Mapping Maintenance in XML P2P Databases*

Dario Colazzo! Carlo Sartiani?

L LRI - Université Paris Sud - France
dario.colazzo@lri.fr
2 Dipartimento di Informatica - Universita di Pisa- Italy
sartiani@di.unipi.it

Abstract. Unstructured p2p database systems are usually characterized by the
presence of schema mappings among peers. In these systems, the detection of
corrupted mappingsisakey problem. A corrupted mapping failsin matching the
target or the source schema, hence it is not able to transform data conforming to
aschema S; into data conforming to aschema S;, nor it can be used for effective
query reformulation.

This paper describes a novel technique for maintaining mappings in XML p2p
databases, based on a semantic notion of mapping correctness.

1 Introduction

The peer-to-peer computational model (p2p) is nowadays massively used for sharing
and querying data dispersed over the Internet. Peer-to-peer data sharing systems can be
classified in two main categories. Sructured p2p systems [1] [2] distribute data across
the network according to ahash function, so to form adistributed hash table (DHT); sys-
temsin this class allows for afast retrieval of data (O(logn), where n is the number of
peersin the system), at the price of very limited query capabilities (key lookup queries
and, in some systems, range queries). Unstructured systems, instead, leave peers free
to manage their own data, and feature rich query languages like, for instance, XQuery
[3]. Queries are executed by flooding the network and traversing the whole system.

Most unstructured p2p database systems (see [4], [5], and [6] for instance) are char-
acterized by the presence of schema mappings among peers. A schema mapping (e.g.,
a set of Datalog rules) describes how to translate data conforming to a source schema
S; into data conforming to a target schema S; (or to a projection of S;), and it can be
used to reformulate, according to the Global As View (GAV) and Local As View (LAV)
paradigms[7, 8], querieson S; into queries over S, and vice versa. Schema mappings,
hence, allow the system to retrieve data that are semantically similar but described by
different schemas.

A main problemin mapping-based systemsis the maintenance of schemamappings,
and, in particular, the detection of corrupted mappings. A corrupted mapping fails in
matching the target or the source schema, henceit is not able to transform data conform-
ing to a source schema S; into data conforming to the target schema S ;. The presence
of such mappings can affect query processing: since queries are processed by flooding
the network and by repeatedly applying reformulation steps, a corrupted mapping may

* Dario Colazzo was funded by the RNTL-GraphDuce project and by the ACI project “Trans-
formation Languages for XML: Logics and Applications’. Carlo Sartiani was funded by the
FIRB GRID.IT project and by Microsoft Corporation under the BigTop project.

make the data of some peers unreachable; moreover, optimization techniques based on
mapping pre-combination can be vanished by the presence of corrupted mappings.

Nowadays, mapping maintenance is performed manually by the site administrator,
and quick responses to sudden mapping corruptions are not possible. To the best of our
knowledge, the only proposed technique for automatically maintaining mappings, in
the context of XML p2p database systems, has been described in [9]. This technique
is based on the use of a type system capable of checking the correctness of a query,
in a XQuery-like language [10], wrt a schema, i.e., if the structural requirements of
the query are matched by the schema. By relying on this type system, a distributed
type-checking algorithm verifies that, at each reformulation step, the transformed query
matches the target schema, and, if an error is raised, informs the source of the target
peersthat thereis an error in the mapping.

The technique described in [9] has two main drawbacks. Firgt, it is not complete,
since wrong rules that are not used for reformulating a given query cannot be discov-
ered. Second, the algorithm requires that a query were reformulated by the system be-
fore detecting a possible error in the mapping; this implies that the algorithm cannot
directly check for mapping correctness, but, instead, it checks for the correctness of
a mapping wrt a given reformulation algorithm. Hence, mapping correctness is not a
query-independent, semantics-based property, but is strongly related to the properties
of the reformulation agorithm.

Our Contribution This paper describes a novel technique for maintaining mappings
in XML p2p database systems. As for [9], the technique relies on a type system for
an XML query language: while in [9] we exploited the type system to check for the
correctnessof aquery wrt agiven schema, inthe spirit of [10], in this paper we developa
dlightly different type system focused ontypeinference. Themain ideaisto comparethe
inferred type of each mapping query with the target schema, so to verify the adherence
of the mapping to this schema.

Unlike [9], the proposed technique is independent from queries, does not require
a prior query reformulation, and it is complete, i.e., any error in a mapping will be
discovered.

The paper proposes asemantic notion of mapping correctness based on asimulation-
like form of type projection. Type projection brings the essence of the relational projec-
tionto XML, and it can be safely reduced to standard type-checking among weakened
types, as shown in Section 5. To minimize fal se-negatives, we provide quite precise type
inference techniques, inspired by those proposed in [10].

The proposed technique can be used in unstructured p2p database systems as well
asin structured systems, like [11], that combine the DHT paradigm with mappings.

Paper Outline The paper is structured as follows. Section 2 describes a reference sce-
nario for our technique, and briefly introduce the system model and the query language.
Section 3, then, defines our notions of mapping validity (no wrong rules wrt the source
schema) and mapping correctness (no wrong rules wrt the target schema). Section 4
describes the type system we use for inferring query types. Section 5, next, shows how
the definitions of Section 3 can beturned in an operational techniquewith the assistance
of our type system. Section 6, then, discusses some related work. In Section 7, finally,
we draw our conclusions.

2 Motivating Scenario

We describe our technique by referring to a sample XML p2p database system inspired
by Piazza[4]. The system is composed of a dynamic set of peers, capable of executing
queries on XML data, and connected through spar se point-to-point schema mappings.

Each peer publishes some XML data (db), that may be empty, in which case the
peer only submits queriesto the system. Furthermore, each peer hastwo distinct schema
descriptions. Thefirst one, I/ (the peer schema), describes how local data are organized.
The second one, V (the peer view), is a view over I/, and has a twofold role. First, it
works as input interface for the peer, so that queries sent to peer p; should respect p;
view of the world. Second, it describes the peer view of the world, i.e., the virtua view
against which queries are posed: each peer poses queries against its peer view, since it
assumes that the outer world adopts this schema.

The peer schema and the peer view are connected through a schema mapping (in
the following we will use the expression “schema mapping” to denote any mapping
between types). The mapping can be defined according to the Global As View (GAV)
approach, or to the Local As View (LAV) approach. Our approach is based on GAV
mappings, where the target schema is described in terms of the source schema; nev-
ertheless, this approach applies to LAV mappings too, since, as noted in [12], a LAV
mapping from p;, to p; can be interpreted as a GAV mapping from p ; to p;.

In addition to (possibly empty) data and schema information, each peer contains a
set, possibly a singleton, of peer mappings {m;};. A peer mapping m,; from peer p;
to peer p; isaset of queriesthat show how to translate data belonging to the view of p;
(V;) into data conforming to a projection of the view of p; (V;).

Mapping queries are expressed in the same query language used for posing gen-
era queries. this language, called uXQ, is roughly equivalent to the FLWR core of
XQuery, and will be described in Section 3. These mappings link peers together, and
form a sparse graph; queries are then executed by exploring the transitive closure of
such mappings.

Systems conforming to this architecture rely on schema mappings to process and
execute queries. The correctness of the query answering process for a given query de-
pends on the properties of the reformulation algorithm as well as on the correctness of
the mappings involved in the transformation: indeed, if the mapping fails in matching
the target schema, the transformed query will probably fail aswell.

The evolution of the system, namely the connection of new nodes and the discon-
nection of existing nodes, as well as the changesin peer data and schemas, can dramat-
ically affect the quality of schemamappingsand, in particular, lead to the corruption of
existing mappings. This will reflect on query answering and on existing optimization
techniques for p2p systems, such as the mapping composition approach described in
[13].

The following Example illustrates the basic concepts of the query language, pro-
vides an intuition of the mapping correctness notion (described in Section 3), and shows
how mapping incorrectness can reflect on query answering.

Example 1. Consider a bibliographic data sharing system, whose topology is shownin
Figure 1.
Assume that Pisaand New York use the following views.

PisaBib = bib[(Author)*]
Author = author[Name, Affiliation, Paperx]
Name = name[String]

Paris Melbourne

GO H TOo—g

Pisa New York Auckland

Fig. 1. Bibliographic p2p network.

Affiliation = affiliation[String]
Paper = paper[Title, Year]

Title = title[String]

Year = year[Integer]

NYBib = bib[(Article|Book)*]

Article = article[Author*,Title,Year, RefCode]
Author = author[String]

Title = title[String]

Year = year[Integer]

Book = book[Author*,Title,Year, RefCode]
RefCode = refCode[String]

Suppose now that Pisa uses the following queries to map its view into the view of
New York.

NYBibliography <-
Q1 ($input): for $y in $input/year return $y
Q2($input): for $t in $input/title return $t
Q3 ($input): for $p in $input//paper,
$t in $p/title
return article[Q2($p), Q1($p),
for $aut in $input/author,
$pap in $aut/paper
$title in $pap/title
where $title = $t
return author [$aut/name/text()]]
Q4 ($input) : for $bib in /bib return bib[Q3($bib)]

This mapping transforms data conforming to a large fragment of the PisaBib
schema (only affiliation elements are discarded) into data conforming to a fraction
of the NYBib schema This is a quite common situation in data integration and p2p
data sharing systems, since usually only a fraction of semantically related heteroge-
neous schemas can be reconciled. Since this mapping is not a function from PisaBib
to NYBib (it does not produce refCode elements), standard result analysis based on
subtyping cannot be used to check its correctness.

Consider query Qs in the Pisa — NY mapping. The outer for clause iterates over
paper element, and binds the $p and $¢ variables to paper and title elements respec-
tively. The outer return clause producesthe results of the query; in this case, a nested
query changing the nesting of author and paper elements is invoked. The correlation
of the nested query with the outer query is given by theinner where clause, whichfilters
the variable bindings of the inner query.

Asit can be noted, this mapping is correct since it transforms a data instance con-
forming to PisaBib into a data instance conforming to a projection of NYBib.

Assume now that New York dlightly changes its view: in particular, the site ad-
ministrator changes the way author names are represented: instead of a simple author

element, information about author’s first name and second name is inserted into the
author element: Author = author [first[String],second[Stringl].

This changein the target schema makes the Pisa— NY mapping incorrect. Indeed,
aPisaBib datainstanceistransformed in adatainstance having simple content author
elements, while the new New York view requires more complex author elements.

The incorrectness of the Pisa — NY schema mapping reflects on query answering.
Indeed, consider the query shown in Figure 2 (a). This query, submitted by a user in
Pisa, asks for all articles written by Mary F. Fernandez. The query is first executed
locally in Pisa. Then, the system reformulates the query so to match New York view;
thisreformulation is performed by directly composing the query with the mapping from
Pisato New York, relying again on standard algorithms for query unfolding [14, 13] *.

At the end of the reformulation process, the reformulated query, shown in Figure
2 (b), isthen sent to the New York site. Unfortunately, the transformed query does not
match the new view of New York, so the Pisa user cannot gather results from the New
York site.

articles_Fernandez[
for $aut in $bib/author,

$pap in $aut/paper,

$t in $pap/title,

$n in $aut/name
let $mf := ‘‘Mary F. Fernandez’’
where $n = $mf
return article[$t, $pap/year]

(a) Pisauser query.

articles_Fernandez[
for $a in $bib/article,
$aut in $a/author
let $mf := ‘‘Mary F. Fernandez’’
where $aut = $mf
return article[$a/title, $a/year]

(b) Transformed Pisa user query.

Fig. 2. Reformulation of a user query.

3 Mapping Validity and Correctness

In this Section we describe the notions of mapping validity (no wrong rules wrt the
source schema) and mapping correctness (no wrong rules wrt the target schema). These
notionsare central to our approach, and allow for the definition of an operational check-
ing technique, as shown in Section 5.

To define mapping properties, we have to formally present the query language used
for expressing both user queries and mapping rules, as well as the type language used
for describing schemas and views.

3.1 Query Language

User queries and mapping rules are expressed in the X Q query language [10], whose
grammar isshownin Table 3.1. uXQisaminimal corelanguagefor XML data, roughly
equivalent to the FLWR core of XQuery. We impose two further restrictions wrt this
grammar: first, we forbid the navigation of the result of a nested query by the outer
query; second, we restrict the predicate language to the conjunction, disjunction, or
negation of variable comparisons. These restrictions, also present in Piazza, allow for
a better handling of errors at the price of a modest decrease in the expressive power of
the language.

1 We show aminimal transformed query, obtained by minimizing the original transformed query
and by deleting all redundant subqueries.

The semantics of the language and the required auxiliary functions are shown in
Tables 3.2 and 3.3. There, p is a substitution assigning a forest to each free variablein
the query; also, dos isa shortcut for descendant-or-self. All the rest is self explicative.

Note that our data model is unordered, so that we consider atree![f1, f2] as equiv-
dent to [f2, f1]. Asin Piazza, this assumption is motivated by the non feasibility of
imposing a global document order over XML data dispersed over a p2p network.

Table 3.1. uXQ grammar

I

Q x=() | b]1Q] | QQ | Tchild:: NodeTest | T dos :: NodeTest
| for Tin Q return Q | let z ::= Q return Q

| for T in where P return @ | let x ::= @ where P return Q
NodeTest ::= 1 | node() | text()

P =true | xd x | empty(x) | Por P |not P | (P)
X H=T |
s ==|<

16, =b [=], = p(x)
[z], = p(7) [0, =0
[Q1,Q2], = [@1],, [Q2], [[QI1, = UIQT,]

[Z child :: NodeTest], = childr([Z],) :: NodeTest

[dos :: NodeTest], = dos([Z],) :: NodeTest

[[let T = Ql return QQHP% [[QQHP,’»—*[[QM];;

[for T in Q1 return Q2], = Htetrees(HQlﬂp) [Q2] 5t

[let ::= Q; where P return Qa], = if P(p,z— [Q1],) then [Q2]5,0-10:1, €5 ()

[for T in Q; where P return Q»], = HtEtraes([Ql]]p)(if P(p,z—1t) then [Q2] .5 €lse ()

3.2 Typelanguage

We adopt, essentially, XDuce's type language [15], with two exceptions. First, we ex-
clude (vertical) recursivetypes. Thisis motivated by the fact that FLWR queries are not
powerful enough to transform trees with arbitrary depth, hence we can restrict the type
language to types that describe trees with limited and finite depth. As we will see, this
restriction will alow us to introduce rather precise type-inference techniques, that will
minimize fal se negatives returned while checking for mapping correctness.

Second, we consider commutative product types. In other words, we do not assume
any order on sequence types, so that T',U ~ U,T. Thisis motivated by the fact that
in distributed environmentsis almost impossible to reach a common agreement about

Table 3.3. Auxiliary functions
I

dos(b) £ childr (b) =)

dos(I[1) 2 1[f],dos(f) childr(l[f])) =

dos(()) =0 dos(f, f') = dos(f), dos(f")

bl = 1f]: 1 2 11f]

(01 =0 (f.)1 S fulfel

m[f]:: 1 20 m#l

b:node() =) O :node() =()

mlf] :: node() = m|f] (f, f') :: node() = f = node(), f' :: node()
b:text() =b () :: text() =)

Im[f] s text() = () (f, f') text() = f = teat(), f = teat()

ordering, so some peer may assume that title elements precede author elementsin the
document order, while other peers may assume the contrary. Hence, we must adopt
types that abstract from ordering. This aspect will affect the notions of type projection
aswell.

Following X Duce notation, types are defined as follows:

Types Tu= (O |B |UT | T,T | T|T | T*
Base Type B := String
Here, () isthetype for the empty sequencevalue; B denotesthe typefor base values
(without loss of generality, we only consider string base values); types T, U and T' | U
are, respectively, product and union types, while 7'« is the type for repetition. In the
following, an element type with empty content I[()] will always be abbreviated as(].

Type semanticsis standard: [_] isthe minimal function from types to sets of forests
that satisfies the following monotone equations:

[01= {0} [BI={b | bisastring} [UT]] = {I[f] | felT]}

[Ty | To] = [T1] U [T2] [Th,T2] = {fi, f2 | fi€[T:]} [T+] = [T]°

Inthefollowing wewill use f : T as shortcut for f € [T']. Type semantics induces
the following subtyping relation:

T <U &g [T] C[U]
3.3 Correctnessof Schema Mappings

In this Section, we introduce and formalize our notion of mapping correctness. The
notion is semantic and is not related to any particular type system.

Definition 1 (Mapping). A mapping m from the peer view of p, to the peer view of p;
isa set of queriesm = {qx } on data (possibly) conforming to p;’s view and returning
data (possibly) conformingto p;’s view.

The previous definition states that a mapping is just a set of queriesthat may match
the source and/or the target schema. Unlike [16], where mappings must match both the
target and the source schema, we do not impose constraints on mappings. This allows
for capturing mappingsthat are imprecise or that become incorrect because of a change
in the system status.

The following definition introduces the notion of mapping validity.

Definition 2 (Mapping validity). A mapping m = {qx}« from p;'sview to p;’s view
(Vi — V;) isvalid if and only if, for each query g, gi is correct wrt V;, in the sense
that, for each non-empty subquery q of ¢, there exists a data instance d of V; such that,
when evaluated on d, ¢ will return a non-empty result.

Mapping validity impliesthat avalid mapping must be correct wrt the source schema,
i.e., it matches the structure and the constraints of the source schema. We adopt the
query correctness notion described in [18,10] and [9]. Mapping validity ? allows for
identifying mappings that are obsolete, i.e., that contain rules referring to fragments of
the source schema that have been changed or deleted. From now on, we will assume
that each mapping is valid, and focus on the detection of errors wrt the target schema.

Definition 3 (Mapping correctness). A mapping m = {qx}, fromp;’s view to p;'s
view (V; — V) is correct if and only if, for each query ¢, for each data instance d,
conforming to V;, there exists a data instance d; conforming to V;, such that, ¢x(dn) <
d;, where < is defined as shown in Definition 4.

Definition 4 (Value projection). The value projection relation < is the minimal rela-
tion such that:

f S fa S fafa W(fL S fs AN fa S fa)

be HSfs i3 fiSfenfaSfs
10 Al SUf] iffi S fe

fi,fo S fas fu

The above definitions state that a mapping from V; to V; is correct if and only,
for each rule in the mapping, the result of each query on V; is mapped, according to
the < relation, into a value conforming to V;. < is an injective simulation relation
among values, inspired by the projection operator of the relation data model. Intuitively,
dy < ds if there exists a subterm ds in dy such that ds matches dy; thisis very close
(up to simulation) to the relational projection, where r; = w47 if r1 is equal to the
fragment of r, obtained by discarding non-A attributes. This notion of projection for
XML trees is a generalization of that introduced in [17], where leaf values are taken
into account too.

Our correctness notion is semantic, in the sense that it depends on the semantics of
queries and types rather than on a set of type-checking rules; thisimpliesthat errorsare
independent from the type-checking rules, so that our correctness notion can be adopted
in any context and with any type language.

4 Type System

0
by
f

UAAN

Our type system is a variation of the type systems shown in [18][10][9]. While those
type systems focus on the detection of errorsin a query wrt a source schema, this type
system focuses on type inference.
2 validity can be checked by agorithms proposed in [18][10][9]; these algorithms are polyno-
mial in most practical cases.

4.1 Judgmentsand Type Rules

To infer the output type of a uXQ query, we adopt rules, shown in Tables 4.1 and 4.2,
that prove judgments of the form I" = @ : T, where the environment I" provides
information about the types of () free variables, while T" is an upper bound for all
possible values returned by @, when evaluated under a valid substitution, that is an
assignment of free variables that respects type constraint in I" . Variable environments
and valid substitutions are defined bel ow.

VariableEnvironments I' == ()| «: T, | z:T,I"

A variable environment I" iswell-formedif no variableis defined twice, and if every
for-variable z (i.e., avariable bound by a for clause) is associated to atree type (I[T"/]
or B).

Definition 5 (Valid substitutions R(I")). For any well-formed environment I”, we de-
fine the set of valid substitutionswrt I" as follows:

RN =A{p | x—fep=>K:Tel'nfell])}

A first basisfor agood level of precisionisgiven by aparticular techniquewe useto
infer typesfor for queries. Given aquery for T in ()1 return (Q2, in order to infer a
typefor it, the rulesfirst infer atype 7 for @1, and then they simulate a sort of abstract
iteration over T, in order to type the body 5. Thisis done by means of the auxiliary
]UdgmentF Fzin1, — QQ : T2.3

For example, if T, = S, S2,totypefor T in Q1 return Qo Werecursively prove
't Tin S, — Q2 : S, fori = 1,2, and then combine the results to obtain
Ty = S1,S5. The recursive processis still purely structural for union and * types, and
stopswhen atree typeisfinaly encountered.

Similar comments hold for queries with where conditions, where we use an auxil-
jiary judgment I'+ TinT — (@ where P :T. Type correctness of where clausesis
proved by rules over judgments I" = P which are quite standard (and omitted in this
abstract for reasons of space).

Morein details, case analysisfor iterationsis performed by (TyPEIN) rules. In par-
ticular, termination is ensured by rule (TYPEINTREE), which stops the case-analysis,
since atreetype T'=B or T=m|[T"] is reached, inserts the assumptionz : T'in I, starts
the analysis of the where condition P, and falls back to standard type-checking. Ob-
serve here that we use an operator Slit(7'); for the moment just assume that Split(7) =
{T'}. Later wewill modify this operator in order to improve precision of typeinference.
Rule (TYPELETSPLITTING) is standard, since we are assuming that Split(7) = {7T'}.

Rule (TYPECHILD) requiresthe type of T to beatreetype m|[T'], and uses- T ::
NodeTest = U to restrict the content type T to the tree types with structure satisfying
NodeTest. Rules to prove judgments T :: NodeTest = U are straightforward, and
their meaning is stated in the following lemma.

Lemmal (Type Filtering Checking). For any T :
F T : NodeTest = U <« [U] ={f :: NodeTest | f e [T]}

8 Thistechnique was first formalized in [19], where no properties about the system were proved.

Rule (TyPeEDOS) issimilar, and is strictly inspired by the technique adopted in the
current W3C XQuery type system. Instead of using the content type T/, it extracts all
the node types {U1, ..., U,} that are reachable from T', using the function Trees(T')
defined later, and definesanew type U’ = (U | ... | Uy,)*. U’ isthetypeof any forest
that contains only nodes whose type is one of the U;’s, hence is an appropriate type
for the forest of all descendants of atree of type T'. The type of dos :: NodeTest is
obtained by restricting U’ to the tree types with structure satisfying NodeTest.

We can now define the auxiliary function Trees(T'):

Definition 6 (Subtrees Type Extraction).

Trees(()) =0 Trees(T,U) = Trees(T') U Trees(U)
Trees(B) = {B} Trees(T) = Trees(T)
Trees(I[T]) = {I[T]} UTrees(T) Trees(T | U) = Trees(T) U Trees(U)

Table 4.1. Query Type Rules
I

(TYPEEMPTY) (TyPEATOMIC) (TYPEVAR)

WF(I'FE ():() WF(I'+ b: B) x:T € ' WWI'F x:T)
r-(0:0 I'-b:B ' x:T

(TYPEELEM) (TYPEFOREST)

r-Q:T ' Q.:T, i=1,2
I'=1[Q] : U[T) 't Q1,Q2:Th, Ty

(TYPELETWHERESPLITTING)
'+ Ql 2T1 a)llt(Tl):{Al,,An}
F,.Z':Ai}—P F,Z':Ai}—QQIUi i=1...n

I't let z := Qi where Preturn Q2 : U1 | ... | Un | ()

(TYPEFORWHERE)
' Qi:Ty I't TinTi — Q2 where P:Ts

I'+ for T in Q1 where P return Q2 : 12 | ()

(TYPELETSPLITTING) (TyPEFOR)

't Qi:Tn Plit(Th) = {A1,..., A} ' Qi:T

Ix:AiFQ:U; i=1...n 't zinTi — Q2 where true : Tb
Q2 U

't let z:= Qi return |...|Un I'F forTin @ return Q2 : 15
L

Lemma 2 (Soundnessof DOS). For any T :
{U1,..., Uy} =Trees(TYANU = (Uy | ... | Up)x = Vf € [T]. dos(f) € [U]
4.2 Soundness of the Type System

We provisionally assumed that Split(7") = {7}, which resultsin acompletely standard
LET-RETURN typerule. Thisis sufficient to obtain the canonical ‘ soundness’ property
(Theorem 1): types are upper bounds for the set of all possible results.

Table 4.2. Query Type Rules: Rulesfor Iteration, Child and Dos.

I

(TYPEINEMPTY) (TYPEINUNION)

WF(I't Tin() — @ where P: () I'7ZinT;, — Qwhere P:T] i=1,2
' Zin() — Quwhere P: () 't ZzinTi | T> — Quhere P: T} | T,

(TYPEINTREE)
(T=m[T') VT = B) lit(T) = {A1,..., A}
nz: AP Iz:AFQ:U i=1...n

I'-7TinT — Quhere P:Ui|...| Uy

(TypPeEINCONC) (TYPEINSTAR)
I'-zinT, — Qwhere P:T] i=1,2 I'F TinT — Quwhere P:U

I'-zinTy,T> — Q where P:TY,T} I'+ TinTx — Q where P: Ux

(TYPECHILD) (TyPEDOS)

WF(I' - T dos :: NodeTest : U)
WF(I'+ 7 child :: NodeTest : U) z: Tel N(T=m[T"] vV T=B)
z:Tel A (T=m[T"|VT = B) {U1,...,Un} = Trees(T)
T = if T = m[T"] then T"else () U =(Ui|...|Un)*
F T’ :: NodeTest = U F U’ :: NodeTest = U
't T child :: NodeTest : U '+ Z dos :: NodeTest : U

Theorem 1 (Upper Bound). For any well-formed I" and query Q:
' Q:UANpeR(I) = [Q], U]

The proof of this theorem is essentially the same as the one given in [18] [10], since
considered X Path-like paths do not match the horizontal structure of sequences, so their
typing does not depend on ordering.

This theorem is crucia to guarantee soundness of mapping correctness checking.
Indeed, if @ is amapping from S; to S, and I' = @ : U, then thanks to the above
theorem, we can compare U wrt S; in order to verify whether the semantics of @
conformsto S;. In the next section we will formalize how this comparison can be done
in order to agree to the notion of mapping correctness (Definition 3).

The system cannot be made complete: as for any type system based on regular
expression types, the presence of queries that may produce sets of trees that are not
regular languages makes compl eteness impossible. However, we will see later how the
precision of the type system may be improved, and why more precision is desirablein
our context.

5 Correctness Checking

Definitions 3 and 4 describe our notion of mapping correctness, but they cannot directly
be used to check whether amapping is correct or not. To obtain aconstructive definition,
we need to switch from values to types.

Definition 7 (Type projection). Given two type T; and T», we say that 7} is a projec-
tion of T, (T1 g T2) if and Onlyif: Vdy : T Ads : Th.dy S ds.

As for the value projection relation, the type projection relation is semantics, and
states that atype T isaprojection of atype T if, for each datainstance d; conforming
toT1, there exists adatainstance d» conformingto 7T such that d; isaprojection of d.

Type projection is quite different from standard subtyping, since it is based on the
ideathat 77 < T if 71 matches afragment of T, while Ty < T» impliesthat T} is
more specific than Ts.

To use type projection in mapping correctness checking, we must correlate type
projection and mapping correctness. To this aim, we can rely on the result type of a
query as inferred by our type system, as shown in the following theorem.

Theorem 2 (Completeness of type projection). Given a mapping m = {qx}x from
V; toV;, miscorrect if Vg, I' - ¢ : Tand T < V;, where I' is an environment
obtained from V;.

The previous theorem states that, if one can establish a projection relation between
the inferred type and the target schema of a mapping, the correctness of the mapping is
proved.

The type projection relation is still not operational, since its definition involves a
universal quantification on the data instances of the source schema. To overcome this
problem and obtain a practical way of checking type projection, we introduce the no-
tion of type approximation. Type approximation weakens types by enriching base and
element types with a union with the empty segquence type; this allows one to relate
type projection to standard subtyping for unordered types, whose decidability has been
provedin [20].

5.1 TypeApproximation

Type approximation is based on the idea of weakening types by introducing unionswith
the empty sequence type.

Definition 8 (Type approximation). Given a type U, we indicate with U < the type
obtained by U just by replacing each subexpression U’, corresponding to a tree type
I[[.]or B,withU’? (thatis (U’ | ())). Formally

020 TIUSETI| U TP 2T
BY£pB? T,UY 279,09 T £7%

Itiseasy to provethat T < T'<. To prove the main results about type approxima-
tion, we have to introduce the notion of contexts, whose grammar is shown below.

ContextsC ::=z | () | C,C | I[C] | b

A context is apartially specified forest, where variables indicate arbitrary forests. Vari-
ables are always assumed to be unique, and context instantiation is indicated as C',,
where p is a set of variable assignments z — f. We indicate with C'(, the forest ob-
tained by C' by replacing each variable with the empty sequence.

If we indicate with f ~ f’ the fact that the two forests are equal up to ordering
among children and values at leafs, we can state the following lemma.

Lemma 3. Giventwo forests f; and f», the following relation holds:

fisf & 3C3p. Co=fi ANfa=C,

The following theorem correlates T'< with T'.

Theorem 3.
T<T

Lemma4. For eachtype U:
LVf:US(f#(0) = 3C p, f:UCy=f N f=0C,)
2.Vf:UCp. (f=C, = Cy:U7)
3VC. (Coy# () ANCH:UY =3f:UIp. f=0C,)
The previous lemma serves to prove the following main theorem.
Theorem 4 (Type projection as sub-typing).
T<U&T<U”

The previous theorem states that type projection between T" and U can be checked
by weakening U and, then, by checking for the existence of a subtyping relation be-
tween T' and U <. This theorem proves the decidability of type projection, since de-
cidability of subtyping for a superset of our type language has been proved in [20].
For what concerns the complexity of type projection, we recently proved that, for our
type language, type projection can be checked in polynomial type, hence making our
maintenance approach more effective.

5.2 Improving Precision of Type Inference

As already observed, inferred types cannot precisely capture query semantics. How-
ever, there is some space for gaining more precision, which implies less false-negative
in checking mapping correctness. Thisistypical of every approach based on result anal-
ysis, including those of languages of the X Duce family.

As shown in [18][10], by tuning the operator Split(T"), we may improve the pre-
cision of the type system. Under the assumption Split(7") = {T'}, the presented type
system s not precise enough when, for example, there are variabl esthat occur morethan
once (non-linear variables) and with a union type. For example, consider the (artificial)
type X = data[mbl[]+ | phn[]+], and the sequence query (z/mbl,z/phn). When
x has type X, this query yields either a sequence of elements mbl[] or a sequence of
elements phn[]. Instead, asin XQuery, our type system infers atype (mbl[|x, phn[]*),
which also contains sequences with both mbl[] and phn[] elements. If thistypeis com-
pared with (mbl[]* | phn[]*), in order to check whether the query output conformsto
this expected type, the checking will fail thus producing a false negative.

We solve these problems by using in the rules a finer Split() function, which pro-
duces more precise types. For example, if theinput type X = data[mbl[|+ | phn[]+]is
split in the two types data[mbl[]+] and data[phn[]+], and, then, two separate analysis
are performed, we obtain the types data[mbl[]«| and data[phn[]*]. Then the query type
is the union of these two types, and thus a subtype of the previous expected type, thus
avoiding afalse negative.

Thedefinition of Slit(T") isnon-trivial in the presence of recursivetypes. In[18][10]
we propose a solution that works under a mild restrictions over the use of recursion.
Here, we propose the same definitions without making any restriction as recursivetypes
have aready been excluded.

Definition 9 (Split(T)).

Slit(()) = {0} lit(T | U) = Split(T) U Plit(V)
Slit(B) ={B} StQT]) = {I[A] | A€ Plit(T)}
Slit(Ux) = {Us} Slit(T,U) = {(A,B) | A e Slit(T) A B € Slit(U)}

Splitting stops when a *-type is met. As shown in [10], this ensures acceptable
complexity for a very wide class of cases, while ensuring good precision at the same
time, asin schemas most union types arethe form (1" | U)x*, which are not split.

To have an idea of the precision that we gain by splitting, we have that a query @
without where conditions always evaluates to (), under well-typed substitutions, if and
only if its inferred type is (); as shown in [10], this does not hold without splitting.
As a second example, the reader can run the rules over Example 1, and readlize that the
inferred typeis quite precise and is a projection of the target type.

To conclude, since we are considering non recursive types, we believe that an alter-
native typing for = dos :: NodeTest expressions, based on the abstract execution of the
descendant-or-self operator over the type bound to 7, by possibly using splitting, may
further improve precision. We leave this issue as future work.

6 Reated Work

To the best of our knowledge, the only aternative technique for detecting corrupted
mappingsin XML p2p systems is the one described in [9]. We have aready discussed
differences between the present approach and that work. Other works on p2p systems
[16] [5] do not address the problem of checking mapping correctness: they always as-
sume mappings to be correct, with a correctness notion very close to our semantic cor-
rectness. Starting from correct mappings, [16] proposes a correct and complete query
answering algorithm for p2p data integration systems.

Our type system is a variation of the type systems of [10] and [9], obtained by
dropping error-checking in favor of a better precision in type inference. In these works
we have aready outlined advantages of these type systems wrt to the W3C XQuery
type system [21].

7 Conclusionsand Future Work

This paper presented a novel technique for detecting corrupted mappingsin XML p2p
data integration systems. This technique can be used in any context where a schema
mapping approachis used, and it is based on a semantic notion of mapping correctness,
unrelated to the query transformation algorithms being used. This form of correctness
works on the ability of a mapping to satisfy the target schema, and it is independent
from queries.

To check mapping correctness, we introduced a notion of type projection for XML
types. By reducing type projection to standard subtyping among weakened types, it
follows that type projection is decidable [20]. We recently proved that type projection
can be checked in polynomial time.

We proved that mapping correctness can be reduced to type projection between the
inferred result type of the mapping and the target schema, and showed that our approach
iscomplete, i.e., al errorswill be detected. To decrease fal se negatives, we augment the
precision of type inference through type splitting.

Although this work is not in its infancy, much work remains to do as it forms the
basis for a massive future work. In particular, we plan, in the near future, to implement
this technique in a centralized, logical p2p system, so to verify its applicability in a
background maintenance activity. Finally, we plan to enrich our approach with some
form of self-healing technique, so to suggest to the user possible corrections for any
detected wrong mapping.

References

1. Dabek, F, Brunskill, E., Kaashoek, M.F., Karger, D.R., Morris, R., Stoica, |., Balakrishnan,
H.: Building peer-to-peer systems with chord, a distributed lookup service. In: HotOS.
(2001) 81-86

2. : (The FreePastry System. www.cs.rice.edu/cs/systems/pastry/freepastry/)

3. Boag, S., Chamberlin, D., Fernandez, M.F., Florescu, D., Robie, J., Siméon, J.: XQuery 1.0:
An XML Query Language. Technical report, World Wide Web Consortium (2003) W3C
Working Draft.

4. Halevy, A.Y., Ives, Z.G., Mork, P, Tatarinov, |.: Piazza: data management infrastructure for
semantic web applications. In: Proceedings of the Twelfth International World Wide Web
Conference, WWW2003, Budapest, Hungary, 20-24 May 2003, ACM (2003) 556-567

5. Franconi, E., Kuper, G.M., Lopatenko, A., Zaihrayeu, |.: Queries and updates in the codb
peer to peer database system. In: VLDB. (2004) 1277-1280

6. Goasdoué, F., Rousset, M.C.: Answering queries using views: A krdb perspective for the
semantic web. ACM Trans. Internet Techn. 4 (2004) 255-288

7. Ullman, J.D.: Principles of Database and Knowledge-Base Systems, Volume |. Computer
Science Press (1988)

8. Ullman, J.D.: Principles of Database and Knowledge-Base Systems, Volume |I. Computer
Science Press (1989)

9. Colazzo, D., Sartiani, C.: Typechecking Queriesfor Maintaining SchemaMappingsin XML
P2P Databases. In: Proceedings of the 3th Workshop on Programming Language Technolo-
giesfor XML (Plan-X), in conjunction with POPL 2005. (2005)

10. Colazzo, D., Ghelli, G., Manghi, P, Sartiani, C.: Typesfor Path Correctness of XML Queries.
In: Proceedings of the 2004 International Conference on Functional Programming (ICFP),
Snowbird, Utah, September 19-22, 2004. (2004)

11. Abiteboul, S., Manolescu, 1., Preda, N.: Sharing Content in Structured P2P Networks. Tech-
nical report, INRIA (2005)

12. Tatarinov, |.: Semantic Data Sharing with a Peer Data Management System. PhD thesis,
University of Washington (2004)

13. Tatarinov, |., Halevy, A.Y.: Efficient query reformulation in peer-data management systems.
In: SIGMOD Conference. (2004) 539-550

14. Madhavan, J., Halevy, A.Y.: Composing mappings among data sources. In: VLDB. (2003)
572-583

15. Hosoya, H., Pierce, B.C.: XDuce: An XML Processing Language (1999) Preliminary Report.

16. Cavanese, D., Giacomo, G.D., Lenzerini, M., Rosati, R.: Logica foundations of peer-to-
peer dataintegration. In: PODS. (2004) 241-251

17. Marian, A., Siméon, J.: Projecting xml documents. In: VLDB. (2003) 213-224

18. Colazzo, D.: Path Correctnessfor XML Queries: Characterization and Static Type Checking.
PhD thesis, Dipartimento di Informatica, Universita di Pisa (2004)

19. Fernandez, M., Siméon, J., Wadler, P: A Semi-monad for Semi-structured Data. In: ICDT.
(2001) 263-300

20. Dal-Zilio, S., Lugiez, D., Meyssonnier, C.: A logic you can count on. In Jones, N.D., Leroy,
X., eds.: POPL, ACM (2004) 135-146

21. Draper, D., Fankhauser, P, Fernandez, M., Malhotra, A., Rose, K., Rys, M., Siméon, J,,
Weadler, P: XQuery 1.0 and XPath 2.0 Formal Semantics. Technical report, World Wide
Web Consortium (2005) W3C Working Draft.

22. Benzaken, V., Castagna, G., Frisch, A.: Cduce: an xml-centric general-purpose language. In:
ICFP. (2003) 51-63

