
Algorithm and Knowledge Engineering for the
TSPTW Problem

Stefan Edelkamp∗, Max Gath∗, Tristan Cazenave†, and Fabien Teytaud‡
∗Institute for Artificial Intelligence, University of Bremen, Germany, Email: {edelkamp,mgath}@tzi.de

†LAMSADE, Universite Paris Dauphine, France, Email: cazenave@lamsade.dauphine.fr
‡Univ Lille Nord de France, ULCO, LISIC, BP 719, 62228 CALAIS Cedex, Email: teytaud@lisic.univ-littoral.fr

Abstract—The well-known traveling salesman problem (TSP)
is concerned with determining the shortest route for a vehicle
while visiting a set of cities exactly once. We consider knowledge
and algorithm engineering in combinatorial optimization for im-
proved solving of complex TSPs with Time Windows (TSPTW).
To speed-up the exploration of the applied Nested Monte-Carlo
Search with Policy Adaption, we perform beam search for an
improved compromise of search breadth and depth as well as
automated knowledge elicitation to seed the distribution for
the exploration. To evaluate our approach, we use established
TSPTW benchmarks with promising results. Furthermore, we
indicate improvements for real-world logistics by its use in a
multiagent system. Thereby, each agent computes individual
TSPTW solutions and starts negotiation processes on this basis.

I. INTRODUCTION

In the Traveling Salesman Problem (TSP) a set of N cities
(one of which is the depot) and their pairwise distances are
given. The task is to find the shortest route that starts and ends
at the depot and visits each city only once.

In the Traveling Salesman Problem with Time Windows
(TSPTW), additionally to the TSP, each city has to be visited
and left within a given time interval. As the Hamiltonian Path
problem is a subproblem, TSP, TSPTW and most other TSP
variants are computationally hard [7], so that no algorithm
polynomial in N is to be expected.

A genetic search solver for TSPTW problems has been
contributed by Potvin and Bengio [20]. Alternative algorithms
are constraint logic programming [19], ant colony optimization
[16], and generalized insertion heuristics [13]. Exact TSPTW
solvers often apply branch-and-bound search, are usually
based on refined bounds [7] and have, e.g., been suggested
by [3], [8], [9], [11]. Their scaling, however, is limited.

In real-world logistics applications more general TSP(TW)
variants are common: capacities limitations on the vehicle
of the traveling salesman, combined delivery and backhault
transportation of goods, premium vs. non-premium tasks,
vehicle routing problems with several salesmen to jointly solve
a logistics problem too large for one salesman, see [18] for a
survey. Solomon [24] provides benchmarks for vehicle routing
problems with time window constraints.

Numerous complex TSP problems have a huge state space,
but no good heuristic for ordering moves to guide the search
toward the best solution. Therefore, randomized search is
often applied. For example, Nested Monte-Carlo Search uses

random rollouts at its base level. It combines nested calls with
randomness in the rollouts and memorization of the best tour.

Nested Monte-Carlo search has been combined with expert
knowledge and an evolutionary algorithm [21]. The Monte-
Carlo algorithm (with a small level) is reapeatedly called and
optimized by a Self-Adaptation Evolution Strategy. However,
the effectiveness of this hybrid Nested Monte-Carlo algorithm
decreases as the number of cities increases. Biasing Monte-
Carlo simulation through Rapid Action Value Estimation
(RAVE) in the TSPTW domain has been investigated by
Rimmel et al. [22], while Rosin [23] invented Policy Adaption
for Nested Monte-Carlo search.

In this paper we perform algorithm engineering to speed-up
the process of finding good TSPTW solutions. Among other
implementation refinements we use beam search and policy
priors. For the TSP, policy priors can be deduced from the
pairwise city-to-city distance table, or from a lower bound
function like the Hungarian algorithm solving the Assignment
Problem (AP) or one of its refinements [14]. Moreover, we
show how to elicit knowledge from the definition of the TSP
to drive the solution process towards finding good solutions
even more quickly.

The paper is structured as follows: we start with (Nested)
Monte-Carlo Search and Policy Adaptation, and describe
known domain-dependent heuristic enhancements to reduce
the set of successors in the randomized search. Then, we
consider code refactoring and further speed-up techniques that
we jointly cast as algorithm engineering. Next, we will see
that prior knowledge implemented into an initial policy can
greatly reduce search efforts. The experiments are drawn on
a selection of TSPTW benchmarks and show improvements
to Nested Monte-Carlo search, so that more instances can be
solved optimally. Finally, we conclude and discuss the adap-
tation of the algorithms in an industrial strength multiagent
system.

II. MONTE-CARLO SEARCH

Monte-Carlo Tree Search is a class of randomized tree
search algorithms that backups values from the leaves of the
search tree back to the decision nodes to direct the search
towards the best solution found, while maintaining exploration
breadth. Thus, the algorithm is a proposed solution to the
well-known exploration vs. exploitation dilemma in state space
search.

Fig. 1. This figure illustrates three successive decision steps of a level 1 search
for a maximization problem. Numbers at the bottom of branches represent the
rewards. Level 1 exploration is represented in thin lines. Monte-Carlo playouts
(i.e. level 0) are shown with wavy lines and decisions are represented with
bold lines.

A. UCT

One noticeable representative in this class is the UCT
algorithm [15] that dynamically builds a search tree, from
whose leaves random walks to the end of the game (rollouts)
are initiated. Within the explicit UCT search tree, the algorithm
chains down from the root node, and applies a specialized
formula that mimics a multi-armed bandit problem to select
the best successor [2] of each node. The UCT-formula includes
the expected payoff in form of an exploration term, which
in more recent work sometimes is dropped or substituted
in favor to search knowledge in form of a value of an
expert-given or otherwise learned evaluation function. UCT is
very successful in playing games and outperforms traditional
approaches minimax search with αβ pruning, e.g., in Go [12]
and General Game Playing [10], [17].

B. Nested Monte-Carlo Search

For single-agent search challenges, Nested Monte-Carlo
(NMC) has been suggested and successively been applied to
games like Morpion Solitaire, SameGame, Sudoku and many
others [5].

NMC is a recursive algorithm which performs a certain
number of rollouts, where a rollout is a random path in the
search tree starting from the root and ending at a leaf that
can be evaluated to some score value. In each position, a
NMC search of level l (initiated by k) will perform a level
n-1 NMC for each action. If the value has decreased to 1 (or
to 0 depending on the implementation), a rollout is initiated.
At each choice point of a rollout the algorithm chooses the
successor that gives the best score when followed by a single
random rollout. Similarly, for a rollout of level l it chooses the
successor node that gives the best score when followed by a
rollout of level l−1. Hence, the core objective in NMC is that
the search is intensified with increasing depth of the search.

A level 1 maximization example is presented in Figure 1.
The leftmost tree illustrates the start. A Monte-Carlo playout
is performed for all 3 possible decisions. At the end of each
playout a reward is given, and the decision with the best reward
is chosen.

In [21] domain-dependent TSP heuristics have been added
to bias the Monte-Carlo simulations according to a (Boltzmann

softmax) policy, e.g., preferring states with a smaller distance
to the last city, a smaller amount of wasted time because a
city is visited too-early, or a smaller amount of time left until
the end of the time window of a city.

C. Policy Adaption in Nested Monte-Carlo Search

The basis for our algorithm is the implementation of
Cazenave and Teytaud [6] for NMC with Policy Rollout
Adaption (NPRA), an algorithm originally proposed by [23].
The NMC edge learning algorithm shares similarities the
RAVE adaptations applied to UCT search [22]. The rollout is
thus biased on a policy P (u, v) for the state space edges (u, v).
NPRA applies a level l search with i iterations in which the
best policy Pl(u, v) is updated. Moreover, in the first iteration
Pl(u, v) is initialized with Pl−1(u, v).

D. Domain-Dependent Pruning

Cazenave and Teytaud [6] have enhanced NPRA with
pruning rules. These extensions are domain-dependent and are
based on the following two preference rules for successor set
selection within the rollout.

1) If a time-window constraint is violated extending a
partial tour to a successor node v, reduce the successor
node set to {v}. The reason is that this violated city
should have been visited earlier.

2) Avoid visiting a node if it makes another node fail a
(time window) constraint. For this case it considers all
successor nodes that do not make any other node to fail
a constraint.

III. ALGORITHMIC REFINEMENTS

We have performed extensive refactoring and algorithm en-
gineering to enhance the exploration efficiency. The objective
of the tuning is simple: the faster the node expansion and the
rollouts implementations are, the better the nested search, as
it will have more back-up information for decision making.

A. Avoiding Copy Construction

In the original implementation for TSPTW solving with
NPRA by [6] the copy constructor is called in each iteration
and each level of the search (thus, for each search node). This
elegant solution (realized by calling copy = *this) helps
understanding the difference of recursive invocation of the
search and reinitializing it in each of the iterations. Moreover,
parallelization of the search is made easy, as each constructor
call can be given to a different computing node. However, for
this case of copy construction all non-static member variables
of the search class are replicated and copied to the new NMC
search class instance.

B. Reducing Memory Allocation

At each search node our implementation (see Fig. 2) copies
the policy when going down from level l − 1 to level l. To
avoid dynamic memory allocation all policies Pl, l = k, . . . , 0,
in a Level-k search are pre-allocated. Moreover, we moved the
copying of the policy to a working temporary and back from
inside the iteration loop to its outside.

Pair search(int level) {
Pair best;
best.score = MAX;
if (level == 0) {

best.score = rollout();
best.tour = tour.clone();

}
else {

clone[level] = policy;
for(int i=0; i<ITERATIONS; i++) {

Pair r = search(level - 1);
double score = r.score;
if (score < best.score) {

best.score = score;
best.tour = r.tour.clone();
adapt(best.tour,level);

}
delete r;

}
policy = clone[level];

}
return best;

}

Fig. 2. Nested Monte-Carlo with Policy Adaption.

At each search node, memory for one tour is reserved and
deleted in case no better solution has been found. Hence, the
memory consumption of the refined algorithm is bounded by
O(k · N2). The time efforts at each node are bounded by
O(N2). This includes the efforts for policy adaption in case of
an established improved solution. Since successor generation
takes O(N2) steps (due to the second heuristics) and given
that it is applied to each node in the tour to be generated, for
each rollout O(N3) operations are required.

C. Merging Rollout and Evaluation

In our engineered implementation we avoided the replay of
the partial tour in the successor generation function for deter-
mining its makespan. Thus, we merged successor generation
with the rollout. Moreover, we integrated the evaluation of a
tour to a score value into the rollout procedure (see Figure 3).
The offset penalizes constraint violations and is set to the
predefined maximum value for the distances divided by the
number of cities N (This is the largest possible values if MAX
is used as an upper bound for the worst possible score. (In
related research 106 is taken.)

D. Varying Nestedness

It is known that a Level-k NMC search for a smaller value
of k tends to saturate earlier for a large number of node
expansions than a Level-(k+1) search, so that in order to find
optimal solutions in bigger problem instances, larger values k
are often more effective. Thus, we varied k and adapted the
number of iterations t for learning, so that between 100 million
and one billion rollouts are performed for an entire exploration.
As the number of rollouts is fixed (tk), finding an appropriate
value t for a given value k and tree size is immediate.
For example, we choose (k, t) = (5, 50) with a total of
312 500 000 rollouts (used by [6], [21]), (k, t) = (8, 12) with

double rollout() {
visited = 0;
tourSize = 1;
int n = 0;
int u = 0;
double makespan = 0;
int violations = 0;
double cost = 0;
while(tourSize < N) {
double sum = 0;
int succs = 0;
for(int i = 1; i < N; i++)
if (!visited[i])
if(makespan + d[n][i] > r[i]) {
moves[0] = i;
succs = 1;
break;

}
if (!succs)
for(int i = 1; i < N; i++)
if(!visited[i])
int j=1;
while (j < N) {
if (j != i)

if(!visited[j])
if (l[i] > r[j] ||

makespan + d[n][i] > r[j])
break;

j++;
}
if (j==N)
moves[succs++] = i;

if(!succs)
for(int i = 1; i < N; i++)
if (!visited[i]) {
moves[succs++] = i;

for(int i=0; i<succs; i++)
sum += value[i] = EXP(policy[n][succ[i]]);

double m= rand([0,..,sum]);
int i=0;
sum = value[0];
while(sum<m)
sum += value[++i];

u = n;
n = succ[i];
tour[tourSize++] = n;
visited[n] = true;
cost += d[u][n];
makespan = max(makespan + d[u][n], l[n]);
if(makespan > r[n])
violations++;

}
tour[tourSize++] = 0;
cost += d[n][0];
makespan = max(makespan + d[n][0], l[0]);
if (makespan > r[0])
violations++;

return offset * violations + cost;
}

Fig. 3. Rollout with score evaluation at search tree leaf.

if (succs > b) {
for(int i = 0; i < b; i++)

swap(succ[i],moves[rand()%succs]);
succs = b;

}

Fig. 4. Implementing beam search.

void adapt(int tour[], int level) {
visited = (true,false,...,false);
int succs;
int n = 0;
for(int p=0; p<N; p++) {

succs = 0;
for(int i = 1; i < N; i++)

if(!visited[i])
moves[succs++] = i;

clone[level][n][tour[p]] += 1.0;
double z = 0.0;
for(int i=0; i<succs; i++)

z += exp(policy[n][succ[i]]);
for (int i=0; i<succs; i++)

clone[level][n][succ[i]] -=
exp(policy[n][succ[i]])/z;

n = tour[p];
visited[n] = true;

}
}

Fig. 5. Policy adaption.

a total of 429 981 696 rollouts and (k, t) = (10, 7) with a total
of 282 475 249 rollouts.

E. Employing Beam Search

We also experimented with Monte-Carlo beam search, as
this was effective in many single-agent search domains [4].
Morpion Solitaire this enhancement helped to match the record
score of 82 moves. There is, of course, a trade-off between
depth and width. It is often the case that a smaller set of
successors already yields to good solutions and that early
failures do not harm. The smaller the number of successors
the faster the rollout. Our implementation of beam search
(see Fig. 4) is a simplification of Monte-Carlo beam search
as recently proposed in [4]. For the experiments, we chose
a beam width b of N/2 so that at the root node half of the
successors are neglected from the search. During the rollout
the relative size of the set of successors increases with the
search depth.

F. Adapting Knowledge

The NMC algorithm with Policy Adaption (see Fig. 5) usu-
ally is invoked with P0(u, v) = 0 for all u, v ∈ {0, . . . N−1}.
The policy is stored in form of a (N ×N)–sized array and is
updated with the edge probabilities P (u, v) = Pl(u, v) wrt.
to a cost-improving tour as shown in the algorithm. First,
the denominator z for normalization is computed. Then, the
influence of the (chosen node / successor node) pair updates
the policy.

We found that much of the time is spent in evaluating the e-
function, so we chose known approximation for it (see Fig. 6).

static union{double d; struct{int j, i;} n;} e;
#define A (1048576/M_LN2)
#define C 60801
#define exp(y) (e.n.i=A*(y)+(1072693248-C),e.d)

Fig. 6. Approximating the e-function.

G. Elicitation of Knowledge

For a probabilistic prior policy in form of an initial seed we
aim at the simple strategy of including city-to-city distances.
This matches the idea of reordering in depth-first branch-and-
bound solvers for the problem. As we want to direct the search
towards successors with small distances, given that the e-
function is applied to the policy values, we take the negative
of the distance value for the policy.

In order to adjust the amplitude of these numbers, and
contributing to the fact that we can exclude some edges (e.g.,
(u, u), or (u, v) with lu+du,v > rv) by setting their distances
to infinity, we divide each value by the smallest value in
one column (equivalently row) of the distance matrix. More
formally, let cu = minN−1

v=0 {du,v} be the column minima for
u ∈ {0, . . . N − 1}. Then, we define the initial policy by
P0(u, v) = −du,v/cu for u, v = {0, . . . N − 1}.

There are other forms of knowledge available. For example,
after applying the Assignment Problem heuristic (e.g., with
the cubic time Hungarian algorithm), the distance matrix is
reduced to the solution of one minimal assignment. Even
though for seeding the policy this lower bound has to be
computed only once, we took an engineered version of its
computation documented by [9].

IV. EXPERIMENTS

We executed our experiments on one core of an Intel (R)
Core (TM) i7 CPU PC at 2 668 MHz that is equipped with
8 192 MB cache and 8 GB RAM running Ubuntu Linux 11.10.
We used the GNU c-compiler g++ (version 4.3.3), and all
program compilations were optimized with -O3. For easy
referencing we call our approximate TSPTW solver mTSP.

A. Dumas Benchmark

Table I shows that mTSP always finds an optimal tour for
simpler benchmark instances with N = 20. However, since the
algorithm does not stop automatically, no proof certificate for
optimality is derived. As expected, mTSP is much faster than
the two provably optimal algorithms suggested by [9]. Since it
is an anytime algorithm, the running time is set to a predefined
threshold to terminate the search. We used mTSP also in
larger Dumas’ benchmarks with a timeout of 15 minutes (see
Table II). For N = 40 all but 3 problems (total deviation from
optimum 4+4+9 = 17) were solved with the state-of-the-art
scores. For the N = 60 problems all but 9 problems (total
deviation 4 + 4 + 1 + 7 + 14 + 10 + 7 + 29 + 5 = 71) were
solved with the state-of-the-art scores.

TABLE I
RESULTS IN SMALLER INSTANCES OF THE DUMAS TSPTW BENCHMARK
(EXPANDED NODES E / INITIATED ROLLOUTS R AND CPU TIMES T ARE
SHOWN, INDEX h AND c REFER TO A DEPTH-FIRST BRANCH-AND-BOUND

SOLVER WITH TWO DIFFERENT ADMISSIBLE HEURISTICS, WHILE m
REFERS TO MTSP, COST SHOWS THE BEST KNOWN SOLUTIONS).

Problem Cost Eh Th Ec Tc Rm Tm

n20w20.001 378 49 < 1s 2 784 766 < 1s 20 736 < 1s
n20w20.002 286 97 < 1s 3 234 936 < 1s 125 000 < 2s
n20w20.003 394 138 < 1s 4 944 477 < 1s 125 000 < 2s
n20w20.004 396 156 < 1s 2 331 312 < 1s 20 736 < 1s
n20w20.005 352 41 < 1s 4 017 260 < 1s 125 000 < 2s
n20w40.001 254 38 022 3s 103 087 541 18s 125 000 < 2s
n20w40.002 333 88 < 1s 11 388 523 2s 20 736 < 1s
n20w40.003 317 1 409 < 1s 21 158 796 3s 125 000 < 2s
n20w40.004 388 7 676 1s 35 117 607 6s 20 736 < 1s
n20w40.005 288 10 287 2s 20 801 644 3s 20 738 < 1s
n20w60.001 335 40 810 14s 223 904 879 43s 41 472 < 1s
n20w60.002 244 97 144 7s 81 367 918 15s 20 738 < 1s
n20w60.003 352 399 127 27s 31 292 739 5s 125 000 < 10s
n20w60.004 280 4 055 453 258s 1 245 195 466 238s 2 509 056 < 10s
n20w60.005 338 105 393 10s 104 049 862 18s 2 757 888 < 10s
n20w80.001 329 316 992 35s 288 653 549 56s 125 000 < 2s
n20w80.002 338 260 552 36s 166 880 630 33s 500 000 < 10s
n20w80.003 320 15 959 3s 208 526 467 42s 20 736 < 1s
n20w80.004 304 1 258 898 80s 373 077 547 73s 20 736 < 1s
n20w80.005 264 5 224 435 438s 1 660 621 704 332s 125 000 < 30s

n20w100.001 237 1 635 101 52s 1 232 596 799 279s 20 736 < 1s
n20w100.002 222 68 954 7s 2 203 174 867 531s 625 000 < 30s
n20w100.003 310 13 382 035 765s 2 586 795 810 538s 20 736 < 1s
n20w100.004 349 34 289 2s 1 213 551 958 266s 41 472 < 1s
n20w100.005 258 688 887 44s 2 308 713 055 548s 82 944 < 1s

B. Solomon-Potwin-Bengio Benchmark

Table III shows the solution qualities of our implemen-
tation (C4) wrt. the results of [21] (C1) and [6] (C2 and
C3). The solution qualities align with the best-known values
(e.g., reported at http://iridia.ulb.ac.be/∼manuel/files/TSPTW/
SolomonPotvinBengio.best). With our algorithm only one
state-of-the-art solution (marked with an asterisk) has not been
found in the allocated time period. We also give approximate
timing information and the level l (in brackets) to which the
search was initialized. Aligning with the precursor work, every
experiment has been repeated 2-4 times in case no state-of-
the-art solution has been established.

To measure the savings for algorithm engineering we com-
pared the number of evaluations in a complete (level 5 –
10-iteration) search (beam search option disabled) for the
largest problem in the benchmark suite (rc204.1). The original
implementation took 2m31s, while the refined implementation
required only 11s. This documents that we have improved the
mere running time of the source by for more than one order
of magnitude!

We conducted one extra experiment (the only one for which
extra information was included into the system). Seeding
expert knowledge on the sequence of the first 5 or 10 cities
visited by the salesman, helped solving the remaining problem
(< 1m for a prefix of 10 cities and < 5m for a prefix of 5
cities). For this case, we simply set P0(u, v) = 100 if v is
a successor of u in the optimal solution. More complex non-
automated hints provided by domain experts are possible.

TABLE II
RESULTS IN LARGER INSTANCES OF THE DUMAS TSPTW BENCHMARK

(COSTS OF THE OBTAINED SOLUTIONS Cm AND CPU TIMES Tm ARE
SHOWN, COST REFER TO THE BEST KNOWN SOLUTIONS).

Problem Cost Cm Tm

n40w20.001 500 500 < 15m
n40w20.002 552 552 < 15m
n40w20.003 478 478 < 15m
n40w20.004 404 404 < 15m
n40w20.005 499 499 < 15m
n40w40.001 465 465 < 15m
n40w40.002 461 461 < 15m
n40w40.003 474 474 < 15m
n40w40.004 452 452 < 15m
n40w40.005 453 453 < 15m
n40w60.001 494 494 < 15m
n40w60.002 470 470 < 15m

n40w60.003* 408 412 = 15m
n40w60.004 382 382 < 15m
n40w60.005 328 328 < 15m
n40w80.001 395 395 < 15m

n40w80.002* 431 435 = 15m
n40w80.003 412 412 < 15m
n40w80.004 417 417 < 15m
n40w80.005 344 344 < 15m

n40w100.001* 429 438 =15m
n40w100.002 358 358 < 15m
n40w100.003 364 364 < 15m
n40w100.004 357 357 < 15m
n40w100.005 377 377 < 15m

Problem Cost Cm Tm

n60w20.001 551 551 < 15m
n60w20.002 605 605 < 15m
n60w20.003 533 533 < 15m
n60w20.004 616 616 < 15m
n60w20.005 603 603 < 15m
n60w40.001* 591 595 = 15m
n60w40.002 621 621 < 15m
n60w40.003 603 603 < 15m
n60w40.004 597 597 < 15m
n60w40.005 539 539 < 15m
n60w60.001 609 609 < 15m
n60w60.002* 566 571 = 15m
n60w60.003* 485 486 = 15m
n60w60.004 571 571 < 15m
n60w60.005* 569 576 = 15m
n60w80.001 458 458 < 15m
n60w80.002 498 498 < 15m
n60w80.003 550 550 < 15m
n60w80.004* 566 580 = 15m
n60w80.005* 468 478 = 15m
n60w100.001 515 515 < 15m

n60w100.002* 538 545 = 15m
n60w100.003* 560 589 = 15m
n60w100.004 510 510 < 15m

n60w100.005* 451 556 = 15m

C. Solomon-Peasant Benchmark

In Table IV we consider the benchmark by Solomon and
Peasant, for which we have not found a recent publication to
compare with. We provide solution cost results, the number
of rollouts performed, and the CPU time of a Level-8 search
at or close to the moment, when the best solution is found
or when it hits the time threshold of 15m. In contrast to the
Solomon-Potwin-Bengio benchmark, we document results of
one straight run of the algorithm, which solves all but 4 of the
27 problem instances with the state-of-the-art cost value.

D. AFG Benchmark

In Table V we show the AFG benchmark results. We provide
explorations results of a Level-8 search at (or close to) the
moment, when the best solution was found, or when it hit
the time threshold of 15m. Again we document results of one
straight run of the algorithm, which solves all of the simpler
problems (N < 40) with the state-of-the-art scores, but not the
harder problems in the set (results for N > 160 are skipped).

E. Langevin Benchmark

The Langevin benchmark is a larger set of problems that
appears to be simpler for mTSP. As documented in Table VI
the entire set of N = 20 problems is solved matching the
state-of-the-art cost in 1s, the entire set of N = 40 benchmark
problems is presumably optimally solved in less than 10s, and
in one single 15m runs only three problems are not resulting
in the state-of-the-art, cost leaving only a small margin to
improve.

TABLE III
RESULTS IN SOLOMON-POTWIN-BENGIO TSPTW BENCHMARK (COST

REFERS TO THE BEST KNOWN SOLUTION, C1 IS THE COST COMPUTED BY
NMC+DOMAIN-DEPENDENT PRUNING RULES, C2 THE COST COMPUTED

BY NPRA, AND C3 THE COST COMPUTED BY
NPRA+DOMAIN-DEPENDENT EXTENSIONS; Cm (Tm) THE COST (CPU

TIME) COMPUTED BY MTSP).

Problem N Cost C1 C2 C3 Cm Tm

rc206.1 4 117.85 117.85 117.85 117.85 117.85 (5) < 1m
rc207.4 6 119.64 119.64 119.64 119.64 119.64 (5) < 1m
rc202.2 14 304.14 304.14 304.14 304.14 304.14 (5) < 1m
rc205.1 14 343.21 343.21 343.21 343.21 343.21 (5) < 1m
rc203.4 15 314.29 314.29 314.29 314.29 314.29 (5) < 1m
rc203.1 19 453.48 453.48 453.48 453.48 453.48 (5) < 1m
rc201.1 20 444.54 444.54 444.54 444.54 444.54 (5) < 1m
rc204.3 24 455.03 455.03 455.03 455.03 455.03 (5) < 1m
rc206.3 25 574.42 574.42 574.42 574.42 574.42 (5) < 1m
rc201.2 26 711.54 711.54 711.54 711.54 711.54 (5) < 30m
rc201.4 26 793.64 793.64 793.64 793.64 793.64 (5) < 30m
rc205.2 27 755.93 755.93 755.93 755.93 755.93 (5) < 30m
rc202.4 28 793.03 793.03 800.18 793.03 793.03 (5) < 30m
rc205.4 28 760.47 760.47 765.38 760.47 760.47 (5) < 2h
rc202.3 29 837.72 837.72 839.58 839.58 837.72 (5) < 2h
rc208.2 29 533.78 536.04 537.74 533.78 533.78 (5) < 2h
rc207.2 31 701.25 707.74 702.17 701.25 701.25 (8) < 2h
rc201.3 32 790.61 790.61 796.98 790.61 790.61 (5) < 30m
rc204.2 33 662.16 675.33 673.89 664.38 662.16 (8) < 30m
rc202.1 33 771.78 776.47 775.59 772.18 771.78 (8) < 30m
rc203.2 33 784.16 784.16 784.16 784.16 784.16 (5) < 30m
rc207.3 33 682.40 687.58 688.50 682.40 682.40 (5) < 2h
rc207.1 34 732.68 743.29 743.72 738.74 732.68 (5) < 2h
rc205.3 35 825.06 828.27 828.36 825.06 825.06 (5) < 30m
rc208.3 36 634.44 641.17 656.40 650.49 634.44 (8) < 2h
rc203.3 37 817.53 837.72 820.93 817.53 817.53 (5) < 2h
rc206.2 37 828.06 839.18 829.07 828.06 828.06 (8) < 2h
rc206.4 38 831.67 859.07 831.72 831.67 831.67 (5) < 30m
rc208.1* 38 789.25 797.89 799.24 793.60 793.60 (8) < 2h
rc204.1 46 868.76 899.79 883.85 880.89 878.64 (8) < 2h

V. CONCLUSION AND OUTLOOK

Nested Monte-Carlo (NMC) search is a more recent ran-
domized single-agent state space search technique which has
proven to quickly find good solutions to a growing number
of combinatorial problems with huge state spaces and large
branching factors.

We have seen that knowledge and algorithm engineering
greatly improve NMC search for solving the TSPTW prob-
lems. Algorithm engineering for the existing code leads to
an improvement of more than factor 10 in the exploration
efficiency, whereas knowledge engineering is included to seed
the policy for finding good solutions early. The results are
promising and a challenge to state-of-the-art TSPTW solvers,
including evolutionary algorithms and ant colony optimization.
We have matched most, but not improved any best-known so-
lution from the repository (which we assume are all optimal).

Our goal is to improve our application scenario in logis-
tics [9] which is related to the well-known vehicle routing
problem (VRP) [1]. We implement a multiagent system, where
the general problem is split into smaller problems which agents
solve locally concurrent within short time windows to optimize
the behavior of the overall system. Here, the agents solve
individual TSP problems, and trade their found solutions for
improving the overall costs. In order to implement sound

TABLE IV
RESULTS IN SOLOMON-PESANT TSPTW BENCHMARK (COST IS THE
BEST KNOWN SOLUTION; Cm , Em AND Tm ARE THE PERFORMANCE

INDICATORS COMPUTED BY MTSP).

Problem N Cost Cm Em Tm

rc201.0 26 628.62 628.62 40 000 < 1s
rc201.1 29 654.70 654.70 50 000 < 1s
rc201.2 29 707.65 707.65 10 000 < 1s
rc201.3 20 422.54 422.54 10 000 < 1s
rc202.0 26 496.22 496.22 120 000 < 1s
rc202.1 23 426.53 426.53 60 000 < 1s
rc202.2 28 611.77 611.77 20 000 < 1s
rc202.3 27 627.85 627.85 130 000 < 2s
rc203.0 36 727.45 727.45 3 000 000 < 3m
rc203.1 38 726.99 726.99 1 500 000 < 3m
rc203.2 29 617.46 617.46 20 000 < 20s
rc204.0 33 541.45 541.45 11 100 000 < 10m
rc204.1 29 485.37 485.37 20 000 000 < 14m
rc204.2 41 778.40 778.40 4 150 000 < 6m
rc205.0 27 511.65 511.65 80 000 < 5s
rc205.1 23 491.22 491.22 20 000 < 1s

rc205.2* 29 714.69 717.56 35 310 000 = 15m
rc205.3 25 601.24 601.24 90 000 < 5s
rc206.0 36 835.23 835.23 1 500 000 < 1m
rc206.1 34 664.73 664.73 1 140 000 < 40s

rc206.2* 33 655.37 670.80 33 110 000 = 15m
rc207.0 38 806.69 806.69 6 000 000 < 4m
rc207.1 34 726.36 726.36 20 000 000 < 11m
rc207.2 31 546.41 546.41 3 600 000 < 2m

rc208.0* 45 820.56 884.96 14 220 000 = 15m
rc208.1* 28 509.04 558.48 35 210 000 = 15m
rc208.2 30 503.92 503.92 7 700 000 < 4m

planing and control processes in the logistic domain, we im-
port transport infrastructures from OpenStreetMap (see: www.
openstreetmap.org) (OSM) databases. The TSP are generated
by shortest path reduction of a map wrt. to pickup and delivery
locations of costumers as well as the depot(s), and scaled
with the vehicle fleet of the distributor. Besides time window
constraints, we are confronted with a variety of additional
side-constraints: limited driving times and requested breaks
for the drivers, premium contracts, pickup and backhaul tasks,
just to name a few. The multiagent-based simulation platform
PlaSMA (see http://plasma.informatik.uni-bremen.de), enables
the simulation of real world scenarios with orders provided by
our industrial partner. Firstly, we cluster all orders of the day
statistically for each cluster. Next, we solve the TSP with the
solver described in this paper. For solving the TSP of each
cluster a lower bound is computed e.g.,w̃ith the Hungarian
algorithm. As result, we solve different TSPs based on a real
transport infrastructure and simulate real properties of orders.
Through negotiation processes and agent interaction, the TSP
solver enables reliable planning and control logistic processes
in dynamic environments.

TABLE V
RESULTS IN AFG TSPTW BENCHMARK

Problem N Cost Cm Em Tm

rbg010a 11 671 671 50 000 < 1s
rbg016a 17 938 939 50 000 < 1s
rbg016b 17 1304 1304 100 000 < 5s
rbg017.2 18 852 852 50 000 < 1s
rbg017 16 893 893 50 000 < 1s
rbg017a 18 4296 4296 50 000 < 1s
rbg019a 20 1262 1262 50 000 < 1s
rbg019b 20 1866 1866 50 000 < 1s
rbg019c 20 4536 4545 2 566 080 = 15m
rbg019d 20 1356 1356 50 000 < 1s
rbg020a 21 4689 4689 50 000 < 1s
rbg021.2 22 4528 4528 100 000 < 5s
rbg021.3 22 4528 4528 150 000 < 5s
rbg021.4 22 4525 4525 200 000 < 10s
rbg021.5 22 4515 4515 2 000 000 < 1m
rbg021.6 22 4480 4480 150 000 < 5s
rbg021.7 22 4479 4479 100 000 < 5s
rbg021.8 22 4478 4478 150 000 < 5s
rbg021.9 22 4478 4478 200 000 < 10s
rbg021 22 4536 4536 50 000 < 1s
rbg027a 28 5091 5051 1 000 000 < 30s
rbg031a 32 1863 1863 200 000 < 10s
rbg033a 34 2069 2069 400 000 < 20s
rbg034a 35 2222 2222 500 000 < 30s

rbg035a.2 36 2056 2056 7 558 272 < 15m
rbg035a 36 2144 2144 1 000 000 < 30s
rbg038a 39 2480 2480 150 000 < 30s

rbg040a* 41 2378 2413 18 242 496 = 15m
rbg041a* 42 2598 2625 16 842 816 = 15m
rbg042a* 43 2772 2805 15 723 072 = 15m
rbg048a* 49 9383 9480 8 398 080 = 15m
rbg049a* 50 10018 10075 9 097 020 = 15m
rbg050a* 51 2953 2974 6 625 152 = 15m
rbg050b* 51 9863 9921 8 724 672 = 15m
rbg050c* 51 10024 10088 6 998 400 = 15m
rbg055a 56 3761 3761 10 000 < 10s
rbg067a 68 4625 4625 4 000 000 < 5m

rbg086a* 87 8400 8418 3 405 888 = 15m
rbg092a* 93 7160 7197 2 846 016 = 15m
rbg125a* 125 7936 8012 1 772 928 = 15m
rbg132.2* 133 8200 8489 1 259 712 = 15m
rbg132* 133 8470 8668 1 259 712 = 15m

rbg152.3* 153 9797 10571 793 152 = 15m
rbg152* 153 10032 10229 793 152 = 15m

TABLE VI
RESULTS IN LANGEVIN TSPTW BENCHMARK.

Problem N Cost Cm Em Tm

N20ft301 20 661.60 661.60 46 656 < 1s
N20ft302 20 684.20 684.20 46 656 < 1s
N20ft303 20 746.40 746.40 46 656 < 1s
N20ft304 20 817.00 817.00 46 656 < 1s
N20ft305 20 716.50 716.50 46 656 < 1s
N20ft306 20 727.80 727.80 46 656 < 1s
N20ft307 20 691.80 691.80 46 656 < 1s
N20ft308 20 788.20 788.20 46 656 < 1s
N20ft309 20 730.70 730.70 46 656 < 1s
N20ft310 20 683.00 683.00 46 656 < 1s
N20ft401 20 660.80 660.80 46 656 < 1s
N20ft402 20 684.20 684.20 46 656 < 1s
N20ft403 20 746.40 746.40 46 656 < 1s
N20ft404 20 817.00 817.00 46 656 < 1s
N20ft405 20 716.50 716.50 46 656 < 1s
N20ft406 20 727.80 727.80 46 656 < 1s
N20ft407 20 691.80 691.80 46 656 < 1s
N20ft408 20 757.30 757.30 46 656 < 1s
N20ft409 20 730.70 730.70 46 656 < 1s
N20ft410 20 683.00 683.00 46 656 < 1s
N40ft201 40 1100.60 1100.60 46 656 < 1m
N40ft202 40 1010.40 1010.40 46 656 < 1m
N40ft203 40 876.80 876.80 93 312 < 1m
N40ft204 40 885.80 885.80 46 656 < 1m
N40ft205 40 940.90 940.90 46 656 < 1m
N40ft206 40 1054.20 1054.20 46 656 < 1m
N40ft207 40 867.50 867.50 233 280 < 1m
N40ft208 40 1050.70 1050.70 46 656 < 1m
N40ft209 40 1013.90 1013.90 46 656 < 1m
N40ft210 40 1026.30 1026.30 46 656 < 1m
N40ft401 40 1085.00 1085.00 46 656 < 1m
N40ft402 40 995.60 995.60 46 656 < 1m
N40ft403 40 845.80 845.80 46 656 < 1m
N40ft404 40 868.00 868.00 139 968 < 1m
N40ft405 40 936.50 936.50 139 968 < 1m
N40ft406 40 969.10 969.10 93 312 < 1m
N40ft407 40 831.20 831.20 46 656 < 1m
N40ft408 40 1002.70 1002.70 139 968 < 1m
N40ft409 40 1000.50 1000.50 139 968 < 1m
N40ft410 40 983.80 983.80 46 656 < 1m
N60ft201 60 1353.50 1353.50 93 312 < 15m
N60ft202 60 1161.60 1161.60 93 312 < 15m
N60ft203 60 1182.90 1182.90 46 656 < 15m
N60ft204 60 1257.50 1257.50 46 656 < 15m
N60ft205 60 1184.10 1184.10 93 312 < 15m
N60ft206 60 1199.60 1199.60 1 213 056 < 15m
N60ft207 60 1299.00 1299.00 46 656 < 15m
N60ft208 60 1113.00 1113.00 46 656 < 15m
N60ft209 60 1171.30 1171.30 186 624 < 15m
N60ft210 60 1234.30 1234.30 139 968 < 15m
N60ft301 60 1337.00 1337.00 1 539 648 < 15m
N60ft302 60 1089.50 1089.50 606 528 < 15m
N60ft303 60 1179.00 1179.00 233 280 < 15m
N60ft304 60 1230.00 1230.00 373 248 < 15m
N60ft305 60 1151.60 1151.60 886 464 < 15m
N60ft306 60 1167.90 1167.90 3 125 952 < 15m
N60ft307 60 1220.10 1220.10 2 239 488 < 15m
N60ft308 60 1097.60 1097.60 2 472 768 < 15m
N60ft309 60 1140.60 1140.60 1 726 272 < 15m
N60ft310 60 1219.20 1219.20 2 099 520 < 15m
N60ft401 60 1335.00 1335.00 3 452 544 < 15m
N60ft402* 60 1088.10 1089.20 9 844 416 = 15m
N60ft403 60 1173.70 1173.70 1 446 336 < 15m
N60ft404 60 1184.70 1184.70 326 592 < 15m
N60ft405 60 1146.20 1146.20 373 248 < 15m
N60ft406* 60 1140.20 1141.60 93 312 = 15m
N60ft407* 60 1198.90 1203.90 9 844 416 = 15m
N60ft408 60 1029.40 1029.40 2 006 208 < 15m
N60ft409 60 1121.40 1121.40 466 560 < 15m
N60ft410 60 1189.60 1189.60 2 612 736 < 15m

REFERENCES

[1] B. Golden, S. Raghavan, and E. Wasil, The Vehicle Routing Problem:
Latest Advances and New Challenges. Springer Verlag, 2008.

[2] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the
multiarmed bandit problem. Machine Learning, 47(2–3):235–256, 2002.

[3] E. Baker. An exact algorithm for the time-constrained traveling salesman
problem. Operations Research, 31(5):938–945, 1983.

[4] T. Cazenave. Monte-Carlo Beam Search. IEEE Transactions on
Computational Intelligence and AI in Games 4(1): 68-72, 2012.

[5] T. Cazenave. Nested Monte-Carlo search. In IJCAI, pages 456–461,
2009.

[6] T. Cazenave and F. Teytaud. Application of the nested rollout policy
adaptation algorithm to the traveling salesman problem with time
windows. In LION, pages 42–54, 2011.

[7] N. Christofides, A. Mingozzi, and P. Toth. State-space relaxation pro-
cedures for the computation of bounds to routing problems. Networks,
11(2):145–164, 1981.

[8] Y. Dumas, J. Desrosiers, E. Gelinas, and M. Solomon. An optimal
algorithm for the traveling salesman problem with time windows.
Operations Research, 43(2):367–371, 1995.

[9] S. Edelkamp and M. Gath. Optimal decision making in agent-based
autonomous groupage traffic. In ICAART, 2013. To appear.

[10] H. Finnsson and Y. Björnsson. Simulation-based approach to general
game playing. In AAAI, pages 1134–1139, 2008.

[11] F. Focacci, A. Lodi, and M. Milano. A hybrid exact algorithm for the
TSPTW. INFORMS Journal on Computing, 14(4):403–417, 2002.

[12] S. Gelly and Y. Wang. Exploration exploitation in Go: UCT for Monte-
Carlo Go. In NIPS-Workshop on On-line Trading of Exploration and
Exploitation, 2006.

[13] M. Gendreau, A. Hertz, G. Laporte, and M. Stan. A generalized inser-
tion heuristic for the traveling salesman problem with time windows.
Operations Research, 46(3):330–335, 1998.

[14] R. Jonker and A. Volgenant. Improving the hungarian assignment
algorithm. Operations Research Letters, 5:171–175, 1986.

[15] L. Kocsis and C. Szepesvari. Bandit based Monte–Carlo planning. In
ICML, pages 282–293, 2006.

[16] M. Lopez-Ibanez and C. Blum. Beam-ACO for the travelling salesman
problem with time windows. Computers & OR, 37(9):1570–1583, 2010.

[17] N. C. Love, T. L. Hinrichs, and M. R. Genesereth. General game playing:
Game description language specification. Technical Report LG-2006-01,
Stanford Logic Group, 2006.

[18] S. Parragh, K. Doerner, and Richard Hartl. A survey on pickup and
delivery problems. Journal für Betriebswirtschaft, 58(2):81–117, 2008.

[19] G. Pesant, M. Gendreau, J. Potvin, and J. Rousseau. An exact constraint
logic programming algorithm for the traveling salesman problem with
time windows. Transportation Science, 32(1):12–29, 1998.

[20] J. Potvin and S. Bengio. The vehicle routing problem with time windows
part II: genetic search. INFORMS Journal on Computing, 8(2):165,
1996.

[21] A. Rimmel, F. Teytaud, and T. Cazenave. Optimization of the nested
Monte-Carlo algorithm on the traveling salesman problem with time
windows. In Applications of Evolutionary Computation, pages 501–510,
2011.

[22] A. Rimmel, F. Teytaud, and O. Teytaud. Biasing Monte-Carlo simu-
lations through rave values. In Computers and Games, pages 59–68,
2011.

[23] C. D. Rosin. Nested rollout policy adaptation for Monte-Carlo tree
search. In IJCAI, pages 649–654, 2011.

[24] M. Solomon. Algorithms for the vehicle routing and scheduling prob-
lems with time window constraints. Operations Research, 35(2):254–
265, 1987.

