
Tree Parallelization of Ary on a Cluster

Jean Méhat
LIASD, Université Paris 8, Saint-Denis France,

jm@ai.univ-paris8.fr

Tristan Cazenave
LAMSADE, Université Paris-Dauphine, Paris France,

cazenave@lamsade.dauphine.fr

Abstract

We investigate the benefits of Tree Parallelization on a clus-
ter for our General Game Playing program Ary. As the Tree
parallelization of Monte-Carlo Tree Search works well when
playouts are slow, it is of interest for General Game Play-
ing programs, as the interpretation of game description takes
a large proportion of the computing time, when compared
with program designed to play specific games. We show that
the tree parallelization does provide an advantage, but that
it decreases for common games as the number of subplayers
grows beyond 10.

Introduction

Monte-Carlo Tree Search is quite successful for General
Game Playing (Finnsson and Björnsson 2008; Méhat and
Cazenave 2010b) even if other approaches such as the
knowledge-based approach also exist (Haufe et al. 2011).
An important feature of Monte-Carlo Tree Search is that it
improves with more CPU time. Therefore in the time allo-
cated to make a move, it is desirable to develop as much as
possible the Monte-Carlo tree in order to gain as much as
possible information on the available moves. Parallelizing
Monte-Carlo Tree Search is a promising way to make use of
more CPU power.

In this paper we investigate the parallelization of our Gen-
eral Game Playing player Ary (Méhat and Cazenave 2010a)
on a cluster of machines.

The next section details the parallelization of Monte-
Carlo Tree Search. The third section shows how we have
applied it to Ary. The fourth section gives experimental re-
sults for various games from previous General Game Play-
ing competitions.

Parallelization of Monte-Carlo Tree Search

There are multiple ways to parallelize Monte-Carlo Tree
Search (Cazenave and Jouandeau 2007). The most simple
one is the Root Parallelization. It consists in running sepa-
rately on different machines or cores the Monte-Carlo Tree
Search algorithm developing independently its specific tree,
and in collecting at the end of the allocated time the re-
sults of the separate searches. Each move at the top of the
tree is qualified by combining the results of the independent
searches. This way of parallelizing is extremely simple and

works well for some games such as Go (Chaslot, Winands,
and van den Herik 2008) or some games from General Game
Playing represented in the Game Description Language such
as Checkers or Othello (Méhat and Cazenave 2010c).

Another way of parallelizing Monte-Carlo Tree Search
is the Tree parallelization (Cazenave and Jouandeau 2008;
Chaslot, Winands, and van den Herik 2008). It consists in
sharing the tree among the various machines or cores. On
a multi-core machine there is only one tree in memory and
different threads descend the tree and perform playouts in
parallel. On a cluster the main machine holds the tree and
descends it. After each descent it selects another available
machine of the cluster and sends the moves associated to the
descent to this machine. The remote machine then plays the
moves it has received, starting from the position at hand and
continues with a random playout. It then sends back to the
main machine the result of the playout and becomes avail-
able again.

Tree parallelization of the Fuego Go program using lock-
free multi-threaded parallelization has been shown to im-
prove significantly its level of play (Enzenberger and Müller
2009).

Centurio is an UCT based General Game Playing agent.
It uses multi-core tree parallelization and cluster based root
parallelization (Möller et al. 2011).

Gamer is also an UCT based General Game Playing
agent. Experiments with the tree parallelization of Gamer
on a multi-core machine brought speedups between 2.03 and
3.95 for four threads (Kissmann and Edelkamp 2011).

Tree parallelization of Ary

Current General Game players using Monte-Carlo Tree
Search do not perform many simulations when compared
with programs playing specific games. This is due to the
way the game description is used for generating legal moves,
applying joint moves, determining if a situation is terminal
and getting the scores of the players.

In Ary, the game description received from the Game
Master in the Game Description Language (GDL) is trans-
lated into Prolog and interpreted by a Prolog interpreter.
When a node is created in the tree, its legal moves — or
the scores of the players in terminal situations – are obtained
from the interpreter and stored in the node; they are available
for further descents without interaction with the interpreter.

On the other hand, when performing playouts, the interpreter
is used at each step to analyze the current situation. The re-
sults of this analysis are discarded once they have been used
to avoid saturating the memory.

Playouts are slow in General Game Playing, and tree
parallelization of Monte-Carlo Tree Search on a cluster
gives better speedups when playouts are slow (Cazenave and
Jouandeau 2008). It is therefore natural to try Tree Paral-
lelization of our General Game Playing agent Ary on a clus-
ter.

In the cluster, one machine is distinguished as the Player:
it interacts with the Game Master and maintains the UCT
tree. We name the other the Subplayers; they only perform
playouts at the request of the Player. All transmission be-
tween the Player and a subplayer are done via standard TCP
streams.

At the beginning of a match, the Player transmits to all the
subplayers the GDL description of the game received from
the Game Master.

Result reception in the Player

Before requesting a playout and before each descent in the
UCT tree, the Player scans with a select system call its con-
nections with the Subplayers to detect which ones have data
available. The available data are playout results: they are
read and used to update the UCT tree, and the Subplayers
are marked as available for another playout.

Playout request in the Player

Algorithm 1 Main algorithm in the Player.

while the available time is not elapsed do
receive playout results if any
process received playout results
node← root node
while it is possible to descend the UCT tree do

select child node
node← child

end while
expand node
if node is terminal then

update tree
else

receive playout results if any
while not available Subplayer do

process received playout results
wait for data from any Subplayer

end while
send node description to the available Subplayer
process received playout results

end if
end while

Algorithm 1 presents the main algorithm in the Player,
descending in the UCT tree, requesting playouts from the
Subplayers and receiving their results.

The Player descends the UCT tree. When it arrives at a
leaf of the built tree, it expands it into a new node and if

the node is not terminal, it selects a Subplayer, by scanning
their states until finding one marked as available. This scan
is done in a fixed order, permitting to establish a preference
order between the Subplayers. When all the Subplayers are
busy, the Player waits until one has finished the task at hand
and reaches the available state.

Once a subplayer is found available, the Player sends to it
the situation in the node in GDL. We opted to send the cur-
rent situation instead of the sequence of moves used from the
root node as done usually in Tree Parallelization. It avoids to
have to interpret the application of this sequence of moves in
the subplayer, which necessitates slow interactions between
the Subplayer and its GDL interpreter.

Subplayer loop

Algorithm 2 Subplayer algorithm

receive game description
while true do

get a state description
play a playout
send the playout result to the main machine

end while

The algorithm 2 resumes the work a Subplayer.

The Subplayers receive a game description in GDL, load
it into their GDL interpreters and then enter a loop.

They wait for a description of a situation of the game,
play a completely random playout until a terminal situation,
and send the results to the Player. In the current setting, the
result is only the score of each player in the final situation,
but they might send back the sequence of moves played in
the playout, at the cost of a slightly slower communication.

Algorithm 3 Send algorithm in the Player.

while not available Subplayer and not time elapsed do
receive playout results if any

end while
if not time elapsed then

send current node description
receive playout results if any
process received playout results

end if

Experimental results

We made a single process Ary, using a single thread to de-
scend into the tree and run the playouts, play matches in a
variety of games against a version of Ary running on a clus-
ter using between 1 and 16 Subplayers.

The cluster is made a mixture of standard 2 GHz, 2.33
GHz and 3 GHz PC with two gigabytes of central memory
running Linux connected via a switched 100 Mbits Ethernet
network. Each machine hosted only a single Subplayer or
Player to avoid race for memory between the players. For
each match, the single Player, the parallel Player and the

Number of subplayers
game 1 2 4 8 16

Breakthrough 18 40 58 68 77
Connect 4 26 38 38 42 50
Othello 41 68 67 81 96
Pawn whopping 43 36 51 54 59
Pentago 38 40 55 73 87
Skirmish 73 76 76 78 79

Table 1: The results of the Tree Parallel Player running as
second player against a single player, averaged over 100
matches.

Number of subplayers
game 1 2 4 8 16

Breakthrough 44 65 60 67 65
Connect 4 28 44 63 66 75
Othello 59 60 72 84 83
Pawn whopping 44 45 43 46 35
Pentago 35 54 68 64 68
Skirmish 71 71 74 76 71

Table 2: The results of the Root Parallel Player running
as second player against a single player, from [Méhat and
Cazenave, 2010c].

Subplayers were dispatched at (pseudo)-random between
available machines.

The matches were run with 8 seconds of initial time and
8 seconds per move. The games tested were Breakthrough,
Connect 4, Othello, Pawn whopping, Pentago and Skirmish.
The rules used were the ones available on the Dresden Game
Server.

For each game, we ran 100 matches with the Tree Parallel
Player as second player, except for setting with 16 subplay-
ers where the number of matches was limited to 70 because
of time constraints on the use of the cluster.

Results of the matches

The results of each player are presented in table 1. There
is only a slight improvement for the games Skirmish and
Pawn whopping, while it is particularly notable for Break-
through, Pentago and particularly at Othello. The game
Connect 4 is in-between, with results that get better as the
number of subplayers augments, but not as much as in
Breakthrough, Pentago and Othello.

Comparison with Root Parallelism

These results can be compared with those presented in
(Méhat and Cazenave 2010c), where the same games were
played using Root Parallelism in the same settings on the
same machines, except that the matches were run with a 10
seconds playing time (figure 2). The results used are those

obtained by combining the accumulated values and number
of experiments in the root nodes of the trees developped in-
dependently in the subplayers, as it is the one that gave the
best results for multiplayer games.

Root Parallelism did work for Breakthrough and Skir-
mish, and Tree Parallelism also does bring an amelioration
for these games. While Pawn whopping did not get bet-
ter with Root Parallelism, it shows some amelioration until
eight subplayers with Tree Parallelism.

Secondly, the overall results with Tree Parallelism with
16 subplayers are better than with Root Parallelism in all the
games, except Connect 4.

The differences between Root Parallelism and Tree Paral-
lelism reside in the sharing of nodes, the choice of branches
to explore and the cost of communications. With Root Par-
allelism, the same node has to be expanded into every Sub-
player where it is explored, while with Tree Parallelism, the
node is expanded only once. In Root Parallelism, the choice
of the branch in the UCT descent phase are only based on
the node explored in the the Subplayer, while with Tree Par-
allelism the results of the playouts of all the Subplayers are
taken into account. Finally, Root Parallelism incurs only one
interaction per played move, when Tree Parallelism needs an
interaction for every playout delegated to a Subplayer.

When there is only one Subplayer, there is only one tree,
developped in the Subplayer for Root Parallelism or in the
Player for Tree Parallelism. The only distinguishing factor
between the two meethods is then the communication cost,
whose impact should be greater in games with short play-
outs. It comes as a surprise that Root Parallelism with one
Subplayer exhibits significantly better results than Tree Par-
allelism with one Subplayer for Breakthrough and Othello,
the two games where the playouts are slow. This point needs
more investigations.

Use of the subplayer during the game

The benefits obtained from delegating playouts to subplay-
ers vary between phases of the match. At the match goes on,
the time of the descent of the tree tends to augment with the
depth of the tree, while the time for a playout tends to di-
minish with the number of moves in the playout. Moreover,
when the match is nearly finished, the descent in the UCT
tree arrives with a growing frequency to terminal positions
where there is no need to run playouts.

This variation has an influence on the benefit brought by
using Subplayers. To measure it, we computed the aver-
age number of playouts computed by each subplayer at each
move in the one against 16 matches. The following figure
shows these numbers for the first, the fourth, the eighth and
the sixteenth Subplayer for some of the studied games. As
the first available subplayers is solicited when one is needed,
it allows to evaluate how useful is each subplayer.

For the game Skirmish, the evolution is presented in fig-
ure 1. The subplayers are able to compute about 120 play-
outs at the beginning of the match, and the last subplayer is
only used at half of it capacity. As the match advances, the
playouts get shorter and their number grow. After the tenth
move, the 8th subplayer is less used, until move 27 where its

 0

 100

 200

 300

 400

 500

 600

 700

 0 5 10 15 20 25 30 35 40

#
 o

f
p
la

y
o
u
ts

move

skirmish

1st
4th
8th

16st

Figure 1: The evolution of the number of playouts for some
subplayers in the game of Skirmish with 16 Subplayers.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 5 10 15 20 25 30 35 40 45

#
 o

f
p
la

y
o
u
ts

move

connect4

1st
4th
8th

16st

Figure 2: The evolution of the number of playouts for some
subplayers in the game of Connect 4 with 16 Subplayers.

use descends to 0. The curves for Pawn whopping are quite
similar.

For the game Connect 4, presented in figure 2, the 16th
subplayer is not solicited during the whole match, and the
8th subplayer is only half busy at the beginning. After move
17, it enters into action. The 4th and 8th subplayer are as
busy between moves 20 and 25.

For the game Pentago, presented in figure 3, all the sub-
players are used at full capacity until move 11 ; then the
utility of the 16th subplayer diminishes until getting nearly
not used at move 30. The 8th subplayer is used until move
20.

For the game Breakthrough, the evolution presented in
figure 4 has the same structure, but here the 16th subplayer
is kept busy nearly until the end of the game but presents a
peak of activity near the end of the game.

The curve for Othello appears in figure 5. The interpreta-
tion of these rules are pretty slow and the number of playouts
at the beginning is around 25 for all the subplayers. The 8th
subplayer is kept busy until move 35 and the 4th subplayer
nearly until move 50.

 0

 100

 200

 300

 400

 500

 600

 700

 0 5 10 15 20 25 30 35 40

#
 o

f
p
la

y
o
u
ts

move

pentago2008

1st
4th
8th

16st

Figure 3: The evolution of the number of playouts for some
subplayers in the game of Pentago with 16 Subplayers.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 10 20 30 40 50 60 70 80 90 100

#
 o

f
p
la

y
o
u
ts

move

breakthrough

1st
4th
8th

16st

Figure 4: The evolution of the number of playouts for some
subplayers in the game of Breakthrough with 16 Subplayers.

 0

 100

 200

 300

 400

 500

 600

 0 10 20 30 40 50 60 70

#
 o

f
p
la

y
o
u
ts

move

othello

1st
4th
8th

16st

Figure 5: The evolution of the number of playouts for some
subplayers in the game of Othello with 16 Subplayers.

Conclusion

We have implemented a Tree Parallel version of our General
Game Playing agent Ary, and tested it on a variety of games.

We have shown that, in contrast with the Root Parallel
version studied in (Méhat and Cazenave 2010c) that worked
for some games but not for others, the Tree Parallel version
improves the results against a serial player on all considered
games, on some games more that others. This improvement
is not directly related to the length of the playout, but to
the ability of the Player to keep the Subplayers busy at the
beginning of a match.

For ordinary games, there is no great benefit to be ex-
pected from a number of subplayers over 16.

Acknowledgement

We are grateful to David Elaissi, Nicolas Jouandeau and
Stéphane Ténier who gave us access to the machines where
the tests were run.

References

Cazenave, T., and Jouandeau, N. 2007. On the paralleliza-
tion of UCT. In CGW, 93–101.

Cazenave, T., and Jouandeau, N. 2008. A parallel Monte-
Carlo tree search algorithm. In Computers and Games, vol-
ume 5131 of Lecture Notes in Computer Science, 72–80.
Springer.

Chaslot, G.; Winands, M. H. M.; and van den Herik, H. J.
2008. Parallel monte-carlo tree search. In Computers and
Games, volume 5131 of Lecture Notes in Computer Science,
60–71. Springer.

Enzenberger, M., and Müller, M. 2009. A lock-free multi-
threaded monte-carlo tree search algorithm. In ACG, vol-
ume 6048 of Lecture Notes in Computer Science, 14–20.
Springer.

Finnsson, H., and Björnsson, Y. 2008. Simulation-based
approach to general game playing. In AAAI, 259–264.

Haufe, S.; Michulke, D.; Schiffel, S.; and Thielscher,
M. 2011. Knowledge-based general game playing. KI
25(1):25–33.

Kissmann, P., and Edelkamp, S. 2011. Gamer, a general
game playing agent. KI 25(1):49–52.

Méhat, J., and Cazenave, T. 2010a. Ary, a general game
playing program. In Board Games Studies Colloquium.

Méhat, J., and Cazenave, T. 2010b. Combining UCT and
nested monte-carlo search for single-player general game
playing. IEEE Transactions on Computational Intelligence
and AI in Games 2(4):271–277.

Méhat, J., and Cazenave, T. 2010c. A parallel general game
player. KI 25(1):43–47.

Möller, M.; Schneider, M.; Wegner, M.; and Schaub, T.
2011. Centurio, a general game player: Parallel, java- and
asp-based. KI 25(1):17–24.

