Où l'on en verra de toutes les couleurs

... et avec des arguments de poids !

D. de Werra, EPFL
en collaboration avec: M. Demange, ESSEC
J. Monnot, LAMSADE
V. Paschos, LAMSADE

Ordonnancement chromatique (chromatic scheduling)

modèles de coloration pour problèmes d'ordonnancement
extensions pondérées

«haltère»
$\mathrm{V}=$ collection of jobs $\quad \mathrm{J}_{\mathrm{j}}$
with processing times $\mathrm{w}\left(\mathrm{J}_{\mathrm{j}}\right)$ (weights)
$\mathrm{E}=$ pairwise incompatibilities
(e.g.: non-simultaneity
or inclusion in different batches)
batch $=$ collection S of compatible jobs
$\mathrm{w}(\mathrm{S})=\mathrm{f}\left(\mathrm{w}\left(\mathrm{J}_{\mathrm{j}}\right): \mathrm{J}_{\mathrm{j}_{-}} \mathrm{S}\right)$
$=$ total completion time of jobs in batch S

Problem: Find a partition C of jobs of V into batches $\mathrm{S}_{1}, \ldots, \mathrm{~S}_{\mathrm{k}}$ and a schedule such that the total completion time

$$
\mathrm{C}_{\max }(\mathrm{C})=\mathrm{g}\left(\mathrm{w}\left(\mathrm{~S}_{1}\right), \ldots, \mathrm{w}\left(\mathrm{~S}_{\mathrm{k}}\right)\right)=\min !
$$

Model: \quad graph $G=(V, E)$
job J_{j} node J_{j}
$\mathrm{J}_{\mathrm{r}}, \mathrm{J}_{\mathrm{s}}$ incompatible edge $\left[\mathrm{J}_{\mathrm{r}}, \mathrm{J}_{\mathrm{s}}\right.$]
batchstable set
partition C node
into k batches? k - coloring
processing time $\mathrm{w}\left(\mathrm{J}_{\mathrm{j}}\right)$ weight $\mathrm{w}\left(\mathrm{J}_{\mathrm{j}}\right)$
"weighted coloring"

$$
\begin{array}{r}
\mathrm{C}_{\max }(\mathrm{C}) \equiv \hat{\mathrm{K}}(\mathrm{C})=\text { weight or cost } \\
\\
\text { of coloring } \mathrm{C}
\end{array}
$$

Example 1:

compatible jobs = jobs which may be processed on same machine
batch $\mathrm{S}_{\mathrm{i}}=$ jobs assigned to machine i
$\mathrm{w}\left(\mathrm{S}_{\mathrm{i}}\right)=\sum\left(\mathrm{w}\left(\mathrm{J}_{\mathrm{j}}\right): \mathrm{J}_{\mathrm{j}_{-}} \mathrm{S}_{\mathrm{i}}\right)$
sequential processing of jobs of each batch
partition C into batches $S_{1}, \ldots S_{k}$
$\mathrm{C}_{\max }(\mathrm{C})=\max \left\{\mathrm{w}\left(\mathrm{S}_{1}\right), \ldots, \mathrm{w}\left(\mathrm{S}_{\mathrm{k}}\right)\right\}$
parallel processing of batches

Problem: Find a partition $\mathrm{C}=\left(\mathrm{S}_{1}, \ldots, \mathrm{~S}_{\mathrm{k}}\right)$ of jobs of V into batches S_{i} (each S_{i} is a compatible set)
with $\mathrm{C}_{\max }(\mathrm{C})$ minimum

NB: k is fixed in this example!
(else take $\mathrm{k}=|\mathrm{V}|$ and $\left|\mathrm{S}_{\mathrm{i}}\right|=1 \quad \forall \mathrm{i}$)
$\mathrm{k} \geq \chi(\mathrm{G})=$ chromatic number of G

Special case: $\mathrm{w}\left(\mathrm{J}_{\mathrm{j}}\right)=1 \quad \forall$ node J_{j}

$$
\begin{aligned}
& \mathrm{w}\left(\mathrm{~S}_{\mathrm{i}}\right)=\left(\mathrm{w}\left(\mathrm{~J}_{\mathrm{j}}\right): \mathrm{J}_{\mathrm{j}} L \mathrm{~S}_{\mathrm{i}}\right)=\left|\mathrm{S}_{\mathrm{i}}\right| \\
& \mathrm{C}_{\max }(\mathrm{C})=\max \left\{\left|\mathrm{S}_{1}\right|, \ldots,\left|\mathrm{S}_{\mathrm{k}}\right|\right\}
\end{aligned}
$$

Problem: For k fixed
find a k-coloring $C=\left(S_{1}, \ldots S_{k}\right)$
such that
$\hat{\mathrm{K}}(\mathrm{C})=\max \left\{\left|\mathrm{S}_{1}\right|, \ldots,\left|\mathrm{S}_{\mathrm{k}}\right|\right\}$ is min

$\mathrm{k}=2 \quad \mathrm{~S}_{1}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}, \mathrm{S}_{2}=\{\mathrm{e}\} \hat{\mathrm{K}}(\mathrm{C})=\left|\mathrm{S}_{1}\right|=4$
$\mathrm{k}=3 \quad \mathrm{~S}_{1}=\{\mathrm{a}, \mathrm{b}\}, \mathrm{S}_{2}=\{\mathrm{c}, \mathrm{d}\}, \mathrm{S}_{3}=\{\mathrm{e}\} \hat{\mathrm{K}}(\mathrm{C})=\left|\mathrm{S}_{1}\right|=2$
(Bodlaender, Jansen, Woeginger, 1994)

Example 2:

compatible jobs = jobs which may be in same batch $w\left(S_{i}\right)=\max \left\{w\left(I_{j}\right) J_{j} L S_{i}\right\rfloor$ parallel processing of jobs in same batch partition C into batches $S_{1}, \ldots S_{k}$
$\mathrm{C}_{\max }(\mathrm{C})==\left(\mathrm{w}\left(\mathrm{S}_{\mathrm{i}}\right): \mathrm{i}=1, \ldots, \mathrm{k}\right)$
sequential processing of the batches

Problem: Find an integer k and a partition $C=\left(S_{1}, \ldots, S_{k}\right)$ of jobs of V into k batches $S_{i} \quad$ (each S_{i} is a compatible set) with
$\mathrm{C}_{\text {max }}(\mathrm{C})$ minimum

NB: k has to be found! $k \geq \chi(G)$

$$
\begin{aligned}
& \mathrm{S}_{1}=\{\mathrm{a}, \mathrm{~d}\}, \mathrm{S}_{2}=\{\mathrm{b}\}, \mathrm{S}_{3}=\{\mathrm{c}\} \quad \mathrm{k}=3>\chi(\mathrm{G}) \\
& \mathrm{C}_{\max }(\mathrm{C})=3+1+1=\min !
\end{aligned}
$$

Special case: $\mathrm{w}\left(\mathrm{J}_{\mathrm{j}}\right)=1 \quad \forall \mathrm{~J}_{\mathrm{j}}$

$$
\mathrm{w}\left(\mathrm{~S}_{\mathrm{i}}\right)=\max \left\{\mathrm{w}\left(\mathrm{I}_{\mathrm{j}}\right): \mathrm{J}_{\mathrm{j}} L \mathrm{~S}_{\mathrm{i}} \mathrm{j}=1\right.
$$

$$
\mathrm{C}_{\max }\left(\mathrm{C}=\left(\mathrm{S}_{1}, \ldots, \mathrm{~S}_{\mathrm{k}}\right)\right)=\quad\left(\mathrm{w}\left(\mathrm{~S}_{\mathrm{i}}\right): \mathrm{i}=1, \ldots, \mathrm{k}\right)=\mathrm{k}
$$

Problem: Find a k-coloring of G with k minimum
complexity and approximability of weighted case: see
(Demange, de Werra, Monnot, Paschos, 2001

Time Slot Scheduling of compatible Jobs)

A "classical" application: satellite telecommunication decomposition of traffic matrix

$$
\mathrm{T}=\left(\mathrm{t}_{\mathrm{ij}}\right) \text { into permutation matrices } \mathrm{P}^{1}, \ldots, \mathrm{P}^{\mathrm{n}}
$$

"switching modes"
such that
$\left\{\max _{\mathrm{i}, \mathrm{j}} \mathrm{p}_{\mathrm{ij}}^{\mathrm{s}} \mid \mathrm{s}=1, \ldots, \mathrm{n}_{-}=\min !\right.$

6	2	2				
2	1	4				
2	5	3	$=$	6		
:---	:---	:---				
		4				
	5		$+$		2	
:---	:---	:---				
2						
		3	$+$			2
:---	:---	:---				
	1					
2						

$\mathrm{C}_{\max }(\mathrm{C})=6+3+2=11$

Here : :

Generalization of previous model

stable set (compatible) S in G

- $\mathrm{S}^{\prime} \subseteq \mathrm{S}$ is also stable
- subgraph $G(S)$ of G generated by nodes of $\mathrm{S}=$ isolated nodes
$=$ collection of node disjoint cliques of size 1

Idea: replace S by $\mathrm{S}^{\prime} \subseteq \mathrm{V}$ such that subgraph $G^{\prime}\left(S^{\prime}\right)$ of G generated by S^{\prime}
$=$ collection of node disjoint cliques

Extension of basic model

def: In $G=(V, E)$, set $S \subseteq V$ hypostable if S induces a collection of disjoint cliques (without links)

Hypochromatic $\chi_{\mathrm{h}}(\mathrm{G})=\min \mathrm{k}$ such that \exists number partition of V into k hypostable sets

NB: Determine whether $\chi_{h}(G) \leq 2:$ NP-complete
Also called "subcoloring" easy for complements of planar graphs $\left(\chi_{h}(G) \leq 2\right)$ (Broersma, Fomin, Nesetril,

Woeginger, 2002)

Such extensions of colorings have been studied (generally unweighted)

M.O. Albertson, R.E. Jamison, S.T. Hedetniemi, S.C. Locke (1989)

J.L. Brown, D.G. Corneil (1987)

J. Fiali, K. Jansen, V.B. Le, E. Seidel (2001)

R. Dillon (1998)

Solvable cases :

cactus: connected graph where any two cycles have ≤ 1 common node

If $G=L(H)$ (line graph of cactus)
then $\chi_{h}(G) \leq 3$

Block graph: every 2-connected component is a clique

| If $G=$ block graph, then $\chi_{h}(G) \leq 2$

Weighted case: weight $\mathrm{w}(\mathrm{v}) \forall \mathrm{v}$ in G
clique $\mathrm{K} \quad \mathrm{w}(\mathrm{K})=(\mathrm{w}(\mathrm{v}) \mid \mathrm{vL} \mathrm{K})$
S hypostable set $\quad w(S)=\max \{w(K) \mid K L S\}$

$$
\mathrm{C}=\left(\mathrm{S}_{1}, \ldots, \mathrm{~S}_{\mathrm{k}}\right) \quad \mathrm{C}_{\max }(\mathrm{C})=\left(\mathrm{w}\left(\mathrm{~S}_{\mathrm{i}}\right) \mid \mathrm{i}=1, \ldots, \mathrm{k}\right)
$$

hypocoloring

Interpretation:

$\mathrm{J}_{\mathrm{i}}, \mathrm{J}_{\mathrm{j}}$ compatible
 $\mathrm{J}_{\mathrm{i}}, \mathrm{J}_{\mathrm{j}}$ can be processed simultaneously (assigned to different processors)

clique K
collection of jobs to be processed consecutively (on same processor) $\mathrm{w}(\mathrm{K})=(\mathrm{w}(\mathrm{v}) \mid \mathrm{vL} \mathrm{K})$
hypostable set S
set of jobs (or of
collections of incompatible jobs)
$w(S)=\max \{w(K) \mid K L S\}$

Problem: Find partition C of set V of jobs into batches (hypostable sets):

$$
\mathrm{C}_{\max }(\mathrm{C})=\min !
$$

Property: In weighted graph G
$\exists \mathrm{k}$-hypocoloring S with min cost $\hat{\mathrm{K}}(\mathrm{S})$ which has $\mathrm{k} \leq \Delta(\mathrm{G})+1$ colors
 $\exists \mathrm{s} \leq \Delta+1$ missing in $\mathrm{N}(\mathrm{v})$
color $1>\Delta+1$

$$
\mathrm{S}_{\mathrm{S}}^{\prime}=\mathrm{S}_{\mathrm{s}} \cup\{\mathrm{v}\} \quad \dot{\mathrm{S}}=\mathrm{S} \mid-\mathrm{v}
$$

| NB :

$$
\begin{gathered}
\mathrm{w}(\mathrm{v}) \leq \mathrm{w}\left(\mathrm{~S}_{\mathrm{l}}\right) \leq \mathrm{w}\left(\mathrm{~S}_{\mathrm{s}}\right) \\
\\
\uparrow \quad \uparrow \\
\mathrm{vL} . \mathrm{S}_{\mathrm{l}} \quad \mathrm{~s}<1 \\
\Rightarrow \quad \mathrm{w}\left(\mathrm{~S}_{\mathrm{l}}\right) \leq \mathrm{w}\left(\mathrm{~S}_{\mathrm{l}}\right) \quad \mathrm{w}\left(\mathrm{~S}_{\mathrm{S}}^{\prime}\right)=\mathrm{w}\left(\mathrm{~S}_{\mathrm{s}}\right)
\end{gathered}
$$

no increase of cost
Repeat until $S^{\prime}=\left(\xi_{1}^{\prime}, \ldots, S_{k}^{\prime}\right.$,
with $\mathrm{k} \leq \Delta+1$

Brooks theorem: $\chi(\mathrm{G}) \leq \mathrm{h}$ if
G has $\Delta(\mathrm{G})=\mathrm{h}$ and $\mathrm{G} \neq$ clique (or odd cycle $\mathrm{h}=2$)

Improvement:

$\exists \mathrm{k}$-hypocoloring S with min $\operatorname{cost} \widehat{\mathrm{K}}(\mathrm{S})$ and $\quad \mathrm{k} \leq \Delta(\mathrm{G})$

Sketch of proof: $S=\left(S_{1}, \ldots, S_{k}\right)$ opt k-hypocoloring with $\mathrm{k} \leq \Delta(\mathrm{G})+1$ and $\left|\mathrm{S}_{\mathrm{k}}\right|$ minimum.

If $\quad k \leq \Delta(G): \quad$ OK

$$
\mathrm{k}=\Delta(\mathrm{G})+1 \quad \text { let } \quad \mathrm{v}_{-}-\mathrm{S}_{\mathrm{k}}
$$

If \exists color $\mathrm{s} \leq \Delta(\mathrm{G})$ missing in $\mathrm{N}(\mathrm{v})$ recolor v with $\mathrm{s} \Rightarrow$ better coloring. Impossible

Hence colors $\quad 1,2, \ldots, \Delta(\mathrm{G}) \quad$ occur in $\mathrm{N}(\mathrm{v})$

\exists color $\mathrm{s} \leq \Delta$ missing in $N\left(\mathrm{u}_{\Delta}\right)$
If $\mathrm{s}<\Delta$ recolor u_{Δ} with s
and v with $\Delta \Rightarrow$ Better coloring. Impossible

Hence $s=\Delta$ missing in $N\left(u_{\Delta}\right)$

Recolor v with Δ !

Repeat for all nodes in $\mathrm{S}_{\mathrm{k}} \leftarrow \Delta+1$

$$
\begin{aligned}
& \rightarrow \Delta \text {-coloring } \mathrm{S}^{\prime}=\left(\mathrm{S}_{1}^{\prime}, \ldots, \mathrm{S}_{\mathrm{k}}^{\prime}\right. \\
& \quad \mathrm{w}\left(\mathrm{~S}_{\Delta}^{\prime}\right) \leq \mathrm{w}\left(\mathrm{~S}_{\Delta}\right)+\mathrm{w}\left(\mathrm{~S}_{\Delta+1}\right)
\end{aligned}
$$

Better coloring. Impossible

Bound Δ best possible:
$\forall \mathrm{p}>0 \quad \exists$ tree G with $\Delta(\mathrm{G})=\mathrm{p}$
and with optimum k-hypocoloring
with $\mathrm{k}=\mathrm{p}$ colors

Complexity of weighted hypocoloring

NP-complete for graphs G with
$\Delta(\mathrm{G})=3 \quad$ and $\quad \mathrm{w}(\mathrm{v})_{-}\{\mathrm{a}, \mathrm{b}\}$
\exists polynomial algorithm for trees with bounded degree

A special case: $\Delta(\mathbf{G})=2$

$$
\begin{aligned}
& \mathrm{G}=\text { cycles and chains } \\
& \mathrm{w}(\mathrm{v}) \geq 0 \quad \forall \text { node } \mathrm{v}
\end{aligned}
$$

Proposition: If $G=$ collection of chains, then
$\exists \mathrm{G}^{\prime}=$ single cycle such that $\forall \mathrm{r}$
G^{\prime} has 2-hypocoloring C^{\prime} with $\widehat{\mathrm{K}}\left(\mathrm{C}^{\prime}\right) \leq \mathrm{r}$ iff G has 2-hypocoloring C with $\widehat{K}(C) \leq r$.

Consequence: We may assume $G=$ disjoint cycles
NB: \quad S hypostable $=$ nodes, edges, triangles

$$
\text { for } e=[x, y] \quad w(e)=w(x)+w(y)
$$

\exists optimal 2-hypocoloring
$\mathrm{w}\left(\mathrm{S}_{1}\right) \geq \mathrm{w}\left(\mathrm{S}_{2}\right) \quad \mathrm{S}_{2}$ contains no triangle

Basic idea: for fixed $\mathrm{p} \geq \mathrm{q}$ use algorithm
$A(p, q)$ which determines if $\exists C=\left(S_{1}, S_{2}\right)$
with $\quad \mathrm{w}\left(\mathrm{S}_{1}\right)=\mathrm{p}, \quad \mathrm{w}\left(\mathrm{S}_{2}\right)=\mathrm{q}$

Properties used in $\Delta(p, q):$

A) If $w(v)>q$, then $v_{-} S_{1}$
B) If x, y, z consecutive on a $P_{3}\left(___\right)$ with $x, y L_{i}$, then $z_{-} S_{3-\mathrm{i}}$
C) If for $e=[x, y], w(e)>p$, then x, y not both in S_{1} ("color 1 forbidden for $e^{")}$
D) If $\mathrm{w}(\mathrm{e})>\mathrm{q}$, then x , y not both in S_{2} ("color 2 forbidden for e")
E) If $a_{1}, a_{2}, \ldots, a_{s}=$ chain with $a_{1}, a_{s}-S_{i}(s$ odd $)$ or $\mathrm{a}_{1-} \mathrm{S}_{\mathrm{i}}, \mathrm{a}_{\mathrm{s}}\left\llcorner\mathrm{S}_{3-\mathrm{i}}(\mathrm{s}\right.$ even), then
\exists 2-hypocoloring such that colors alternate on chain
F) If $a_{1}, a_{2}, \ldots, a_{s}=$ chain with a_{1}, a_{s}. $S_{i}(s$ even $)$ or $a_{1} L S_{i}, a_{s}-S_{3-i}(s$ odd) then \exists 2-hypocoloring such that $\left[a_{1}, a_{2}\right]$ gets a feasible color

Apply properties until a
2-hypocoloring is obtained or a contradiction.

Record solution if best so far

alternate colors $1 \& 2$

$$
\left[a_{1}, a_{2}\right] \rightarrow \text { color } 1
$$

$$
\mathrm{w}\left(\mathrm{a}_{1}\right)+\mathrm{w}\left(\mathrm{a}_{2}\right) \leq \mathrm{p} \quad\left(\text { else } \quad \mathrm{a}_{2} 5 \mathrm{~S}_{2}\right)
$$

a_{1}
a_{2}
a_{s}
-
1

Apply properties A) - F) until
a 2-hypocoloring is obtained (or a contradiction).

Record solution if best so far

Property: $\max \{\mathrm{w}(\mathrm{v}): \mathrm{v} 5 \mathrm{~V}) " \mathrm{w}\left(\mathrm{S}_{1}\right)^{\prime \prime}$ $" \max \left\{\max \{\mathrm{w}(\mathrm{e}): \mathrm{e} 5 \mathrm{E}\}, \max \left\{\mathrm{w}\left(\mathrm{K}_{3}\right): \mathrm{K}_{3} 5 \mathrm{G}\right\}\right\}$ where K_{3} is a triangle in G

Algorithm: Start with smallest p

(and smallest $\mathrm{q} \leq \mathrm{p}$) and apply $\mathrm{A}(\mathrm{p}, \mathrm{q})$
to get smallest q for which $\mathrm{C}=\left(\mathrm{S}_{1}, \mathrm{~S}_{2}\right)$ exists.

Increase p to next possible value and repeat $A(p, q)$ with minimum q.

Stop when p is at maximum possible value.

Complexity: $\mathrm{O}\left(\mathrm{n}^{2}\right)$

A special case:

2-restricted hypostable sets:

collection of cliques of cardinality ≤ 2
 "nodes and edges"

Property: $\quad \exists$ optimal k-hypocoloring with $\mathrm{k} \leq \mathrm{A}(\mathrm{G})$

For graphs without triangles
\exists enumeration algorithm COCA
(contract or connect algorithm)
"Light" version: usual colorings

G triangle-free: hypostable sets
"nodes and edges"

For G with \mathbf{x}, \mathbf{y} not linked: partition of colorings
a) $\mathrm{x}, \mathrm{y} \quad$ in same $\mathrm{S}_{\mathrm{i}}: \quad \mathrm{G} \leftarrow \mathrm{G}_{\mathrm{X}=\mathrm{Y}}$
x, y condensed into $x y$
$w(x y)=\max \{w(x), w(y)\}$
b) x, y not in same $\mathrm{S}_{\mathrm{i}}: \quad \mathrm{G} \leftarrow \mathrm{G}+[\mathrm{x}, \mathrm{y}]$

For G with edge $[\mathbf{x}, \mathbf{y}]$: partition of
hypocolorings
a) $\mathrm{x}, \mathrm{y} \quad$ in same $\mathrm{S}_{\mathrm{i}}: \quad \mathrm{G} \leftarrow \mathrm{G}_{\mathrm{X}=\mathrm{Y}}$
[x, y] condensed into xy
$\mathrm{w}(\mathrm{xy})=\mathrm{w}(\mathrm{x})+\mathrm{w}(\mathrm{y})$
edges adjacent to $\mathrm{x} y$ are blocked
b) x, y not in same S_{i} :
$\mathrm{G} \leftarrow \mathrm{G}$ with $[\mathrm{x}, \mathrm{y}]$ blocked

Initialization: G without triangles
weights $\mathrm{w}(\mathrm{v}) ; \quad \mathrm{L}=\{\mathrm{G}\}$: list of graphs to examine
while $\mathrm{L} \neq \emptyset \quad$ choose G^{*} in L
If G^{*} has a free edge $[\mathrm{x}, \mathrm{y}]$
then apply separation H (introduce 2 modified $\mathrm{G}_{\mathrm{S}}^{\prime}$ into L and remove G^{*})
else (all edges blocked)
if $G^{*} \neq$ clique, then apply separation C
(introduce 2 modified $\mathrm{G}_{\mathrm{S}}^{\prime}$ into L and remove G^{*})
else $\left(\mathrm{G}^{*}=\right.$ clique with all
edges blocked)
$w\left(G^{*}\right)=\left(v(v) \mid v L V\left(G^{*}\right)\right.$,
update best solution
if necessary; remove G^{*}

COCA finds optimum (weighted)

hypocoloring in any graph G
if hypostable sets are defined
(node disjoint cliques of size ≤ 2)

Some extensions:

Hypostable set S: every connected component is a clique $S^{\prime} \subseteq S$ is also hypostable (hypostability $=$ hereditary property)

More generally: let P be hereditary property S is a P-constrained set if every connected component C_{s} of S satisfies P .

Examples: $\quad \mathrm{P}={ }^{2} \mathrm{C}_{\mathrm{s}}$ is a clique"

$$
\begin{aligned}
& \mathrm{P}=" \mathrm{C}_{\mathrm{s}} \text { is planar" } \\
& \mathrm{C}(\mathrm{~S})=\left\{\mathrm{C}_{1}, \ldots, \mathrm{C}_{\mathrm{r}}\right\}
\end{aligned}
$$

connected components of S
$\mathrm{V}\left(\mathrm{C}_{\mathrm{s}}\right)=$ nodes of C_{s}
$\mathrm{f}\left(\mathrm{C}_{\mathrm{s}}\right)=\mathrm{f}\left(\mathrm{w}(\mathrm{v}): \mathrm{v} 5 \mathrm{C}_{\mathrm{s}}\right)$
$\mathrm{w}(\mathrm{S})=\max \left\{\mathrm{f}\left(\mathrm{C}_{\mathrm{s}}\right): \mathrm{C}_{\mathrm{s}} 5 \mathrm{C}(\mathrm{S})\right\}$
Hypothesis: for $\mathrm{C}_{\mathrm{s}}=\{\mathrm{v}\}, \mathrm{f}\left(\mathrm{C}_{\mathrm{s}}\right)=\mathrm{w}(\mathrm{v})$
def: A P-constrained k-coloring
$C=\left(S_{1}, \ldots, S_{k}\right)$ of $G=(V, E)$ is a partition of V into k P-constrained sets
def: $\quad \operatorname{cost}$ of $\mathrm{C} \hat{\mathrm{K}}(\mathrm{C})=\left(\mathrm{w}\left(\mathrm{S}_{\mathrm{i}}\right): \mathrm{i}=1, \ldots, \mathrm{k}\right)$
with $\mathrm{w}\left(\mathrm{S}_{\mathrm{i}}\right)=\max \left\{\mathrm{f}\left(\mathrm{C}_{\mathrm{s}}\right): \mathrm{C}_{\mathrm{s}} 5 \mathrm{C}\left(\mathrm{S}_{\mathrm{i}}\right)\right\}$

Examples :

A) weighted hypocolorings

$$
\mathrm{P}=\mathrm{C}_{\mathrm{s}} \text { is a clique }
$$

$\mathrm{f}\left(\mathrm{C}_{\mathrm{s}}\right)=\left(\mathrm{w}(\mathrm{v}): \mathrm{v} L \mathrm{~V}\left(\mathrm{C}_{\mathrm{s}}\right)\right)$
$\mathrm{w}\left(\mathrm{S}_{\mathrm{i}}\right)=\max \left\{\mathrm{f}\left(\mathrm{C}_{\mathrm{s}}\right): \mathrm{C}_{\mathrm{s}} 5 \mathrm{C}\left(\mathrm{S}_{\mathrm{i}}\right)\right\}$
B) $\mathrm{P}=\emptyset \quad \mathrm{w}(\mathrm{v})=1 \quad-\mathrm{v} 5 \mathrm{~V}$
$\mathrm{f}\left(\mathrm{C}_{\mathrm{s}}\right)=\left|\mathrm{V}\left(\mathrm{C}_{\mathrm{S}}\right)\right|$
$\mathrm{w}\left(\mathrm{S}_{\mathrm{i}}\right)=$ largest $\#$ nodes in connected component of S_{i}
$\mathrm{C}=$ partition of V into arbitrary $\mathrm{S}_{1}, \ldots, \mathrm{~S}_{\mathrm{k}}$

```
Remark: }\quad\textrm{C}=(\mp@subsup{\textrm{S}}{1}{},\ldots,\mp@subsup{\textrm{S}}{\textrm{k}}{}
```

partition into arbitrary subsets

$$
\chi(\mathrm{G}) \leq \hat{\mathrm{K}}(\mathrm{C})=\mathrm{i}_{\mathrm{i}=1}^{\mathrm{k}} \max \left\{\left|\mathrm{~V}\left(\mathrm{C}_{\mathrm{s}}\right)\right|: \mathrm{C}_{\mathrm{s}} L \mathrm{C}\left(\mathrm{~S}_{\mathrm{i}}\right)\right\}
$$

In fact

$\chi \chi(\mathrm{G})=\min \quad \underset{\mathrm{i}=1}{\mathrm{k}} \max \left\{\left|\mathrm{V}\left(\mathrm{C}_{\mathrm{s}}\right)\right|: \mathrm{C}_{\mathrm{s}} L \mathrm{C}\left(\mathrm{S}_{\mathrm{i}}\right)\right\}$ $\left(\mathrm{S}_{1}, \ldots, \mathrm{~S}_{\mathrm{k}}\right)$
partition of $V(G)$

$$
\begin{array}{rlr}
\mathrm{C}\left(\mathrm{~S}_{1}\right)=\{\mathrm{ab}, \mathrm{~d} \mathrm{~g}\} & \mathrm{w}\left(\mathrm{~S}_{1}\right)=2 \\
\mathrm{C}\left(\mathrm{~S}_{2}\right)=\{\mathrm{c}, \mathrm{e} \mathrm{f}\} & \mathrm{w}\left(\mathrm{~S}_{2}\right)=2 \\
& \chi(\mathrm{G}) \leq 4 &
\end{array}
$$

Property: $G=(V, E)$ weighted graph

$$
\mathrm{C}=\left(\mathrm{S}_{1}, \ldots, \mathrm{~S}_{\mathrm{k}}\right) \text { partition of } \mathrm{V}
$$ into arbitrary $\mathrm{S}_{1}, \ldots, \mathrm{~S}_{\mathrm{k}}$

$$
\mathrm{w}_{\max }(\mathrm{U})=\max \{\mathrm{w}(\mathrm{v}): \mathrm{v} 5 \mathrm{U}\} \quad-\mathrm{U} \subseteq \mathrm{~V}
$$

then
$\min \hat{\mathrm{K}}(\mathrm{C}) \leq \mathrm{K}_{\mathrm{i}=1}^{\mathrm{k}} \mathrm{w}_{\text {max }}\left(\mathrm{S}_{\mathrm{i}}\right) \max \left\{\left|\mathrm{V}\left(\mathrm{C}_{\mathrm{s}}\right)\right|: \mathrm{C}_{\mathrm{s}} \mathrm{L} \mathrm{C}\left(\mathrm{S}_{\mathrm{i}}\right)\right\}$
$\mathrm{C}=\mathrm{P}$-constrained coloring

Alternate definition of weighted chromatic number:
$\left(\quad \mathrm{S}_{\mathrm{i}}=\right.$ stable set; $\left.\mathrm{w}\left(\mathrm{S}_{\mathrm{i}}\right)=\max \left\{\mathrm{w}(\mathrm{v}): \mathrm{v} 5 \mathrm{~S}_{\mathrm{i}}\right\}\right)$
$\min \widehat{K}(\mathrm{C})=\min \quad \underset{\mathrm{i}=1}{\mathrm{k}} \mathrm{w}_{\max }\left(\mathrm{S}_{\mathrm{i}}\right) \max \left\{\left|\mathrm{V}\left(\mathrm{C}_{\mathrm{s}}\right)\right|: \mathrm{C}_{\mathrm{s}} \mathrm{L} \mathrm{C}\left(\mathrm{S}_{\mathrm{i}}\right)\right\}$
C : coloring $\quad \mathrm{S}_{1}, \ldots, \mathrm{~S}_{\mathrm{k}}$
arbitrary
partition
¿coloring algorithm for the unweighted case?

A "special" case:

P-constrained chromatic number $\quad \chi_{p}(G)$

$$
=\min \widehat{K}(C)=\quad i\left(w\left(S_{i}\right): S_{i} L C\right)
$$

$\mathrm{C}=\left(\mathrm{S}_{1}, \ldots, \mathrm{~S}_{\mathrm{k}}\right) \quad$ partition into P-constrained subsets $\mathrm{w}(\mathrm{v})=1 \quad \forall \mathrm{v} 5 \mathrm{~V} ; \mathrm{f}\left(\mathrm{C}_{\mathrm{s}}\right)=\max \left\{\mathrm{w}(\mathrm{v}): \mathrm{v} 5 \mathrm{C}_{\mathrm{s}}\right\}=1$
$\mathrm{w}\left(\mathrm{S}_{\mathrm{i}}\right)=\max \left\{\mathrm{f}\left(\mathrm{C}_{\mathrm{s}}\right): \mathrm{C}_{\mathrm{s}} 5 \mathrm{C}\left(\mathrm{S}_{\mathrm{i}}\right)\right\}=1$

Property: For $G=(V, E)$ weighted
with $\mathrm{w}(\mathrm{v})>0 \forall \mathrm{v} \quad \mathrm{w}(\mathrm{v})_{-}\left\{\mathrm{t}_{1}, \mathrm{t}_{2}, \ldots, \mathrm{t}_{\mathrm{r}}\right\}$
every optimal P-constrained coloring $\mathrm{S}_{1}^{*}, \ldots, \mathrm{~S}_{\mathrm{k}}^{*}$ with $\mathrm{f}\left(\mathrm{C}_{\mathrm{s}}\right)=\max \left\{\mathrm{w}(\mathrm{v}): \mathrm{v} 5 \mathrm{C}_{\mathrm{s}}\right\}$
satisfies

$$
\mathrm{k} \leq 1+\mathrm{r}\left(\chi_{\mathrm{p}}(\mathrm{G})-1\right)
$$

Sketch of proof:

Assume $\mathrm{w}\left(\mathrm{S}_{1}{ }^{*}\right) \geq \ldots \geq \mathrm{w}\left(\mathrm{S}_{\mathrm{k}}^{*} ;\right.$; let $\mathrm{q}=\chi_{\mathrm{p}}(\mathrm{G})$
To be shown $\mathrm{w}\left(\mathrm{S}_{\mathrm{i}}^{*}\right)>\mathrm{w}\left(\mathrm{S}_{\mathrm{i}+\mathrm{q}-1}^{*}, \quad \forall \mathrm{i} \leq \mathrm{k}-\mathrm{q}\right.$
Take smallest i with $\mathrm{w}\left(\mathrm{S}_{\mathrm{i}}^{*}\right)=\ldots=\mathrm{w}\left(\mathrm{S}_{\mathrm{i}+\mathrm{q}-1}^{*}\right)$? $\mathrm{w}\left(\mathrm{S}_{\mathrm{k}}^{*}\right.$, .
Then $\mathrm{w}\left(\mathrm{S}_{\mathrm{i}}^{*}\right)=\ldots=\mathrm{w}\left(\mathrm{S}_{\mathrm{i}+\mathrm{q}-1}^{*}\right)=\mathrm{t}_{\mathrm{s}}=\max \left\{\mathrm{w}(\mathrm{v}): \mathrm{v} 5 \mathrm{G}^{\prime}\right\}$
where $\mathrm{G}^{\prime}=$ subgraph generated by $\mathrm{S}_{\mathrm{i}}^{*} \cup \ldots \cup \mathrm{~S}_{\mathrm{k}}^{*}$.
But $\chi_{\mathrm{p}}\left(\mathrm{G}^{\prime}\right) \leq \chi_{\mathrm{p}}(\mathrm{G})=\mathrm{q}$, so \exists P-constrained coloring $\mathrm{S}_{\mathrm{i}}^{\prime}, \ldots, \mathrm{S}_{\mathrm{i}+\mathrm{q}-1}^{\prime}$ of G^{\prime} with $\mathrm{i}+\mathrm{q}-1<\mathrm{k}$.
Assume w $\left(\mathrm{s}_{\mathrm{i}}^{\prime}\right)$? ... ? w $\left(\mathrm{s}_{\mathrm{k}}^{\prime}\right)$; then w $\left(\mathrm{S}_{\mathrm{i}}^{\prime}\right)=\mathrm{w}\left(\mathrm{s}_{\mathrm{i}}^{*}\right)$ and $w\left(\left(_{i+s}^{\prime}\right) \leq{ }_{w}\left(S_{i+s}^{*}\right)\right.$ for $s=1, \ldots, q-1$.

Setting $S_{j}^{\prime}=S_{j}^{*}$ for $\mathrm{j}=1, \ldots, i-1$,
we get a P-constrained coloring C'
with $\mathrm{i}+\mathrm{q}-1<\mathrm{k}$ colors; since $\mathrm{w}\left(\mathrm{S}_{\mathrm{k}}^{*}\right)>0=\mathrm{w}\left(\mathrm{S}_{\mathrm{k}}^{\prime}=\emptyset^{\prime}\right.$, we have $\widehat{K}\left(C^{\prime}\right)<K\left(C^{*}\right)$.

Contradiction!

