
UCD : Upper Confidence bound for rooted Directed acyclic graphs

Abdallah Saffidine and Tristan Cazenave
LAMSADE

Université Paris-Dauphine
Paris, France

Abdallah.Saffidine@gmail.com cazenave@lamsade.dauphine.fr

Jean Méhat
LIASD

Université Paris 8
Saint-Denis France

jm@ai.univ-paris8.fr

Abstract—In this paper we present a framework for testing
various algorithms that deal with transpositions in Monte-
Carlo Tree Search (MCTS). When using transpositions in
MCTS, a Directed Acyclic Graph (DAG) is progressively
developed instead of a tree. There are multiple ways to
handle the exploration exploitation dilemma when dealing with
transpositions. We propose parameterized ways to compute the
mean of the child, the playouts of the parent and the playouts
of the child. We test the resulting algorithms on LeftRight
an abstract single player game and on Hex. For both games,
original configurations of our algorithms improve on state of
the art algorithms.

Keywords-Monte-Carlo Tree Search; UCT; Transpositions;
DAG;

I. INTRODUCTION

Monte-Carlo Tree Search (MCTS) is a very successful
algorithm for multiple complete information games such
as Go [1], [2], [3], [4] or Hex [5]. Monte-Carlo programs
usually deal with transpositions the simple way: they do not
modify the UCT formula and develop a DAG instead of a
tree.

Transpositions are widely used in combination with the
Alpha-Beta algorithm [6] and they are a crucial optimization
for games such as Chess. Transpositions are also used in
combination with the MCTS algorithm but little work has
been done to improve their use or even to show they are
useful. The only works we are aware of are the paper by
Childs and Kocsis [7] and the paper by Méhat and Cazenave
[8].

We will use the following notations for a given object
x. If x is a node, then c(x) is the set of the edges going
out of x, similarly if x is an edge and y is its destination,
then c(x) = c(y) is the set of the edges going out y. We
indulge in saying that c(x) is the set of children of x even
when x is an edge. If x is an edge and y is its origin, then
b(x) = c(y) is the set of edges going out of y. b(x) is the set
of the “siblings” of x plus x. During the backpropagation
step, payoffs are cumulatively attached to nodes or edges.
We denote by µ(x) the mean of payoffs attached to x (be
it an edge or a node), and by n(x) the number of payoffs
attached to x. If x is an edge and y is its origin, we denote
by p(x) the total number of payoffs the children of y have

received: p(x) =
∑

e∈c(y) n(e) =
∑

e∈b(x) n(e). Let x be a
node or an edge, between the apparition of x in the tree and
the first apparition of a child of x, some payoffs (usually one)
are attached to x, we denote the mean (resp. the number) of
such payoffs by µ′(x) (resp. n′(x)). We denote by π(x) the
best move in x according to a context dependant policy.

Before having a look at transpositions in the MCTS frame-
work, we first use the notation to express a few remarks on
the plain UCT algorithm (when there is no transpositions).
The following equalities are either part of the definition of
the UCT algorithm or can easily be deduced. The payoffs
available at a node or an edge x are exactly those available
at the children of x and those that were obtained before the
creation of the first child: n(x) = n′(x) +

∑
e∈c(x) n(e).

The mean of a move is equal to the weighted mean of the
means of the children moves and the payoffs carried before
creation of the first child:

µ(x) =
µ′(x)× n′(x) +

∑
e∈c(x) µ(e)× n(e)

n′ +
∑

e∈c(x) n(e)
(1)

The plain UCT value [9] with an exploration constant c
giving the score of a node x is written

u(x) = µ(x) + c×

√
log p(x)
n(x)

(2)

The plain UCT policy consists in selecting the move with
the highest UCT formula: π(x) = maxe∈c(x) u(e). When
enough simulations are run at x, the mean of x and the mean
of the best child of x are converging towards the same value
[9]:

lim
n(x)→∞

µ(x) = lim
n(x)→∞

µ(π(x)) (3)

Our main contribution consists in providing a parametric
formula adapted from the UCT formula 2 so that some
transpositions are taken into account. Our framework en-
compasses the the work presented in [7]. We show that the
simple way is often surpassed by other parameter settings
on an artificial one player game as well as on the two player
game Hex. We do not have a definitive explanation on how
parameters influence the playing strength yet. We show that
storing aggregations of the payoffs on the edge rather than



on the nodes is preferable from a conceptual point of view
and our experiment show that it also often lead to better
results.

The rest of this article is organized as follows. We first
recall the most common way of handling transpositions in
the MCTS context. We study the possible adaptation of
the backpropagation mechanism to DAG game trees. We
present a parametric framework to define an adapted score
and an adapted exploration factor of a move in the game
tree. We then show that our framework is general enough
to encompass the existing tools for transpositions in MCTS.
Finally, experimental results on an artificial single player
game and on the two players game Hex are presented.

II. MOTIVATION

Introducing transpositions in MCTS is challenging for
several reasons. First, equation 1 may not hold anymore
since the children moves might be simulated through other
paths. Second, UCT is based on the principle that the
best moves will be chosen more than the other moves and
consequently the mean of a node will converge towards the
mean of its best child ; having equation 1 holding is not
sufficient as demonstrated by figure 2 where equation 3 is
not satisfied.

The most common way to deal with transpositions in
the MCTS framework, beside ignoring them completely, is
what will be referred to in this article as the simple way.
Each position encountered during the descent corresponds
to a unique node. The nodes are stored in hash-table with
the key being the hash value of the corresponding position.
Mean payoff and number of simulations that traversed a
node during the descent are stored in that node. The plain
UCT policy is used to select nodes.

The simple way shares more information than ignoring
transpositions. Indeed, the score of every playout generated
after a given position a is cumulated in the node representing
a. To the contrary, playouts generated after a when transpo-
sitions not detected are divided among all represents of a in
the tree depending on the moves that preceded them.

It is desirable to maximize the usage of a given amount
of information because it allows to make better informed
decisions. In the MCTS context, information is in the form
of playouts. If a playout is to be maximally used, it may
be necessary to have its payoff available outside of the
path it took in the game tree. For instance in figure 3 the
information provided by the playouts were only propagated
on the edges of the path they took. There is not enough
information directly available at a even though a sufficient
number of playouts has been run to assert that b is a better
position than c.

Nevertheless, it is not trivial to share the maximum
amount of information. A simple idea is to keep the DAG
structure of the underlying graph and to directly propagate
the outcome of a playout on every possible ancestor path.

It is not always a good idea to do so in a UCT setting,
as demonstrated by the counter-example 2. We will further
study this idea under the name update-all in section III-B.

III. POSSIBLE ADAPTATIONS OF UCT ALGORITHM TO
DEAL WITH TRANSPOSITIONS

The first requirement of using transpositions is to keep the
DAG structure of the partial game tree. The partial game
tree is composed of nodes and edges, since we are not
concerned with memory issues in this first approach, it is
safe to assume that it is easy to access the outgoing edges
as well as the in edges of given nodes. When a transposition
occurs, the subtree of the involved node is not duplicated.
Since we keep the game structure, each possible position
corresponds to at most one node in the DAG and each node
in the DAG corresponds to exactly one possible position in
the game. We will indulge ourselves to identify a node and
the corresponding position. We will also continue to call the
graph made by the nodes and the moves game tree even
though it is now a DAG.

A. Storing results in the edges rather than in the nodes

In order to descend the game tree, one has to select moves
from the root position until reaching an end of the game-tree.
The selection uses the results of the previous playouts which
need to be attached to moves. A move corresponds exactly
to an edge of the game tree, however it is also possible to
attach the results to nodes of the game tree. When the game
tree is a tree, there is a one to one correspondence between
edges and nodes, save for the root node. To each node but
the root, correspond a unique parent edge and each edge has
of course a unique destination. It is therefore equivalent to
attach information to an edge (a, b) or to the destination b of
that edge. MCTS implementations seem to prefer attaching
information to nodes rather than to edges for implementation
simplicity reasons. When the game tree is a DAG, we do
not have this one to one correspondence so there may be
a difference between attaching information to nodes or to
edges.

In the following we will assume that aggregations of the
payoffs are attached to the edges of the DAG rather than to
the nodes (1 shows the two possibilities for a toy tree). The
payoffs of a node a can still be accessed by aggregating1

the payoffs of the edges arriving in a. No edge arrives at
the root node but the results at the root node are usually not
needed. On the other hand, the payoffs of an edge cannot
be easily obtained from the payoffs of its starting node and
its ending node, therefore storing the results in the edges is
more general than storing the results only in the nodes2.

1The particular aggregation depends on the backpropagation method used
(see section III-B): in the update-all case, the data of a node is equivalent
to the data of the edge with the biggest number of playouts.

2As an implementation note, it is possible to store the aggregations of
the edges in the start node provided one associates the relevant move.



µ = .0
n = 1

µ = .5
n = 4

µ = .8
n = 5

µ = .67
n = 6

µ = .7
n = 10

(a) Storing the results in the
nodes

µ = .5
n = 2

µ = .0
n = 1

µ = .75
n = 4

µ = .8
n = 5

µ = .5
n = 4

(b) Storing the results in the edges

Figure 1. Example of the update-descent backpropagation results stored
on nodes and on edges for a toy tree.

B. Backpropagation

After the tree was descended and a simulation lead to a
payoff, information has to be propagated upwards. When the
game tree is a plain tree, the propagation is straightforward.
The traversed nodes are exactly the ancestors of the leaf
node from which the simulation was performed. The edges
to be updated are thus easily accessed and for each edge,
one simulation is added to the counter and the total score is
updated. Similarly, in the hash-table solution, the traversed
edges are stored on a stack and they are updated the same
way.

In the general DAG problem however, many distinct
algorithms are possible. The ancestor edges are a superset
of the traversed edges and it is not clear which need to be
updated and if and how the aggregation should be adapted.
We will be concerned with three possible ways to deal with
the update step: updating every ancestor edge, updating the
descent path, updating the ancestor edges but modifying the
aggregation of the edge not belonging to the descent path.

Updating every ancestor edge without modifying the
aggregation is simple enough, provided one takes care that
each edge is not updated more than once after each playout.
We call this method update-all. Update-all might suffer from
deficiencies in schemata like the counter-example presented
in figure 2. The problem in update-all made obvious by
this counter-example is that the distribution of playouts in
the different available branches does not correspond to a
distribution as given by UCT: assumption 3 is not satisfied.

The other straightforward method is to update only the
traversed edges, we call it update-descent. This method is
very similar to the standard UCT algorithm implemented
on a regular tree and it is used in the simple way. When
such a backpropagation is selected, the selection mechanism
can be adjusted so that transpositions are taken into account
when evaluating a move. The possibilities for the selection
mechanism are presented in the following section.

µ = .5
n = 2

µ = .4
n = 2

µ = .5
n = 2

µ = .5
n = 2

µ = .45
n = 4

E = .8E = .5

(a) Initial settings

µ = .5
n = 102

µ = .4
n = 2

µ = .5
n = 102

µ = .5
n = 102

µ = .498
n = 104

E = .8E = .5

(b) 100 playouts later

Figure 2. Counter-example for the update-all backpropagation procedure.
If the initial estimation of the edges is imperfect, the UCT policy combined
with the update-all backpropagation procedure is likely to lead to errors

The backpropagation procedure advocated in [7] for their
selection procedure UCT3 is also noteworthy. We did not
implement it because the same behaviour could be obtained
directly with update-descent backpropagation (see section
III-C).

C. Selection

The descent of the game tree can be described as follows.
Start from the root node. When in a node a, select a move m
available in a using a selection procedure. If m corresponds
to an edge in the game tree, move along that edge to another
node of the tree and repeat. If m does not correspond to
an edge in the tree, consider the position b resulting from
playing m in a. It is possible that b was already encountered
and there is a node representing b in the tree, in this case,
we have just discovered a transposition, build an edge from
a to b, move along that edge and repeat the procedure from
b. Otherwise construct a new node corresponding to b and
create an edge between a and b, the descent is finished.

The selection process consists in selecting a move that
maximizes a given formula. State of the art implementations
usually rely on complex formulae that embed heuristics or
domain specific knowledge, but the baseline remains the



µ = 0.5
n = 20

µ = 0.4
n = 5

µ = 0.6
n = 25

µ = 0.5
n = 16

µ = 0.65
n = 20

µ = 0.5
n = 4

a

µ∞ = 0.6

b

µ∞ = 0.5

c

Figure 3. There is enough information in the game tree to know that
position b is better than position c, but there is not enough local information
at node a to make the right decision.

UCT formula3 defined in equation 2.
When the game tree is a DAG and we use the update-

descent backpropagation method, the equation 1 does not
hold anymore, so it is not absurd to look for another way
of estimating the value of a move than the UCT value.
Simply put, equation 1 says that all the needed information
is available locally, however deep transpositions can provide
useful information that would not be accessible locally.

For instance in the partial game tree in figure 3, it is desir-
able to use the information provided by the transpositions in
node b and c in order to make the right choice at node a. The
local information in a is not enough to decide confidently
between b and c, but if we have a look at the outgoing edges
of b and c then we will have more information. This example
could be adapted so that we would need to look arbitrarily
deep to get enough information.

We define a parametric adapted score to try to take
advantage of the transpositions to gain further insight in the
intrinsic value of the move. The adapted score is parame-
terized by a depth d and is written for an edge e µd(e).
µd(e) uses the number of playouts, the mean payoff and the
adapted score of the descendants up to depth d. The adapted

3Although these heuristics tend to make the exploration term unneces-
sary.

score is given by the following recursive formula.

µ0(e) = µ(e)

µd(e) =

∑
f∈c(e) µd−1(f)× n(f)∑

f∈c(e) n(f)

The UCT algorithm uses an exploration factor to balance
concentration on promising moves and exploration of less
known paths. The exploration factor of an edge tries to
quantify the information directly available at it. It does not
allow to acknowledge that transpositions occurring after the
edge offer additional information to evaluate the quality of
a move. So just as we did above with the adapted score, we
define a parametric adapted exploration factor to replace the
exploration factor. Specifically, for an edge e, we define a
parametric move exploration that accounts for the adaptation
of the number of payoffs available at edge e and is written
nd(e) and a parametric origin eploration that accounts for
the adaptation of the total number of payoffs at the origin of
e and is written pd(e). The parameter d also refers to a depth.
nd(e) and pd(e) are defined by the following formulae.

n0(e) = n(e)

nd(e) =
∑

f∈c(e)

nd−1(f)

pd(e) =
∑

f∈b(e)

nd(f)

In the MCTS algorithm, the tree is built progressively as
the simulations are run. So any aggregation of edges built
after edge e will lack the information available in µ′(e) and
n′(e). This can lead to a leak of information that becomes
more serious as the depth d grows. If we attach µ′(e) and
n′(e) along µ(e) and n(e) to an edge it is possible to
avoid the leak of information and to slightly adapt the above
formulae to also take advantage of this information. Another
advantage of the following formulation is that is avoids to
treat separately edges without any child.

µ0(e) = µ(e)

µd(e) =
µ′(e)× n′(e) +

∑
f∈c(e) µd−1(f)× n(f)

n′(e) +
∑

f∈c(e) n(f)

n0(e) = n(e)

nd(e) = n′(e) +
∑

f∈c(e)

nd−1(f)

pd(e) =
∑

f∈b(e)

nd(f)

If the height of the partial game tree is bounded by h4,
then there is no difference between di = h and di = h+x for
i ∈ {1, 2, 3} and x ∈ N. When di is chosen sufficiently big,

4for instance if the game cannot last more than h move or if one node
is created after each playout and there will not be more than h playouts



we write di = ∞ to avoid the need to specify any bound.
Since the underlying graph of the game tree is acyclic, if h
is a bound on the height of an edge e then h− 1 is a bound
on the height of any child of e, therefore we can write the
following equality which recalls equation 1.

µ∞(e) =
µ′(e)× n′(e) +

∑
f∈c(e) µ∞(f)× n(f)

n′(e) +
∑

f∈c(e) n(f)

The formulae proposed do not ensure that any playout
will not account for more than once in the values of nd(e)
and pd(e). However a playout can only be counted multiple
times if there are transpositions in the subtree starting after
e. It is not clear to the authors how a transposition in the
subtree of e should affect the confidence in the adapted score
of e. Thus, it is not clear whether such playouts need to
be accounted several times or just once. Admitting several
accounts gives rise to a simpler formula and was chosen for
this reason.

We can now adapt formula 2 to use the adapted score and
the adapted exploration to give a value to a move. We define
the adapted value of an edge e with parameters (d1, d2, d3) ∈
N3 and exploration constant c to be ud1,d2,d3(e) = µd1(e)+
c ×

√
log pd2 (e)

nd3 (e) . The notation (d1, d2, d3) makes it easy to
express a few remarks about the framework.

• When no transposition occur in the game, such as
when the board state includes the move list, every
parameterization gives rise to exactly the same selection
behavior which is also that of the plain UCT algorithm.

• The parameterization (0, 0, 0) is not the same as com-
pletely ignoring transpositions since each position in
the game appears only once in the game tree when we
use parameterization (0, 0, 0).

• The simple way (see section II) can be obtained through
the (1, 1, 1) parameterization.

• The selection rules in [7] can be obtained through
our formalism: UCT1 corresponds to parameterization
(0, 0, 0), UCT2 is (1, 0, 0) and UCT3 is (∞, 0, 0).

• It is possible to adapt the UCT value in almost the same
way when the results are stored in the nodes rather
than in the edges but it would not be possible to have a
parameterization similar to any of d1, d2 or d3 equaling
to zero.

IV. EXPERIMENTAL RESULTS

A. Tests on LeftRight

LeftRight is an artificial one player game already used in
[10] under the name “left move”, at each step the player is
asked to chose to move Left or to move Right ; after a given
number of steps the score of the player is the number of
steps walked towards Left. A position is uniquely determined
by the number of steps made towards Left and the total

75

80

85

90

95

100

0 1 2 3 4 5 6 7

Sc
or

e

d3

µ0
µ2
µ5

µ∞

Figure 4. LeftRight results.

number of moves played so far, transitions are therefore very
frequent5.

We used 300 moves long games for our tests. Each test
was run 200 times and the standard error is never over 0.3%
on the following scores.

The UCT algorithm performs well at LeftRight so the
number of simulations had to be low enough to get any dif-
ferentiating result. We decided to run 100 playouts per move.
The plain UCT algorithm without detection of transpositions
with an exploration constant of 0.3 performs 81.5 %, that is
in average 243.5 moves out of 300 were Left. We also tested
the update-all backpropagation algorithm which scored 77.7
%. We tested different values for all three parameters but
the scores almost did not evolve with d2 so for the sake of
clarity we present results with d2 set to 0 in figure 4.

The best score was 99.8% with the parameterization
(∞, 0, 1) which basically means that in average less than
one move was played to the Right in each game. Setting d3

to 1 generally constituted a huge improvement. Raising d1

was consistently improving the score obtained, eventually
culminating with d1 =∞.

B. Tests on Hex

Hex is two-player zero sum game that cannot end in a
draw. Every game will end after at most a certain number
of moves and can be labeled as a win for Black or as a
win for White. Rules and details about Hex can be found
in [11]. Various board sizes are possible, sizes from 1 to
8 have been computer solved [12]. Transpositions happen
frequently in Hex because a position is completely defined
by the sets of moves each player played, the particular order
that occurred before has no influence on the position. MCTS
is quite successful in Hex [5], hence Hex can serve as a good
experimentation ground to test our parametric algorithms.

5if there are h steps the full game tree has only h×(h−1)
2

nodes if
transpositions are recognized but 2h nodes otherwise



40

42

44

46

48

50

52

54

56

58

60

62

0 0.5 1 1.5 2 2.5 3

Sc
or

e

d3

µ0
µ1
µ2
µ4

Figure 5. Hex results with d2 set to 0

Hex offers a strong advantage to the first player and it
is common practice to balance a game with a compulsory
mediocre first move6. We used a size 5 board with an initial
stone on b2. Each test was a 400 games match between the
parameterization to be tested and a standard A.I. In each test,
the standard A.I. played Black on 200 games and White on
the remaining 200 games. The reported score designates the
average number of games won by a parameterization. The
standard error was never over 2.5%.

The standard A.I. used the plain UCT algorithm with an
exploration constant of 0.3, it did not detect transpositions
and it could perform 1,000 playouts at each move. We also
ran a similar 400 games match between the standard A.I.
and an implementation of the update-all backpropagation
algorithm with an exploration constant of 0.3 and 1,000
playouts per move. The update-all algorithm scored 51.5%
which means that it won 206 games out of 400. The
parameterization to be tested also used a 0.3 exploration
constant and 1,000 playouts at each move. The results are
presented in figure 5 for d2 set to 0 and in figure 6 for d2

set to 1.
The best score was 63.5 % with the parameterization

(0, 1, 2). It seems that setting d1 as low as possible might
improve the results, indeed with d1 = 0 the scores were
consistently over 53% while having d1 = 1 led to having
scores between 48% and 62%. Setting d1 = 0 is only
possible when the payoffs are stored per edge instead of
per node as discussed in section III-A.

V. CONCLUSION AND FUTURE WORK

We have presented a parametric algorithm to deal with
transpositions in MCTS. Different parameters did improve
on usual MCTS algorithms for two games: LeftRight and
Hex.

6Even more common is the swap rule or pie-rule.

40

45

50

55

60

65

0 0.5 1 1.5 2 2.5 3

Sc
or

e

d3

µ0
µ1
µ2
µ4

Figure 6. Hex results with d2 set to 1

In this paper we did not deal with the graph history
interaction problem [13]. In some games the problem occurs
and we might adapt the MCTS algorithm to deal with it.

We have defined a parameterized value for moves that
integrates the information provided by some relevant trans-
positions. The distributions of the values for the available
moves at some nodes do not necessarily correspond to a
UCT distribution. An interesting continuation of our work
would be to define an alternative parametric adapted score so
that the arising distributions would still correspond to UCT
distributions.

Another possibility to take into account the information
provided by the transpositions is to treat them as contextual
side information. This information can be integrated in the
value using the Rapid Action Value Estimation (RAVE)
formula [14], or to use the episode context framework
described in [15].

REFERENCES

[1] R. Coulom, “Efficient selectivity and back-up operators in
monte-carlo tree search,” in Computers and Games 2006, ser.
Volume 4630 of LNCS. Torino, Italy: Springer, 2006, pp.
72–83.

[2] ——, “Computing Elo ratings of move patterns
in the game of Go,” ICGA Journal, vol. 30,
no. 4, pp. 198–208, December 2007. [Online]. Available:
http://remi.coulom.free.fr/Amsterdam2007/MMGoPatterns.pdf

[3] S. Gelly and D. Silver, “Achieving master level play in 9 x
9 computer go,” in AAAI, 2008, pp. 1537–1540.

[4] G. Chaslot, L. Chatriot, C. Fiter, S. Gelly, J.-B. Hoock,
J. Perez, A. Rimmel, and O. Teytaud, “Combiner con-
naissances expertes, hors-ligne, transientes et en ligne pour
l’exploration Monte-Carlo. Apprentissage et MC,” Revue
d’Intelligence Artificielle, vol. 23, no. 2-3, pp. 203–220, 2009.

[5] T. Cazenave and A. Saffidine, “Utilisation de la recherche
arborescente Monte-Carlo au Hex,” Revue d’Intelligence Ar-
tificielle, vol. 23, no. 2-3, pp. 183–202, 2009.



[6] D. Breuker, “Memory versus search in games,” Universiteit
Maastricht, PhD thesis, 1998.

[7] B. E. Childs, J. H. Brodeur, and L. Kocsis, “Transpositions
and move groups in monte carlo tree search,” in CIG-08,
2008, pp. 389–395.

[8] J. Méhat and T. Cazenave, “Combining UCT and nested
Monte-Carlo search for single-player general game playing,”
to appear, 2010.

[9] L. Kocsis and C. Szepesvàri, “Bandit based monte-carlo
planning,” in ECML, ser. Lecture Notes in Computer Science,
vol. 4212. Springer, 2006, pp. 282–293.

[10] T. Cazenave, “Nested monte-carlo search,” in IJCAI, 2009,
pp. 456–461.

[11] C. Browne, Hex Strategy: Making the Right Connections,
A. K. Peters, Ed. MA: Natick, 2000.

[12] P. Henderson, B. Arneson, and R. B. Hayward, “Solving 8x8
Hex,” in IJCAI, C. Boutilier, Ed., 2009, pp. 505–510.

[13] A. Kishimoto and M. Müller, “A general solution to the graph
history interaction problem,” in AAAI, 2004, pp. 644–649.

[14] S. Gelly and D. Silver, “Combining online and offline knowl-
edge in UCT,” in ICML, 2007, pp. 273–280.

[15] C. D. Rosin, “Multi-armed bandits with episode context,” in
Proceedings ISAIM, 2010.


