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Motivation

Bilevel programming :

max
y∈Y

F (x∗, y) s.t. G (x∗, y) ≤ 0

with x∗ solution of:

max
x∈X

f (x , y) s.t. g(x , y) ≤ 0

Game theory: Stackelberg equilibrium

Player Y with strategies in Y : ”leader”

Player X with strategies in X : ”follower”
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Study of bilevel models

A major class of models of pricing (Marcotte, Labbé, Brotcorne)

Well-studied (Dempe)

Generally NP-hard

General approach based on replacing the low level program by its
KKT conditions : non convex, non linear programs, sometimes
mixed...
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A special class of bilevel problems

We study the optimistic solution of :

max
y∈Rn

f (CTx∗, y)

with x∗ solution of:
max
x∈P

〈ρ + Cy , x〉

where P integer polytope of Rk , C ∈Mn,k(Z) and ρ ∈ Rk
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A special class of bilevel problems

We study the optimistic solution of :

max
y∈Rn

f (CTx∗, y)

with x∗ solution of:

max
x∈P

〈ρ + Cy , x〉 ← CONTINUOUS

where P integer polytope of Rk , C ∈Mn,k(Z) and ρ ∈ Rk or with
x∗ solution of:

max
x∈E(P)

〈ρ + Cy , x〉 ← DISCRETE

where E(P): extreme points of P .
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A special class of bilevel problems

We study the optimistic solution of :

max
y∈Rn

f (CTx∗, y)

with x∗ solution of:

max
x∈P

〈ρ + Cy , x〉 ← CONTINUOUS

where P integer polytope of Rk , C ∈Mn,k(Z) and ρ ∈ Rk or with
x∗ solution of:

max
x∈E(P)

〈ρ + Cy , x〉 ← DISCRETE

where E(P): extreme points of P .

Low-level problem: Tropical polynomial
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In this talk: new approach based on tropical geometry for bilevel
programming

How far is it possible to use the tropical structure to solve the bilevel
problem?

Tropical geometry applied to economy: introduced by Baldwin,
Klemperer (2014), Yu, Tran (2015) for an auction problem

Discrete convexity applied to economy: Danilov, Koshevoy,
Murota (2001)
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Tropical geometry
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Tropical polynomials and hypersurfaces

Tropical algebra: consider the max-plus semifield
(R ∪ {−∞},⊕,�) defined by:

a ⊕ b = max(a, b) and a � b = a + b

Example: 2⊕ 3 = 3 2� 3 = 5

”Tropical polynomial” : function P , continuous, piecewise-linear
with integer slopes and convex:

P(x) = max
1≤k≤p

(ak + 〈ck , x〉) = ”
⊕

1≤k≤p

akx
ck ”

with ck ∈ Zn and x ∈ Rn.

”Tropical hypersurface” : set of points where P is not
differentiable ( = set of points where the maximum is attained
at least ”twice”)
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Example: tropical line

Ex (polynomial of degree 1): ”P(x , y) = max(x , y , 0)”

0 ≥ x , y

y ≥ x , 0

x ≥ y , 0

x

y

0
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Subdivision

Subdivision S of a polyhedron ∆: collection of polyhedra (called
cells) such that:

1
⋃
C∈S C = ∆

2 ∀C 6= C ′ ∈ S, ri(C) ∩ ri(C ′) = ∅
3 ∀C ∈ S, ∀F facet of C, F ∈ S.

Remark: ∀C 6= C ′ ∈ S, C ∩ C ′ ∈ S or C ∩ C ′ = ∅.

Tropical polynomial : defines a subdivision S of Rn !

Cells of S: set of points corresponding to the same maximal
monomial(s).
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Subdivision

Ex : P(x , y) = max(x , y , 0)

0

y

x

y , 0

x , 0

x , y

x , y , 0

Subdivision S:

3
two-dimensional
polyhedra

3
one-dimensional
polyhedra

1
zero-dimensional
polyhedron
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Newton polytope

Tropical polynomial P(x) = max1≤k≤p (ak + 〈ck , x〉).

Newton polytope New(P): convex hull of vectors ck .

Example: max(x , y , 0) = max(1x + 0y , 0x + 1y , 0x + 0y).

Newton polytope: convex hull of
(1, 0), (0, 1) and (0, 0).

(0, 0) (1, 0)

(0, 1)
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Dual subdivision

Theorem (Sturmfels 1994)

There exists a bijection φ between the subdivision S of Rn defined by
a tropical polynomial P and a subdivision S ′ of the Newton polytope
of P .

∆: d-dimensional polyhedron in S ↔ φ(∆): (n − d)-dimensional
polyhedron in S ′.

(0, 0)

(0, 1)

(1, 0) (0, 0) (1, 0)

(0, 1)
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Tropical representation of linear programming

Solving a linear program ⇔ evaluate a tropical polynomial !

max
α∈P
〈x , α〉 = max

α∈E(P)
〈x , α〉 = ”

⊕
α∈E(P)

xα = P(x)

E(P) ⊂ Zn: set of vertices of P .

P : Newton polytope of P .
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Low-level problem

Here: value of each low level problem is a tropical polynomial :

max
x∈P
〈ρ + Cy , x〉 = max

x∈E(P)
〈y ,CTx〉+ 〈ρ, x〉 = max

z∈CTE(P)
〈y , z〉+ ϕ(z)

=
⊕

z∈CTE(P)

ϕ(z)� y�z

where ϕ(z) = maxx∈P, CT x=z〈ρ, x〉 concave function in z .

Newton polytope: convex hull of CTE(P) = CTP .
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Low-level problem

S: subdivision associated to this tropical polynomial.
φ: bijection between S and a subdivision of CTP .

Minimal cell containing y ∈ Rn: Cy =
⋂
{C ∈ S | y ∈ C}.

Lemma

For y ∈ Rn, let Cy be the minimal cell containing y . Then:

arg max
z∈CTP

[〈y , z〉+ ϕ(z)] = φ(Cy )
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Cell enumeration for the bilevel problem

Recall the continuous bilevel problem:

max
y∈Rn

f (CTx∗, y)

with x∗ solution of:
max
x∈P

〈ρ + Cy , x〉

where P integer polytope of Rk , C ∈Mn,k(Z) and ρ ∈ Rk , and the
discrete one:

max
y∈Rn

f (CTx∗, y)

with x∗ solution of:
max

x∈E(P)
〈ρ + Cy , x〉
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Cell enumeration for the bilevel problem

We recall the continuous bilevel problem:

max
y∈Rn

f (z∗, y)

subject to:
z∗ ∈ φ(Cy )

and the discrete one:
max
y∈Rn

f (z∗, y)

subject to:
z∗ ∈ φ(Cy ) ∩ CTE(P)
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Cell enumeration for the bilevel problem

Continuous bilevel problem: maxy∈Rn f (z∗, y) s.t. z∗ ∈ φ(Cy )
Discrete: maxy∈Rn f (z∗, y) s.t. z∗ ∈ φ(Cy ) ∩ CTE(P)

Define Sn = {C ∈ S | C is a n-dimensional polyhedron}.

Theorem (ABEGK 2018)

The continuous bilevel programming problem is equivalent to:

max
C∈S

max
y∈C, z∈φ(C)

f (z , y)

The discrete bilevel programming problem is equivalent to:

max
C∈Sn

max
y∈C, z∈φ(C)

f (z , y)
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Example

Consider n = 2 and k = 4.
Low-level : maxx∈P〈ρ + Cy , x〉 with
P = {x ∈ [0, 1]4 | x1 + x3 ≤ 1} and

ρ =


−2
−1
0
1

 et C =


1 0
0 1
1 0
0 1


Tropical polynomial : max(0, y1, y2 +
1, y1 + y2 + 1, 2y2, y1 + 2y2)

(0, 0) (1, 0)

(0, 1) (1, 1)

(0, 2) (1, 2)

y1

y2
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Example

Bilevel:
maxy f (z∗, y) = −(z∗1 )2 − 〈y , z∗〉
with z∗ = CTx∗ and x∗ solution of
the low-level problem.
Maximization over each cell
Optimal solution : 1 (black line)

(0, 0) (1, 0)

(0, 1) (1, 1)

(0, 2) (1, 2)

y1

y2
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Consequences

Number of subproblems : number of cells in the subdivision

Each subproblem : optimization over a separable domain in z
and y

f linear in y : only to consider the 0-dimensional cells of S
f linear in z : only to consider the 0-dimensional cells of φ(S)
(i.e. the n-dimensional cells of S ⇔ the cells of Sn).

How many cells in S?
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Number of cells

We define ∆n
d = {x ∈ (R+)n |

∑n
i=1 xi ≤ d}.

Theorem

Suppose CTP ⊂ ∆n
d . Then:

|Sn| ≤
(
n + d

n

)
|S| ≤

n∑
j=0

j∑
i=0

(−1)i
(
j

i

)(
n + (j + 1− i)d

n

)
.

⇒ Number of cells in Sn and in S in O(dn): polynomial for fixed n.
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Decomposition theorem

Important case: f does not depend on y .

Theorem (ABEG 2017)

The continuous bilevel problem is equivalent to:

1 Find z∗ ∈ arg maxz∈CTP f (z)

2 Find x∗ and y ∗ such that z∗ = CTx∗ and
x∗ ∈ arg maxx∈P〈ρ + Cy ∗, x〉.

The discrete bilevel problem is equivalent to:

1 Find z∗ ∈ arg maxz∈CTE(P) f (z)

2 Find x∗ and y ∗ such that z∗ = CTx∗ and
x∗ ∈ arg maxx∈E(P)〈ρ + Cy ∗, x〉.
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Application: congestion problem in
telecom networks
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Motivation (Orange)

Demand for using massive contents (video, downloads...)with
mobile phones increases rapidly ⇒ Spectrum crisis, congestion
in different places at different hours

Aim of providers: guarantee a sufficient quality of service (QoS)

One leverage: price incentives to shift the data consumption of the
customers in time

Problem of Orange: How far is it possible to use price incentives to
shift customers data consumption?
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State of art

Smart data pricing problems (see Sen, Joe-Wong, Ha, Chiang 2014
for an overview)

Similar approaches:

Price incentives model depending on time (TUBE),
implementation (Ha, Sen, Joe-Wong, Im, Chiang 2012)

Model with anticipation of downloads (Tadrous, Eriylmaz, El
Gamal 2013)

Bilevel model taking the mobility into account (Ma, Liu, Huang
2014)
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Congestion problem

Day divided in T time slots, network divided in L cells, K customers
in the network.

Network at 3 AM.
No active customers.
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Congestion problem

Day divided in T time slots, network divided in L cells, K customers
in the network.

Network at 7 AM.

Issy : 1

Noisy : 1
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Congestion problem

Day divided in T time slots, network divided in L cells, K customers
in the network.

Network at 9 AM.

Chatelet : 5 !!!
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Congestion problem

Provider : proposes price incentive y(t, `) ∈ R+ at time t in the cell `
Each customer : has a fixed total demand distributed on a day

Network at 7 AM.

Issy : 1

Noisy : 1

La Courneuve : 1

Vincennes : 1
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Congestion problem

Provider : proposes price incentive y(t, `) ∈ R+ at time t in the cell `
Each customer : has a fixed total demand distributed on a day

Network at 9 AM.

Chatelet: only 3
. . .
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A simplified customer model

Simple model: binary consumptions uk(t)

A customer k wants to maximize his utility function:

⇒ max
∑
t

[ρk(t) + y(t, Lk(t))] uk(t)

subject to uk(t) ∈ {0; 1},
∑

t uk(t) = Rk

ρk : preferences of customer k

Lk : trajectory of customer k

Rk : number of requests made by k in one day

Set of times during which the customer k does not want to
consume : {t | ρk(t) = −∞}
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Example

Ex: T = 5, L = 1, ρ1 = [1, 2,−1,−∞,−1], R1 = 2.

Without incentives:

ρ1 1 2 −1 −∞ −1

u1 1 1 0 0 0

With incentives y = [0, 1, 3, 4, 0]:

ρ1 + y 1 3 2 −∞ −1

u1 0 1 1 0 0
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The provider model

He wants to balance the traffic:

⇒ min s(N) =
∑
t,`

st,`(N(t, `))

where:

N(t, `): total number of active customers at time t and cell `:

N(t, `) =
∑
k

u∗k(t)1(Lk(t) = `)

and u∗k optimal solution of the customer k .

st,`: some convex functions
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Example

Ex: T = 5, L = 1, K = 2.

ρ1 = [1, 2,−1,−∞,−1], R1 = 2

ρ2 = [3, 1,−∞, 0, 3], R2 = 3

Without incentives:

u1 = [1, 1, 0, 0, 0]
u2 = [1, 1, 0, 0, 1]

}
N = [2, 2, 0, 0, 1]

With incentives y = [0, 1, 3, 4, 0]:

u1 = [0, 1, 1, 0, 0]
u2 = [1, 0, 0, 1, 1]

}
N = [1, 1, 1, 1, 1]
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Bilevel model

It leads to a bilevel model.
Provider : proposes discounts y .

Low-level problem (each customer k)

max
uk∈Fk

〈ρk + y , uk〉 (1)

Extreme points of a hypersimplex Fk = {uk ∈ {0; 1}n |∑
i uk(i) = Rk , (ρk(i) = −∞⇒ uk(i) = 0)}

High-level problem (provider)

min
y∈Rn

+

s(N) =
∑
i

si(Ni) (2)

with Ni =
∑

k u
∗
k(i) and ∀k , u∗k solution of (1).
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Bilevel model

We study the following model:

min
y∈Rn

+

n∑
i=1

si(Ni)

s.t.

{
Ni =

∑
k u
∗
k(i)

∀k , u∗k ∈ arg maxuk∈Fk
〈ρk + y , uk〉
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Bilevel model

We study the following model:

min
y∈Rn

n∑
i=1

si(Ni)

s.t.

{
Ni =

∑
k u
∗
k(i)

∀k , u∗k ∈ arg maxuk∈Fk
〈ρk + y , uk〉

∀k ,∀uk ∈ Fk ,
∑

i uk(i) constant ⇒ same solution for the low-level
problems by replacing y by y + α(1, . . . , 1) for all α ∈ R.
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Bilevel model

Bilevel model:

min
y∈Rn

s(N∗)

s.t.

{
N∗ = CTu∗

u∗ ∈ arg maxu∈E(P)〈ρ + Cy , u〉

with CT = [In . . . In] ∈Mn,Kn(Z), E(P) = F1 × . . .FK ,
ρT =

[
ρT1 . . . ρ

T
K

]
∈ RKn and s(N∗) =

∑
i si(N

∗
i ).
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Bilevel model:
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ρT =

[
ρT1 . . . ρ

T
K

]
∈ RKn and s(N∗) =
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i si(N

∗
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Discrete bilevel problem
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Tropical representation of customers’ responses

Value of the low-level problem for each customer : tropical
polynomial

Arrangement of tropical hypersurfaces ⇒ Hypersurface
corresponding to the product of different tropical polynomials.

Global example with 5 customers:

ρ1 = [0, 0, 0], R1 = 1

ρ2 = [0,−1, 0], R2 = 2

ρ3 = [−1, 1, 0], R3 = 1

ρ4 = [1/2, 1/2, 0], R4 = 2

ρ5 = [1/2, 2, 0], R5 = 1.
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Tropical representation of customers’ responses

N = (0, 5, 2)

(0, 4, 3)

(0, 3, 4)

(5, 0, 2)

(2, 5, 0)

(2, 0, 5)

(2, 2, 3)
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Bilevel model

Bilevel model:

min
y∈Rn

s(N∗)

s.t.

{
N∗ = CTu∗

u∗ ∈ arg maxu∈E(P)〈ρ + Cy , u〉

with CT = [In . . . In] ∈Mn,Kn(Z), E(P) = F1 × . . .FK ,
ρT =

[
ρT1 . . . ρ

T
K

]
∈ RKn and s(N∗) =

∑
i si(N

∗
i ).

Discrete bilevel problem

High-level problem does not depend on y .
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[
ρT1 . . . ρ

T
K
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∈ RKn and s(N∗) =

∑
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∗
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Discrete bilevel problem

High-level problem does not depend on y .

⇒ Decomposition theorem
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Decomposition theorem

Theorem (Akian, Bouhtou, E., Gaubert, 2017)

The optimal value y ∗ of the bilevel program can be obtained by:

1 Computing N∗ optimal solution of minN∈
∑

k Fk
s(N)

2 Finding y ∗ and u∗k ∈ Fk such that:

N∗ =
∑
k

u∗k

∀k , u∗k ∈ arg max
uk∈Fk

〈ρk + y ∗, uk〉
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Decomposition theorem

Theorem (Akian, Bouhtou, E., Gaubert, 2017)

The optimal value y ∗ of the bilevel program can be obtained by:

1 Computing N∗ optimal solution of minN∈
∑

k Fk
s(N)

POLYNOMIAL ???

2 Finding y ∗ and u∗k ∈ Fk such that: POLYNOMIAL

N∗ =
∑
k

u∗k

∀k , u∗k ∈ arg max
uk∈Fk

〈ρk + y ∗, uk〉
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High-level problem

Minimizing a convex function over
∑

k Fk

Tool: discrete convexity ! (developed by Danilov, Koshevoy and
Murota)
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M-convex set

Consider (e1, . . . , en) the canonical basis of Rn.

Definition

A set E ⊂ Zn is M-convex if ∀x , y ∈ E , ∀i such that xi > yi , ∃j such
that xj < yj with x − ei + ej ∈ E and y + ei − ej ∈ E

x

x − e2 + e1

y + e2 − e1

y
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M-convex set

Example: Fk is a M-convex set for all k

x = (0, 0, 1, 1, 0, 0, 1)

y = (0, 1, 1, 0, 1, 0, 0)

x − e4 + e5 = (0, 0, 1, 0, 1, 0, 1)

y + e4 − e5 = (0, 1, 0, 1, 0, 0, 1)

Theorem (Murota, 1996)

The Minkowski sum of M-convex sets is a M-convex set.

Corollary∑
k Fk is a M-convex set.
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M-convex function

Definition

Function f : Zn 7→ R ∪ {+∞} M-convex iff ∀x , y ∈ dom(f ), ∀i such
that xi > yi , ∃j such that xj < yj verifying:

f (x) + f (y) ≥ f (x − ei + ej) + f (y + ei − ej)

Theorem (Murota, 1996)

A separable convex function defined on a M-convex set is a
M-convex function

⇒: High-level problem : minimization of a M-convex function
s + χ∑

k Fk
.
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Minimization of a M-convex function

Theorem (Murota, 1996)

For a M-convex function, local optimality guarantees global
optimality in sense that:

∀y ∈ dom f , f (x) ≤ f (y)⇔ ∀i , j , f (x) ≤ f (x − ei + ej)

Theorem (Shioura, 1998)

The minimization of a M-convex function over Zn can be achieved in
polynomial time in the dimension n.

⇒ Bilevel problem can be solved in POLYNOMIAL TIME !
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Greedy algorithm for M-convex minimization

Simple greedy algorithm, generally pseudo-polynomial, polynomial in
our case, for solving the high-level problem:

1 Take N ∈
∑

k Fk

2 Compute i , j such that:

s(N − ei + ej) = min
u,v with N−eu+ev∈

∑
k Fk

s(N − eu + ev )

3 If s(N − ei + ej) ≥ s(N) then N∗ := N

4 Else N := N − ei + ej and go back to 1
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Numerical results

Example on real data with 8 time slots, 43 cells: n = 344. More than
2000 customers (K > 2000). s(N) =

∑
i N

2
i

Case Optimal value Most loaded cell
Without incentives 47 189 60

With incentives 35 499 31
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Other numerical results

More developed and realistic telecom model: take into account
different kind of customers, different applications . . .
Discounts only for download. Network with more than 2000
customers in 43 cells. Day divided in 24 hours.

With incentives Without incentives

Figure: Active customers in the most loaded cell
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Other numerical results

With
incentives

Without
incentives

Satisfaction of customers. Gray levels characterize the quality of service
from white (very good quality) to black (very bad)
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Conclusion

Decomposition approach for solving a class of bilevel problems
thanks to tropical geometry

Complexity bounds of the method

Application to a concrete problem

Next step:

Improve the bounds

Obtain more precise results in the case of separable low-levels

Try to develop a ”pivoting” algorithm
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