following code:

int size = 30;
int inc_prand = 20;

next_nb_order_max (nb_order_max) { return nb_order_max + inc_prand; }
next_order (order) { return order + 1; }

bool prb () {
for (order = 2; order < size; order = nextOrder (order)) {
for (nb_order_max = 1; nb_order_max < max_depth;
nb_order_max = next_nb_order_max (nb_order_max)) {
proba = nb_order_max / max_depth;
if (prand (order, proba, nb_order_max))
return true;
if (timeout ())
return false;
}
}
return false;

}

The functions for finding the next values for order and nb_order_max can
be refined to have better properties. For example the function could be designed
such that the average time of prand with a given order and nb_order_maz is
twice the average cost of the previous call. If we manage to use such functions, it
will ensure that the complete search for finding that the problem is not solvable
is only twice the cost of the complete search without using progressive random
broadening.

The current function we use are simple and can be refined. An interest-
ing topic for further research is to estimate the balance between the search
costs saved by different variation of the steps for finding the next order and
nb_order_maz, and the search costs incurred for proving the problem is unsolv-
able with such steps.



According to our experimental results, the cost of solving solvable problems
decreases when we increase the step for nb_order_max from 1 to 20 (see bottom
of figure 2), and the cost of finding that problems are unsolvable also decreases
as we increase this step. However, there is a step after 20 when the progressive
random broadening algorithm starts to increase its problem solving time (PRB
with a step of max_depth is equivalent to iterative broadening which is slower
than PRB with a step of 20). It would be interesting to evaluate the properties
of the problem solving costs with different functions for increasing steps.

5 Experimental results

Experiments use a Celeron 1.7 GHz. In all our experiments we have used the fail
first heuristic for variable selection. We select the variable that has the smallest
domain size in the primal model. The default increment to nb_order_max used
in PRB is set to 20 unless specified otherwise (see bottom of figure 2).

Table 1 gives the cumulative time and the number of solved problems for 1000
QCP problems of size 30, there are 50 different problems every 5%, starting at
1% of holes (50 problems with 1% of holes, 50 problems with 6% of holes, and
so on until 96%). The upper part of the table gives the results using the random
value ordering heuristic, while the lower part gives the results for the vdom+
value ordering heuristic. Similar orderings between the algorithms arise with
the two value ordering heuristics. Forward Checking and Iterative Broadening
performs similarly in both cases. LDS performs better than FC and IB, and PRB
performs better than all the others. It solves more problems in less time.

Table 1. Cumulated time for 50 QCP of size 30 every 5% with a timeout of 100 s.

Algorithm Time Solved

FC(rand) 44714 575
IB(rand) 44173 574
LDS(rand) 33986 705
PRB(rand) 22674 810
FC(vdom+) 25306 770
IB(vdom+) 25231 771
LDS(vdom+) 18736 853
PRB(vdom+) 11852 909

Table 2 gives similar results for QCP of size 15 with a timeout of 100 seconds.
It is noticeable that the savings are much more important in table 2 than in table
1. We think this is due to the relatively low timeout of 100 seconds for problems
of size 30. We suspect that if we increase the timeout for problems of size 30, the
savings due to PRB will grow similarly as it can be observed when we increase



the timeout for problems of size 15 in the figure 1, and that the savings illustrated
in the table 1 are conservative.

Table 2. Cumulated time for 50 QCP of size 15 every 5% with a timeout of 100 s.

Algorithm  Time Solved

FC(vdom+) 226 998
IB(vdom+) 226 998
LDS(vdom+) 4 1000
PRB(vdom+) 3 1000

Figure 1 details the performance of Forward Checking, Iterative Broadening,
Limited Discrepancy Search and Progressive Random Broadening for QCP of
size 15 with different time thresholds, and different value ordering heuristics.

The first two diagrams of figure 1 give the search time and the number of
problem solved, every 5% for 50 QCP of order 15 at each percentage, with
lexicographic value ordering and a timeout of 10 seconds. FC and IB follow the
same pattern, and are completely dominated by LDS and PRB that have no
phase transition.

The next two diagrams of figure 1 give similar information with random
value ordering. Again, FC and IB follow similar patterns (IB is worse than FC
here), and are again completely dominated by LDS and PRB that have no phase
transition.

The next two diagrams of figure 1 use the vdom+ value ordering. Here FC
and IB follow exactly the same pattern and the phase transition is sharper. They
are again completely dominated by LDS and PRB that have no phase transition.

The last two diagrams of figure 1 use the vdom+ value ordering with a
timeout of 100 seconds. Here FC and IB follow exactly the same pattern and the
phase transition is sharper. The comparison is even better than in the previous
diagrams for LDS and PRB.

Figure 2 details the performance of Forward Checking, Iterative Broadening,
Limited Discrepancy Search and Progressive Random Broadening for QCP of
size 30 with a timeout of 100 seconds, associated to the random and the vdom+
value ordering heuristics. In the bottom of the figure, different values for the
increment of the nb_order_max parameter have been tried, and give similar
results.

The first two diagrams of figure 2 give the search time and the number of
problem solved, every 5% for 50 QCP of order 30 at each percentage, with
random value ordering and a timeout of 100 seconds. FC and IB follow a similar
pattern. PRB and LDS are better than IB and FC for the under-constrained
problems to the right of the diagrams. LDS is worse than FC and IB just after
the phase transition. PRB is better than all the other algorithms everywhere (it
solves more problems and uses less time).



The next two diagrams of figure 2 give similar information with the vdom-+
value ordering. Here, FC and IB have exactly the same pattern. Again LDS is
worse than IB and FC just after the phase transition, and better for the under-
constrained problems in the right part of the diagram. PRB is again better than
all other algorithms everywhere.

The last two diagrams of figure 2 use the vdom+ value ordering with a
timeout of 100 seconds for some PRB algorithms that differs according to their
increment steps for nb_max_order. They have similar patterns, even if PRB
becomes slightly better when increasing the step up to 20 and becomes slightly
worse for 30.

6 Conclusion and Future Work

The main result of the paper is that it is possible to improve the problem solving
time of a constraint satisfaction search algorithm by progressively and randomly
choosing some variables to be broadened. This algorithm performs better than
forward checking, iterative broadening and limited discrepancy search for the
quasi-group completion problem.

In future works, it would be interesting to test the algorithm on other do-
mains, as well as making the probability of broadening vary according to heuris-
tics on the size of the domains and/or on the depth of the variable.
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