
Combining Tactical Search and Monte-Carlo in the Game of Go

Tristan Cazenave
Labo IA, Université Paris 8

2 rue de la liberté
93526, St-Denis, France

cazenave@ai.univ-paris8.fr

Bernard Helmstetter
Labo IA, Université Paris 8

2 rue de la liberté
93526, St-Denis, France

bh@ai.univ-paris8.fr

Abstract- We present a way to integrate search and
Monte-Carlo methods in the game of Go. Our program
uses search to find the status of tactical goals, builds
groups, selects interesting goals, and computes statistics
on the realization of tactical goals during the random
games. The mean score of the random games where a se-
lected tactical goal has been reached and the mean score
of the random games where it has failed are computed.
They are used to evaluate the selected goals. Experimen-
tal results attest that combining search and Monte-Carlo
significantly improves the playing level.

1 Introduction

Monte-Carlo Go has been invented in 1993 [1]; it is a sim-
ple way to program a decent computer Go program using
very little knowledge. It has been recently the subject of re-
newed interest [2, 3, 4]. The combination of Monte-Carlo
with traditional Go programming techniques is promising
and gives good results, as can be seen from recent computer
Go events. In this paper we show that an original combi-
nation of Monte-Carlo methods with tactical search outper-
forms Monte-Carlo alone. The resulting program is about
50 points above standard Monte-Carlo on the 9x9 board,
and 26 points above the previous version of Golois.

The program starts with performing searches for each
possible tactical goal and for each color starting first, in or-
der to find unsettled problems. Examples of tactical goals
are capturing a string, connecting two strings or making an
eye. In a second phase, the program selects interesting goals
related to unsettled problems. In a third phase, it computes
statistics on the selected goals.

In standard Monte-Carlo Go, the means of the random
games where an intersection has been played first by a
player are computed for each intersection. What is done for
the intersections can also be done for tactical goals. There-
fore, we define the following unification of the notion of a
goal: a goal can be either related to an empty intersection
(in which case the success of the goal depends only on who
has played first on the intersection), or it can be related to
a tactical goal. We handle these two different classes of
goals in a similar way: we compute the mean of the results
of the random games where the goal has been reached and
the mean of the results of the random games where it has
failed. The value of the goal is the difference between the
two means. We choose the goal of highest value. If this goal
is an intersection goal we play at the intersection; if it is a
tactical goal we play a move that reaches the goal. In case

several moves reach the goal, we choose the one having the
highest intersection value.

The second section presents Monte-Carlo methods for
games; the third section details the different search algo-
rithms used in our program; the fourth section presents the
statistics our program computes in the random games; the
fifth section deals with the combination of Monte-Carlo and
search; the sixth section presents experimental results.

2 Monte-Carlo methods and Games

Monte-Carlo methods in games use statistics on more or
less random games in order to find the best move. The
first application of Monte-Carlo methods to Go was written
by B. Bruegmann [1]. Recently, other Go programs have
started using it, and improved it, simplifying the method
and proposing basic improvements [2] or combining it with
a knowledge based program that selects a few number of
moves that are later evaluated by the Monte-Carlo method
[3].

There are several slightly different ways to write a
Monte-Carlo Go program [2]. In this paper, we call stan-
dard Monte-Carlo Go the following algorithm. The pro-
gram plays a large number (usually 1,000 to 10,000) of
random games starting at the current position. The moves
of the random games are chosen almost randomly among
the legal moves, except that they must not fill the player’s
eyes. A player passes in a random game when his only le-
gal moves are on his own eyes. The game ends when both
players pass. In the end of each random game, the score of
the game is computed using Chinese rules (in our case, it
consists in counting one point for each stone and each eye
of the player’s color, and subtracting the player’s count to
its opponent count). The program computes, for each inter-
section, the mean results of the random games where it has
been played first by one player, and the mean for the other
player. The value of a move is the difference between the
two means. The program plays the move with the highest
value.

Monte-Carlo simulations have also been used in other
games such as Bridge [5], Poker [6], Tarok [7] and Scrabble
[8] for example. In the games of Bridge and Tarok, a com-
bination of Monte-Carlo and search is usual. Statistics are
performed on open deals that are solved by search. How-
ever, in our approach, searches are performed only once, in-
dependently of the random games, and the tactical problems
that are solved by search are used to choose the statistics that
will be computed during the random games.



Our approach of combining search and Monte-Carlo is
new and orthogonal to the previous approaches used in Go:
it is very likely that it also improves their performances.

3 Search

We use search algorithms to solve tactical problems such as
capturing/saving a string or connecting/disconnecting two
strings. In this section, we present five tactical search al-
gorithms that are used in our program. The first one is a
capture search, the second one is a connection search, we
follow with search for the connection between a string and
an empty intersection, eye search and life and death search.

3.1 Capture Search

For each string on the board a capture search is tried. If the
capture search fails, no other search is performed. If a cap-
turing move is found, a search that tries to save the string, by
playing first a move of the color of the string, is performed.
If none of the possibly saving moves works, the string is
captured even if the color of the string plays first, and cap-
ture searches for this string are stopped. On the contrary,
if a saving move exists, other searches are performed. The
program tries to find all the possible capturing moves, and
all the possible saving moves.

At the end of the process, for each string on the board, its
capture status and its save status are known, and for strings
that can both be captured by one player and saved by the
other, multiple capturing and saving moves are found when
possible.

3.2 Connection Search

For each string on the board, the program looks for the
strings that can be connected to the first string by playing
at most four moves in a row. Then, for each pair of strings,
it searches for a connection. When a connecting move is
found, it also searches for a disconnection. When a discon-
necting move is also found, it searches for all the connecting
and disconnecting moves.

After connection search, the program has a list of pos-
sible connections, and for each connection the connection
status and the disconnection status, as well as multiple con-
necting and disconnecting moves for strings that can both
be connected by one player and disconnected by the other.

3.3 Empty Connection Search

The empty connection goal is based on the connection goal.
It involves a string and an empty intersection. The goal
of the game is to connect the empty intersection to the
string. In practice, in order to find unsettled empty con-
nection problems, the program plays a move of the color of
the string on the empty intersection, then the disconnection
search is called for the string containing the played empty
intersection and the string to connect to. If they cannot be
disconnected the empty connection problem is unsettled and
the associated move consists in playing on the empty inter-
section.

3.4 Eye Search

For each intersection on the board, it searches if an eye can
be made on the intersection or on any of the direct neigh-
bors.

3.5 Life and Death Search

Life and death search uses Generalized Widening [9] for
non enclosed groups. Life and death search is called for
each group of strings. Groups are built using the results of
the connection search between strings.

4 Statistics on random games

In this section, we describe the different statistics that are
computed during random games. Statistics are related to
goals. We compute the mean of the results of the random
games where a goal has been reached and the mean of the
results of the random games where it has failed.

Among the unsettled goals found by search, the program
chooses some interesting ones and computes statistics on
them.

The different types of goals we use for the statistics are :

� The goal of playing first on an intersection. It is the
only goal used in the standard Monte-Carlo approach.

� The goal of owning an intersection at the end of a
game.

� The goal of capturing a string. The goal is considered
to be lost as soon as the string has more than four
liberties.

� The goal of connecting two strings. It is possible that
the two strings are captured after being connected in
a random game, but we still consider this as a success
for the connection.

� The goal of connecting a string and an empty inter-
section.

� The goal of making an eye on an intersection or on
any of its neighbors.

5 Combining Search and Monte-Carlo

There are usually different problems in the initial position,
i.e. capture, connection, empty connection, eyes and life
and death problems. In this section we detail the combina-
tion of search and Monte-Carlo. We start explaining why
all the problems are not taken into account and how we se-
lect the problems that will be used to compute statistics on.
We follow with the statistics collected during the random
games. We describe how a move is chosen. Then, we dis-
cuss on the usefulness of collecting statistics on unsettled
problems, and we define positive and negative goals.



Figure 1: Choosing the simplest connection

5.1 Selecting problems

In order to avoid playing bad moves and overestimating
the importance of a problem, the program needs selecting
among the unsettled problems the ones that will be used to
compute statistics.

Strings that cannot be disconnected are amalgamated in
groups. Groups are used to select the unsettled connection
problems that will be used to gather statistics.

It can happen that a string
�

is connected with a com-
plex search to string � , that string � is connected with a
complex search to string � , and that

�
and � are connected

but that the search to find it is too complex. In this case the
program can think there is an unsettled connection between�

and � and add a useless move. In order to avoid this
behavior, complex unsettled connection problems between
two strings of the same group are not taken into account.

Furthermore, when there are multiple connection prob-
lems that connect the same groups, only the simplest con-
nection problem is retained. The simplicity of a connection
problem is measured by the number of moves in a row that
are needed to connect the two string in the initial position.
For example, in the figure 1 the strings � and � belong to
the same group. The connection between

�
and � can be

prevented by White, capturing
�

for example. The connec-
tion between � and

�
can also be prevented by capturing

�
,

but the white move at � also prevents the connection. How-
ever, � is not the kind of move that we want the program
to consider to disconnect the black group from

�
. Here the

connection between
�

and � is simpler than the connection
between

�
and � , so the program will only retain the con-

nection between
�

and � for gathering statistics. The prob-
lem of only retaining the simplest connection is not only a
problem of avoiding moves like � , it is also a matter of cor-
rectly evaluating the value of the connection between two
groups. The mean of the games where

�
and � have been

connected is larger than the mean of the games where
�

and � have been connected. So keeping only the simplest
connection avoids overestimating connections.

Empty connections between strings and empty intersec-
tions follow a similar pattern. In the figure 2, the triangle
empty intersection can connect to the triangles string. How-
ever, it can also connect to the circled string. The mean of

Figure 2: Empty connection

the games containing the connection to the circled string is
higher than the mean of the games with the connection to
the triangles string. In order to avoid overestimating empty
connections, the program only selects the simplest empty
connection when there are multiple empty connections of
the same color to the same empty intersection.

Empty connections are also used to find long distance
connections between groups that are too complex to be
found by the connection search. If an empty intersection
is connected to two different groups, and that there is no un-
settled connection problem between these two groups, then
a new unsettled connection problem is created that joins the
two groups, playing on the common connected empty inter-
section. There are some exceptions to this rule that can be
found using a search for transitivity of connection [10].

5.2 Gathering statistics on selected problems

After the program has selected the interesting goals, it plays
many random games and for each selected goal, it computes
the mean score of the random games where the goal has
succeeded, and the mean score of the random games where
it has failed.

We call raw mean of a move the value of the intersection
goal associated to the move.

The statistics on the final color of an intersection are
used to evaluate the importance of playing moves related
to life and death. The mean score of a life problem re-
lated to a string is the mean score of the games which ended
with an intersection of the string keeping its original color.
The mean score of the associated death problem is the mean
score of the games which ended with the intersection of the
other color.

5.3 Choosing a move

For the selected goals, we compute the value of the goal
which is the difference between the mean score of the games
where it succeeds and the mean score of the games where it
fails. The program chooses to play the goal with the highest
value. Among all the moves associated to the selected goal,
the program chooses the one with the highest raw mean.



useful connection useless connection

Figure 3: connections

5.4 Why are statistics on unsettled problems useful?

It is useful to compute statistics in the random games on
goals related to unsettled problems. The raw mean of a
move is different from the mean of the games where the goal
associated to the move has been reached. Figure 3 explains
the difference between the two means for the connection
goal. We see in the useful connection diagram that the move
at

�
connects the two strings. In the random games where

a black move at
�

has been played first, the two strings will
only be connected three times out of four. But the program
knows, with the connection search, that it is possible to al-
ways connect the two strings. The mean of the results of
the games where the two strings have been connected give
an evaluation of the move at

�
, which is better than the raw

mean of the move at
�

because it takes into account the fact
that the two strings are connected after

�
.

Another example is given in the useless connection dia-
gram of figure 3. This time the games where the two black
strings have been connected have a mean which is less than
the mean of all the games since the connection move is al-
ways useless. Therefore the mean associated to the connec-
tion is less than the mean of the best move, and the program
does not play the connection. It finds out by itself that it is
a useless connection.

Figure 4 shows the symmetric example. The two white
strings are disconnected three times out of eight, and the
disconnecting move results in a disconnection of the two
strings only three times out of four in the random games. On
the contrary, the search tells us that they can always be dis-
connected. To evaluate the disconnecting move, it is more
accurate to use the mean of the games where the two strings
have been disconnected, than to use the mean of the games
where the disconnecting move has been played first.

5.5 Positive and negative goals

We introduce the notion of positive and negative goals. Pos-
itive goals are goals we have confidence they can be reached
if the search algorithm returns so. For example, when the
search algorithm finds a capturing move, we have confi-
dence that the string can be captured. Examples of posi-
tive goals are capture, connection and life. On the contrary

Figure 4: disconnection

negative goals are not sure. For example, when the capture
search finds a move that saves a string, we are not assured
that the string cannot be captured latter: the string might
have gained five liberties but may be completely surrounded
by alive enemy groups and therefore be bound to capture
anyway. Example of negative goals are saving a string, dis-
connecting two strings or killing a group.

For negative goals the statistics tend to over-estimate the
interest of playing in the related problems. For example,
statistics on disconnection measure the mean of the games
where two strings have not been connected. It means the
program does not count the games where the strings have
been disconnected according to the search at a time in the
game, but have been connected later in the game because of
the capture of a common adjacent string that had temporar-
ily gained five liberties. In order to avoid this behavior we
have used the connection game evaluation function to detect
the disconnection found by the search at any time in the ran-
dom games. This way we count for the disconnection mean
the games were the evaluation function sends back lost in
the game even if at the end of the game the two strings end
being connected. Similarly, for the save goal, our program
counts all the games where the string had more than four
liberties during the game.



6 Experimental results

In order to test our combination of tactical search with
Monte-Carlo, we have played 9x9 games between two pro-
grams. The first program is the standard Monte-Carlo al-
gorithm. The second program combines tactical search and
Monte-Carlo. They both play 10,000 random games before
choosing a move. Each program played twenty 9x9 games
against the other: ten games with black and ten games with
white. The games were scored using Chinese rule.

The capture, connection and eye search use Generalized
Threats Search [11]. The threat used is the (6,3,2,0) threat.
Life and death search uses Generalized Widening [9] for
non enclosed groups.

The program that combines search and Monte-Carlo
wins on average by 52.1 points against the standard Monte-
Carlo method on the 9x9 board, the standard deviation being
34.2 points. On a Celeron 1.8 GHz, the standard Monte-
Carlo algorithm plays a move in five seconds on average for
10,000 9x9 random games. The combination of search and
Monte-Carlo plays a move in ten seconds for 10,000 9x9
random games.

In order to compensate for the additional time used by
the combination of Monte-Carlo and search, we played the
combination program with 1,000 random games against the
standard Monte-Carlo with 10,000 games. The combination
is then twice as fast as the standard Monte-Carlo. Still, the
combination program wins on average by 24.6 points on the
9x9 board, the standard deviation being 40 points.

The combination of Monte-Carlo and search with 10,000
random games has also been tested against Golois. Golois
uses exactly the same tactical search algorithm as the pro-
gram based on Monte-Carlo and search. Golois uses a depth
one global search and hand tuned heuristics to evaluate the
strength of groups and the moves. Forty 9x9 games have
been played between the two programs and the combination
of search and Monte-Carlo wins on average by 26 points.
Given that the two programs have the same tactical Go
knowledge, it appears that the use of Monte-Carlo to assess
the importance of tactical goals is a promising alternative to
hand tuned evaluation knowledge.

7 Conclusion and Future Work

We have presented a way to integrate search with the Monte-
Carlo method in Go. Our program computes statistics dur-
ing the random games on the goals searched in the initial
position, in order to improve the accuracy of the evaluation
of the moves related to the goal. The resulting program im-
proves the average result of Monte-Carlo methods against a
standard Monte-Carlo Go program by more than 50 points
in 9x9 games.

Future work includes using search and statistics on other
goals and combinations of goals. It may be possible to
better handle the different results of the search for nega-
tive goals, and to improve the evaluation of these goals.
We could also improve the confidence in the statistics on
the random games, by taking into account the moves that
threaten the won tactical goals, and replying them inside

the random games so as to keep the important tactical goals
won. This would prevent the program to overestimate the
value of threats and it would result in a better evaluation of
the position.

Bibliography

[1] Bruegmann, B.: Monte Carlo Go. ftp://ftp-
igs.joyjoy.net/go/computer/mcgo.tex.z (1993)

[2] Bouzy, B., Helmstetter, B.: Monte Carlo Go develop-
ments. In: Advances in computer games 10, Kluwer
(2003) 159–174

[3] Bouzy, B.: Associating domain-dependent knowl-
edge and monte carlo approaches within a go program.
In: Joint Conference on Information Sciences, Cary
(2003) 505–508

[4] Bouzy, B.: Associating shallow and selective global
tree search with monte carlo for 9x9 go. In: 4th Com-
puter and Games Conference, Ramat-Gan (2004)

[5] Ginsberg, M.L.: GIB: Steps toward an expert-level
bridge-playing program. In: IJCAI-99, Stockholm,
Sweden (1999) 584–589

[6] Billings, D., Davidson, A., Schaeffer, J., Szafron, D.:
The challenge of poker. Artificial Intelligence 134
(2002) 210–240

[7] Lustrek, M., Gams, M., Bratko, I.: A program for
playing tarok. ICGA Journal 26 (2003) 190–197

[8] Sheppard, B.: Efficient control of selective simula-
tions. ICGA Journal 27 (2004) 67–80

[9] Cazenave, T.: Generalized widening. In: ECAI 2004,
Valencia, Spain, IOS Press (2004) 156–160

[10] Cazenave, T., Helmstetter, B.: Search for transitive
connections. Information Sciences (2005)

[11] Cazenave, T.: A Generalized Threats Search Algo-
rithm. In: Computers and Games 2002. Volume 2883
of Lecture Notes in Computer Science., Edmonton,
Canada, Springer (2002) 75–87


