Algorithmes pour la minimisation de l'énergie

Giorgio Lucarelli

LIP6, Université Pierre et Marie Curie
JFRO, 8 Octobre 2013

Energy-saving in computing systems

- Battery life of mobile devices
- Energy costs in data centers
- Temperature dissipation

Energy-saving in computing systems

- Battery life of mobile devices
- Energy costs in data centers
- Temperature dissipation

Solutions in

- Hardware
- Software

Energy-saving in computing systems

- Battery life of mobile devices
- Energy costs in data centers
- Temperature dissipation

Solutions in

- Hardware
- Software

Scheduling

Speed scaling

- $s(t)$: speed at time t (units of work per unit of time)
- $P(s(t))=s(t)^{\alpha}$: power consumed by a CMOS device
- CMOS: dominant technology for integrated circuits
- $\alpha>1$ is a machine-dependent constant
- Intel PXA 270: 1.11, Intel Pentium M 770: 1.62
[Wierman, Andrew, Tang; INFOCOM 2009]

Speed scaling

- $s(t)$: speed at time t (units of work per unit of time)
- $P(s(t))=s(t)^{\alpha}$: power consumed by a CMOS device
- CMOS: dominant technology for integrated circuits
- $\alpha>1$ is a machine-dependent constant
- Intel PXA 270: 1.11, Intel Pentium M 770: 1.62
[Wierman, Andrew, Tang; INFOCOM 2009]

Work: $w=\int s(t) d t$
Energy: $E=\int P(s(t)) d t$

The problem

Instance:

- A set of n jobs:
- the job J_{j} has a work w_{j}, a release date r_{j} and a deadline d_{j}.
- Machine environment:
- a single processor or a set of m parallel processors or a set of m heterogeneous processors or shop environments or ...

Objective:

- Find a feasible schedule of minimum energy consumption.

The problem

Instance:

- A set of n jobs:
- the job J_{j} has a work w_{j}, a release date r_{j} and a deadline d_{j}.
- Machine environment:
- a single processor or a set of m parallel processors or a set of m heterogeneous processors or shop environments or ...

Objective:

- Find a feasible schedule of minimum energy consumption.
- We need to determine the speed of the processor(s).

The problem

Instance:

- A set of n jobs:
- the job J_{j} has a work w_{j}, a release date r_{j} and a deadline d_{j}.
- Machine environment:
- a single processor or a set of m parallel processors or a set of m heterogeneous processors or shop environments or ...

Objective:

- Find a feasible schedule of minimum energy consumption.
- We need to determine the speed of the processor(s).

Preemption

Migration

Related work

	preemption		no-preemption
	migration	no-migration	
Single processor	polynomial [1]		$\begin{gathered} \text { NP-hard [2] } \\ 2^{5 \alpha-4} \text {-approx. } \end{gathered}$
Parallel processors	polynomial [3,4,5]	$\begin{gathered} \text { NP-hard [6] } \\ B_{\alpha} \text {-approx. [7] } \end{gathered}$	$m^{\alpha}\left(\sqrt[m]{n}{ }^{\alpha-1}\right)$-approx. [8]

[1. Yao, Demers, Shenker; FOCS 1995]
[2. Antoniadis, Huang; SWAT 2012]
[3. Albers, Antoniadis, Greiner; SPAA 2011]
[4. Angel, Bampis, Kacem, Letsios; EuroPar 2012]
[5. Bampis, Letsios, L.; ISAAC 2012]
[6. Albers, Müller, Schmelzer; SPAA 2007]
[7. Greiner, Nonner, Souza; SPAA 2009]
[8. Bampis, Kononov, Letsios, L., Nemparis; COCOON 2013]
Recent review: [Albers; STACS 2011]

Outline

- Linear programming and randomized rounding
[Bampis, Kononov, Letsios, L., Sviridenko; FSTTCS 2013]
- Heterogeneous multiprocessors without migrations
- Convex primal-dual
[Bampis, Chau, Letsios, L., Milis; SEA 2013]
- Open-shop with preemptions

Linear programming

 andRandomized rounding

Heterogeneity

- Each job J_{j} has
- a different work $w_{i j}$
- a different release date $r_{i j}$
- a different deadline $d_{i j}$
on each processor P_{i}.
- Each processor P_{i} has a different constant α_{i}.

Heterogeneity

- Each job J_{j} has
- a different work $w_{i j}$
- a different release date $r_{i j}$
- a different deadline $d_{i j}$
on each processor P_{i}.
- Each processor P_{i} has a different constant α_{i}.
- Case study: we allow preemption but no migration of jobs

Integer programming formulation

Configuration: the schedule of a job

Integer programming formulation

Configuration: the schedule of a job

- Discretize time
- loose a factor of $1+\epsilon$
- polynomial to $1 / \epsilon$ number of slots

Integer programming formulation

Configuration: the schedule of a job

- Discretize time
- loose a factor of $1+\epsilon$
- polynomial to $1 / \epsilon$ number of slots

Configuration: the set of slots of a job on a specific processor

Integer programming formulation

Configuration: the schedule of a job

- Discretize time
- loose a factor of $1+\epsilon$
- polynomial to $1 / \epsilon$ number of slots

Configuration: the set of slots of a job on a specific processor

Given a configuration for the job J_{j}

- $s_{i, j, c}$: speed of J_{j} in configuration c on processor P_{i}
- $E_{i, j, c}$: energy consumption if J_{j} runs according to c on P_{i}

Integer programming formulation

Configuration: the schedule of a job

- Discretize time
- loose a factor of $1+\epsilon$
- polynomial to $1 / \epsilon$ number of slots

Configuration: the set of slots of a job on a specific processor

Given a configuration for the job J_{j}

- $s_{i, j, c}$: speed of J_{j} in configuration c on processor P_{i}
- $E_{i, j, c}$: energy consumption if J_{j} runs according to c on P_{i}

$$
x_{i, j, c}= \begin{cases}1, & \text { if job } J_{j} \text { is executed on } P_{i} \text { according to } c \\ 0, & \text { otherwise }\end{cases}
$$

Integer programming formulation

$$
\begin{aligned}
& \min \sum_{i, j, c} E_{i, j, c} \cdot x_{i, j, c} \\
& \sum_{i, c} x_{i, j, c} \geq 1 \quad \forall \text { job } J_{j} \\
& \sum_{s \in(i, j, c)} x_{i, j, c} \leq 1 \quad \forall \text { slot } s \\
& x_{i, j, c} \in\{0,1\}
\end{aligned}
$$

Integer programming formulation

$$
\begin{aligned}
& \min \sum_{i, j, c} E_{i, j, c} \cdot x_{i, j, c} \\
& \sum_{i, c} x_{i, j, c} \geq 1 \quad \forall \text { job } J_{j} \\
& \sum_{s \in(i, j, c)} x_{i, j, c} \leq 1 \quad \forall \text { slot } s \\
& x_{i, j, c} \geq 0
\end{aligned}
$$

Integer programming formulation

$$
\begin{aligned}
& \min \sum_{i, j, c} E_{i, j, c} \cdot x_{i, j, c} \\
& \sum_{i, c} x_{i, j, c} \geq 1 \quad \forall \text { job } J_{j} \\
& \sum_{s \in(i, j, c)} x_{i, j, c} \leq 1 \quad \forall \text { slot } s \\
& x_{i, j, c} \geq 0
\end{aligned}
$$

- \#variables: exponential
- \#constraints: polynomial

Integer programming formulation

$$
\begin{array}{r}
\min \sum_{i, j, c} E_{i, j, c} \cdot x_{i, j, c} \\
\sum_{i, c} x_{i, j, c} \geq 1 \quad \forall \text { job } J_{j} \\
\sum_{s \in(i, j, c)} x_{i, j, c} \leq 1 \quad \forall \text { slot } s \\
x_{i, j, c} \geq 0
\end{array}
$$

$$
\begin{gathered}
\max \sum_{j} \lambda_{j}-\sum_{s} \mu_{s} \\
\lambda_{j}-\sum_{s: s \in(i, j, c)} \mu_{s} \leq E_{i, j, c} \quad \forall(i, j, c) \\
\lambda_{j}, \mu_{s} \geq 0
\end{gathered}
$$

- \#variables: exponential
- \#constraints: polynomial
- \#variables: polynomial
- \#constraints: exponential

Dual program

Separation oracle:

$$
\begin{aligned}
\max \sum_{j} \lambda_{j}-\sum_{s} \mu_{s} \\
\lambda_{j}-\sum_{s: s \in(i, j, c)} \mu_{s} \leq E_{i, j, c} \quad \forall(i, j, c)
\end{aligned}
$$

$$
\lambda_{j}, \mu_{s} \geq 0
$$

- Given a solution (assignment to the variables)
- either decides that the solution is feasible
- or returns a violated constraint

Dual program

Separation oracle:

$$
\begin{aligned}
\max \sum_{j} \lambda_{j}-\sum_{s} \mu_{s} \\
\lambda_{j}-\sum_{s: s \in(i, j, c)} \mu_{s} \leq E_{i, j, c} \quad \forall(i, j, c)
\end{aligned}
$$

$$
\lambda_{j}, \mu_{s} \geq 0
$$

- Given a solution (assignment to the variables)
- either decides that the solution is feasible
- or returns a violated constraint
- For each pair J_{j} and P_{i} find the configuration c that minimizes

$$
E_{i, j, c}+\sum_{s: s \in(i, j, c)} \mu_{s}
$$

Dual program

Separation oracle:

$$
\begin{aligned}
\max \sum_{j} \lambda_{j}-\sum_{s} \mu_{s} \\
\lambda_{j}-\sum_{s: s \in(i, j, c)} \mu_{s} \leq E_{i, j, c} \quad \forall(i, j, c)
\end{aligned}
$$

$$
\lambda_{j}, \mu_{s} \geq 0
$$

- Given a solution (assignment to the variables)
- either decides that the solution is feasible
- or returns a violated constraint
- For each pair J_{j} and P_{i} find the configuration c that minimizes

$$
E_{i, j, c}+\sum_{s: s \in(i, j, c)} \mu_{s}
$$

- $E_{i, j, c}$: the same for configurations with equal number of slots
- For $x=1,2, \ldots, \#$ slots, find the x variables μ_{s} with the minimum value

Solving the primal

Lemma ([Grötschel, Lovász, Schrijver; 1993])
The dual specifies a polynomial number of violated constraints.

- Solve the primal considering only the variables that correspond to violated constraints

Solving the primal

Lemma ([Grötschel, Lovász, Schrijver; 1993])

The dual specifies a polynomial number of violated constraints.

- Solve the primal considering only the variables that correspond to violated constraints

Theorem

We can find an optimal solution for the primal linear program in polynomial time.

Randomized rounding

1 Solve the configuration LP relaxation.
2 For each job J_{j}, choose a configuration at random with probability $x_{i, j, c}$.
3 Scale the speeds during each slot such that to have a feasible schedule.

Randomized rounding

1 Solve the configuration LP relaxation.
2 For each job J_{j}, choose a configuration at random with probability $x_{i, j, c}$.
3 Scale the speeds during each slot such that to have a feasible schedule.

Randomized rounding

1 Solve the configuration LP relaxation.
2 For each job J_{j}, choose a configuration at random with probability $x_{i, j, c}$.
3 Scale the speeds during each slot such that to have a feasible schedule.

Randomized rounding

1 Solve the configuration LP relaxation.
2 For each job J_{j}, choose a configuration at random with probability $x_{i, j, c}$.
3 Scale the speeds during each slot such that to have a feasible schedule.

Theorem

The expectation of the energy consumption is no more than $\tilde{B}_{\alpha_{\max }}$ times the energy of the relaxed linear program.

Discussion

- $\tilde{B}_{\alpha_{\text {max }}}=\sum_{k=0}^{\infty} \frac{k^{\alpha_{\text {max }}}}{e k!}$
- $\alpha_{\text {max }}$-th (fractional) moment of Poisson's distribution
- Intel PXA 270 : 1.067
- Intel Pentium M 770 : 1.49
- $\operatorname{CMOS}(\alpha=3): 5$

Discussion

α	Preemptive without migrations		Non-preemptive single processor		Routing uniform demands	
	Homogeneous [1]	Heterogeneous [4]	[2]	[4]	[3]	[4]
1.11	2	$1.07(1+\varepsilon)$	2.93	1.15(1+e)	375	1.07
1.62	2	$1.49(1+\varepsilon)$	17.15	2.30(1+ع)	2196	1.49
1.66	2	$1.54(1+\varepsilon)$	19.70	2.43(1+ 1)	2522	1.54
2	2	$2(1+\varepsilon)$	64	$4(1+\varepsilon)$	8193	2
2.5	5	$3.08(1+\varepsilon)$	362	8.72(1+ع)	46342	3.08
3	5	$5(1+\varepsilon)$	2048	20(1+)	262145	5

[1. Greiner, Nonner, Souza; SPAA 2009]
[2. Antoniadis, Huang; SWAT 2012]
[3. Andrews, Anta, Zhang, Zhao; IEEE/ACM Trans. on
Networking 2012]
[4. Bampis, Kononov, Letsios, L., Sviridenko; FSTTCS 2013]

- Heterogeneous multiprocessors with migrations
- Heterogeneous job-shop

Convex primal-dual

Preemptive Open-shop

Instance:

- A set of m parallel processors.
- A set of n jobs.
- Each job J_{j} has an operation $O_{i j}$ with work $w_{i j} \geq 0$ to execute on the processor P_{i}.
- An available interval $[0, d]$.

Objective:

- Find a feasible preemptive schedule with the minimum energy consumption such that operations of the same job are not executed in parallel.

Convexity

- each operation $O_{i j}$ runs at constant speed $s_{i j}=\frac{w_{i j}}{t_{i j}}$
- $E\left(O_{i j}\right)=t_{i j} \cdot s_{i j}^{\alpha}=w_{i j} \cdot s_{i j}^{\alpha-1}$

The algorithm

1 Determine the speeds such that the total energy consumed is minimized

2 Transform works to processing times
3 Run the polynomial algorithm for the classical problem to determine the schedule

The algorithm

1 Determine the speeds such that the total energy consumed is minimized

2 Transform works to processing times
3 Run the polynomial algorithm for the classical problem to determine the schedule

The classical preemptive openshop problem

- Each operation $O_{i j}$ has a processing time $p_{i j}$ instead of work
- Polynomial-time algorithm that creates a feasible schedule [Gonzalez; IEEE Transactions on Computers 1979]

The algorithm

1 Determine the speeds such that the total energy consumed is minimized

2 Transform works to processing times
3 Run the polynomial algorithm for the classical problem to determine the schedule

Determine the speeds

- Convex cost flows [Bampis, Letsios, L.; ISAAC 2012]
- Convex program
- Convex primal-dual w.r.t. KKT conditions

Convex program

$$
\begin{aligned}
\min \sum_{O_{i j} \in J_{j}} \sum_{O_{i j} \in P_{i}} w_{i j} s_{i j}^{\alpha-1} & \\
\sum_{O_{i j} \in P_{i}} \frac{w_{i j}}{s_{i j}} \leq d & \text { for each } P_{i} \\
\sum_{O_{i j} \in J_{j}} \frac{w_{i j}}{s_{i j}} \leq d & \text { for each } J_{j} \\
s_{i j} \geq 0 & \text { for each } O_{i j}
\end{aligned}
$$

KKT conditions

- Necessary and sufficient conditions

Stationarity condition:

$$
s_{i j}^{\alpha}=\frac{\beta_{i}+\gamma_{j}}{\alpha-1} \quad \text { for each } O_{i j}
$$

Complementary slackness conditions:

$$
\begin{aligned}
& \beta_{i} \cdot\left(\sum_{O_{i j} \in P_{i}} \frac{w_{i j}}{s_{i j}}-d\right)=0 \quad \text { for each } P_{i} \\
& \gamma_{j} \cdot\left(\sum_{o_{i j} \in J_{j}} \frac{w_{i j}}{s_{i j}}-d\right)=0 \quad \text { for each } J_{j}
\end{aligned}
$$

Primal-dual method

Stationarity condition:

$$
s_{i j}^{\alpha}=\frac{\beta_{i}+\gamma_{j}}{\alpha-1} \quad \text { for each } O_{i j}
$$

Complementary slackness conditions:

$$
\begin{array}{ll}
\beta_{i} \cdot\left(\sum_{O_{i j} \in P_{i}} \frac{w_{i j}}{s_{i j}}-d\right)=0 & \text { for each } P_{i} \\
\gamma_{j} \cdot\left(\sum_{o_{i j} \in J_{j}} \frac{w_{i j}}{s_{i j}}-d\right)=0 & \text { for each } J_{j}
\end{array}
$$

- Stationarity condition directly relates primal and dual variables
- Main idea: change the dual variables until complementary slackness conditions are satisfied

The primal-dual algorithm (an example)

- Deadline $d=5$
- Work

	J_{1}	J_{2}	J_{3}
P_{1}	3	-	1
P_{2}	2	2	1

The primal-dual algorithm (an example)

Tight

Non-feasible

The primal-dual algorithm (an example)

The primal-dual algorithm (an example)

Tight

The primal-dual algorithm (an example)

Tight
$0 \quad d=5$
J_{1}

Non-tight
Tight
Tight
$d=5$
0
$0 \quad d=5$

$\xrightarrow{\text { Decrease } \gamma_{j}}$

Non-feasible
$0 \quad d=5$

Increase β_{i}

Feasible

The primal-dual algorithm

1 Initialize:

- $\beta_{i}=0$ and $\gamma_{j}=(\alpha-1)\left(\frac{\sum_{o_{i \in j_{j} w_{i j}}}}{d}\right)^{\alpha}$

2 While the complementary slackness conditions are not satisfied do

1 Increase β_{i} to make processors feasible
2 Decrease γ_{j} to make jobs tight or $\gamma_{j}=0$

Our algorithm converges

- The algorithm converges, since at least one γ_{j} is decreased at each step
- Complexity?

Experimental results

- A: an array of size $m \times n$ with the work of operations
- $\alpha=2$ or 2.5 or 3
- $d=1000$
- $w_{\max }=10$ or 50 or 100
- density: probability of an operation to exist $p=0.5$ or 0.75 or 1
- 30 different instances for each combination of parameters

Number of modifications

$$
\alpha=2, w_{\max }=10, p=1
$$

n	$m=5$	$m=10$	$m=15$	$m=20$	$m=25$	$m=30$	$m=40$	$m=50$
5	40101	1	2	2	2	2	2	2
10	151	279611	3	4	3	4	4	4
20	255	295	384	-	34	7	7	10
30	355	410	443	500	593	-	12	15
40	455	510	565	572	640	756	-	32
50	555	610	665	720	768	755	947	-
60	655	710	765	820	872	864	1040	1294
70	755	810	865	920	975	1030	1034	1250
100	1055	1110	1165	1220	1275	1330	1440	1495
150	1555	1610	1665	1720	1775	1830	1940	2050
200	2055	2110	2165	2220	2275	2330	2440	2550

Case: $n>m$

$$
\alpha=2, w_{\max }=10, p=1
$$

Case: $n=m=10$

Parameters		Modifications
$\alpha=2$	$p=0.5$	344
	$p=0.75$	23915
	$p=1$	179611
$w_{\max }=10$	$\alpha=2$	279611
	$\alpha=2.5$	59785
	$\alpha=3$	10716
$\alpha=2$	$w_{\max }=10$	279611
	$w_{\max }=50$	406608
	$w_{\max }=100$	-

Case: $n=m$

$$
\alpha=2, w_{\max }=10, p=1
$$

Conclusions

Methodology

- Linear programming + Randomized rounding
- Convex programming + Primal dual

Conclusions

Methodology

- Linear programming + Randomized rounding
- Convex programming + Primal dual

Questions

- New models
- Tradeoffs between performance and energy

Thank you!

