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Large scale storage systems stand as powerful motivation
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To make a long story short

We look after strategies as solutions of large scale stochastic optimal
control problems,
for example, the optimal management over a given time horizon
of a large amount of dynamical production units

� To obtain decision strategies (closed-loop controls),
we use Dynamic Programming or related methods

� Assumption: Markovian case
� Difficulty: curse of dimensionality

� To use decomposition/coordination techniques, we have to deal with
the information pattern of the stochastic optimization problem
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Decomposition and coordination A bird’s eye view of decomposition methods

Decomposition-coordination: divide and conquer

� Spatial decomposition

� Multiple players with their local information
� Scales: local / regional / national /supranational

� Temporal decomposition

� A state is an information summary
� Time coordination realized through Dynamic Programming, by value

functions
� Hard nonanticipativity constraints

� Scenario decomposition

� Along each scenario, sub-problems are deterministic (powerful
algorithms)

� Scenario coordination realized through Progressive Hedging,
by updating nonanticipativity multipliers

� Soft nonanticipativity constraints
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Decomposition and coordination A bird’s eye view of decomposition methods
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Decomposition and coordination A bird’s eye view of decomposition methods
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Decomposition and coordination A bird’s eye view of decomposition methods

Couplings for stochastic problems: in uncertainty
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Decomposition and coordination A bird’s eye view of decomposition methods

Couplings for stochastic problems: in space
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Decomposition and coordination A bird’s eye view of decomposition methods

Can we decouple stochastic problems?
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Decomposition and coordination A bird’s eye view of decomposition methods

Decompositions for stochastic problems: in time
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Decomposition and coordination A bird’s eye view of decomposition methods

Decompositions for stochastic problems: in uncertainty
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Progressive Hedging
Rockafellar - Wets (91)
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Decomposition and coordination A bird’s eye view of decomposition methods

Decompositions for stochastic problems: in space
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Decomposition and coordination (A brief insight into Progressive Hedging)

Outline of the presentation

1 Decomposition and coordination
A bird’s eye view of decomposition methods
(A brief insight into Progressive Hedging)
Spatial decomposition methods in the deterministic case
The stochastic case raises specific obstacles

2 Dual approximate dynamic programming (DADP)
Problem statement
DADP principle and implementation
Numerical results on a small size problem

3 Theoretical questions
Existence of a saddle point
Convergence of the Uzawa algorithm
Convergence w.r.t. information

4 Conclusion
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Decomposition and coordination (A brief insight into Progressive Hedging)

Non-anticipativity constraints are linear

t=0 t=1 t=2 t=3 t=T t=0 t=1 t=2 t=3 t=T

N scenarios Scenarios tree

� From tree to scenarios (comb)

� Equivalent formulations of the
non-anticipativity constraints

� pairwise equalities
� all equal to their

mathematical expectation

� Linear structure

ut = E
(

ut

∣∣∣∣ w1, . . . ,wt

)
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Decomposition and coordination (A brief insight into Progressive Hedging)

Progressive Hedging stands as
a scenario decomposition method
by dualizing the non-anticipativity constraints

� When the criterion is strongly convex,
we use an algorithm “à la Uzawa”
to obtain a scenario decomposition

� When the criterion is linear,
Rockafellar - Wets (91) propose to use an augmented Lagrangian,
and obtain the Progressive Hedging algorithm
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Decomposition and coordination (A brief insight into Progressive Hedging)

Data: Initial multipliers
{
{λ(0)

t (ω)}T−1
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}
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U
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}
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Result: optimal feedback;
repeat

forall the scenario ω ∈ Ω do
Solves the deterministic minimization problem for scenario ω with
a measurability penalization, and obtain optimal control u(k+1);
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Decomposition and coordination Spatial decomposition methods in the deterministic case
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Decomposition and coordination Spatial decomposition methods in the deterministic case

Decomposition and coordination

Unit 1 Unit N

Unit 2 Unit 3

Interconnected units

� The system to be optimized consists of
interconnected subsystems

� We want to use this structure
to formulate optimization subproblems
of reasonable complexity

� But the presence of interactions
requires a level of coordination

� Coordination iteratively provides
a local model of the interactions
for each subproblem

� We expect to obtain the solution of the
overall problem by concatenation of the
solutions of the subproblems
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Decomposition and coordination Spatial decomposition methods in the deterministic case

Example: the “flower model”

Unit 2

Unit 1 Unit N

Unit 3

Coupling

constraint

min
u

N∑
i=1

Ji (ui )

s.t.
N∑
i=1

θi (ui ) = θ

Unit Commitment Problem

M. De Lara (École des Ponts ParisTech) UNI, Lima 3 November 2014 14 / 58



Decomposition and coordination Spatial decomposition methods in the deterministic case

Intuition of spatial decomposition

Unit
1

Unit
2

Unit
3

Coordinator

� Purpose: satisfy a demand
with N production units,
at minimal cost

� Price decomposition

� the coordinator sets a price λt
� the units send their

production u
(i)
t

� the coordinator compares total
production and demand, and then
updates the price

� and so on...
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Decomposition and coordination Spatial decomposition methods in the deterministic case
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Decomposition and coordination Spatial decomposition methods in the deterministic case

Price decomposition relies on dualization

min
ui∈Ui ,i=1...N

N∑
i=1

Ji (ui ) subject to
N∑
i=1

θi (ui )− θ = 0

1 Form the Lagrangian and assume that a saddle point exists
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N∑
i=1

(
Ji (ui ) +

〈
λ , θi (ui )

〉)
−
〈
λ , θ

〉
2 Solve this problem by the dual gradient algorithm “à la Uzawa”

u
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u
(k+1)
i ∈ arg min

ui∈Ui
Ji (ui ) +

〈
λ(k) , θi (ui )

〉
, i = 1 . . . ,N

λ(k+1) = λ(k) + ρ

( N∑
i=1

θi

(
u

(k+1)
i

)
− θ
)
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Decomposition and coordination Spatial decomposition methods in the deterministic case

Remarks on decomposition methods

� The theory is available for infinite dimensional Hilbert spaces,
and thus applies in the stochastic framework, that is,
when the Ui are spaces of random variables

� The minimization algorithm used for solving the subproblems
is not specified in the decomposition process

� New variables λ(k) appear in the subproblems
arising at iteration k of the optimization process

min
ui∈Ui

Ji (ui ) +
〈
λ(k) , θi (ui )

〉
� These variables are fixed when solving the subproblems,

and do not cause any difficulty, at least in the deterministic case
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Decomposition and coordination Spatial decomposition methods in the deterministic case

Price decomposition applies to various couplings

DECOMPOSITION
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Decomposition and coordination The stochastic case raises specific obstacles
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Decomposition and coordination The stochastic case raises specific obstacles

Stochastic optimal control (SOC) problem formulation

Consider the following SOC problem

min
u,x

E
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))
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i
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Decomposition and coordination The stochastic case raises specific obstacles

Dynamic Programming yields centralized controls

� As we want to solve this SOC problem using Dynamic Programming
(DP), we suppose to be in the Markovian setting, that is,
w0, . . . ,wT are a white noise

� The system is made of N interconnected subsystems,
with the control ui

t and the state xit of subsystem i at time t

� The optimal control ui
t of subsystem i is a function

of the whole system state
(
x1
t , . . . , x

N
t

)
ui
t = γ it

(
x1
t , . . . , x

N
t

)
Naive decomposition should lead to decentralized feedbacks

ui
t = γ̂ it(xit)

which are, in most cases, far from being optimal. . .
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Decomposition and coordination The stochastic case raises specific obstacles

Straightforward decomposition of Dynamic Programming?

The crucial point is that the optimal feedback of a subsystem a priori
depends on the state of all other subsystems, so that using a
decomposition scheme by subsystems is not obvious. . .

As far as we have to deal with Dynamic Programming, the central concern
for decomposition/coordination purpose boils down to

?

?

?

?

??

� how to decompose a feedback γt w.r.t.
its domain Xt rather than its range Ut?

And the answer is

� impossible in the general case!
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Decomposition and coordination The stochastic case raises specific obstacles

Price decomposition and Dynamic Programming

When applying price decomposition to the problem by dualizing the
(almost sure) coupling constraint

∑
i θ

i
t(xit ,u

i
t) = 0,

multipliers Λ
(k)
t appear in the subproblems arising at iteration k

min
ui ,xi

E
(∑

t

Li
t(xit ,u

i
t ,wt+1) + Λ

(k)
t · θit(xit ,u

i
t)
)

� The variables Λ
(k)
t are fixed random variables, so that the random

process Λ(k) acts as an additional input noise in the subproblems

� But this process may be correlated in time, so that
the white noise assumption has no reason to be fulfilled

� DP cannot be applied in a straightforward manner!

Question: how to handle the coordination instruments Λ
(k)
t

to obtain (an approximation of) the overall optimum?
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Dual approximate dynamic programming (DADP)
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4 Conclusion

M. De Lara (École des Ponts ParisTech) UNI, Lima 3 November 2014 24 / 58



Dual approximate dynamic programming (DADP) Problem statement
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Dual approximate dynamic programming (DADP) Problem statement

Optimization problem

The SOC problem under consideration reads

min
u,x

E
( N∑

i=1

( T−1∑
t=0

Li
t(xit ,u

i
t ,wt+1) + K i (xiT )

))
(1a)

subject to dynamics constraints

xi0 = f i
-1(w0) (1b)

xit+1 = f i
t (xit ,u

i
t ,wt+1) (1c)

to measurability constraints:

ui
t � σ(w0, . . . ,wt) (1d)

and to instantaneous coupling constraints

N∑
i=1

θit(xit ,u
i
t) = 0 Constraints to be dualized (1e)
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Dual approximate dynamic programming (DADP) Problem statement

Assumptions

Assumption 1 (White noise)

Noises w0, . . . ,wT are independent over time

Hence Dynamic Programming applies: there is no optimality loss
to look after the controls ui

t as functions of the state at time t

Assumption 2 (Constraint qualification)

A saddle point of the Lagrangian L exists

L
(
x, u,Λ

)
= E

(
N∑
i=1

( T−1∑
t=0

Li
t(xi

t , u
i
t ,wt+1) + K i (xi

T ) +
T−1∑
t=0

Λt · θit(xi
t , u

i
t)

))
where the Λt are σ(w0, . . . ,wt)-measurable random variables

Assumption 3 (Dual gradient algorithm)

Uzawa algorithm applies. . .
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Dual approximate dynamic programming (DADP) Problem statement

Uzawa algorithm

At iteration k of the algorithm,
1 Solve Subproblem i , i = 1, . . . ,N, with Λ(k) fixed

min
ui ,xi

E
( T−1∑

t=0

(
Li
t(xit ,u

i
t ,wt+1) + Λ

(k)
t · θit(xit ,u

i
t)
)

+ K i (xiT )

)
subject to

xit+1 = f i
t (xit ,u

i
t ,wt+1)

ui
t � σ(w0, . . . ,wt)

whose solution is denoted
(
ui ,(k+1), xi ,(k+1)

)
2 Update the multipliers Λt

Λ
(k+1)
t = Λ

(k)
t + ρt

( N∑
i=1

θit
(
x
i,(k+1)
t ,u

i,(k+1)
t

))
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Dual approximate dynamic programming (DADP) Problem statement

Structure of a subproblem

� Subproblem i reads

min
ui ,xi

E
( T−1∑

t=0

(
Li
t(xit ,u

i
t ,wt+1) + Λ

(k)
t · θit(xit ,u

i
t)
))

subject to

xit+1 = f i
t (xit ,u

i
t ,wt+1)

ui
t � σ(w0, . . . ,wt)

� Without some knowledge of the process Λ(k)

(we just know that Λ
(k)
t � (w0, . . . ,wt)),

the informational state of this subproblem i at time t
cannot be summarized by the physical state xit
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Dual approximate dynamic programming (DADP) DADP principle and implementation

We outline the main idea in DADP

� To overcome the difficulty induced by the term Λ
(k)
t ,

we introduce a new adapted information process yi =
(
yi0, . . . , y

i
T−1

)
for Subsystem i

� at each time t, the random variable yit
is measurable w.r.t. the past noises

(
w0, . . . ,wt

)
� The core idea is to replace the multiplier Λ

(k)
t at iteration k

by its conditional expectation E(Λ
(k)
t | yit)

� (More on the interpretation later)

Note that we require that the information process is not influenced by controls
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Dual approximate dynamic programming (DADP) DADP principle and implementation

We can now approximate Subproblem i

� Using this idea, we replace Subproblem i by

min
ui ,xi

E
( T−1∑

t=0

(
Li
t(xit ,u

i
t ,wt+1) + E(Λ

(k)
t | yi

t) · θit(xit ,u
i
t)
)

+ K i (xiT )

)
subject to

xit+1 = f i
t (xit ,u

i
t ,wt+1)

ui
t � σ(w0, . . . ,wt)

� The conditional expectation E(Λ
(k)
t | yit) is

an (updated) function of the variable yit ,

� so that Subproblem i involves the two noises processes w and yi

If yi follows a dynamical equation, DP applies
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Dual approximate dynamic programming (DADP) DADP principle and implementation

We obtain a Dynamic Programming equation by subsystem

Assuming a non-controlled dynamics yit+1 = hi
t

(
yit ,wt+1

)
for the information process yi , the DP equation writes

V i
T (x , y) = K i (x)

V i
t (x , y) = min

u
E
(

Li
t(x , u,wt+1)

+ E
(
Λ

(k)
t

∣∣ yit = y
)
· θit(x , u)

+ V i
t+1

(
xit+1, y

i
t+1

))
subject to the dynamics

xit+1 = f i
t (x , u,wt+1)

yit+1 = hi
t(y ,wt+1)
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Dual approximate dynamic programming (DADP) DADP principle and implementation

DADP displays three interpretations

� DADP as an approximation of the optimal multiplier

λt  E
(
λt
∣∣ yt
)

� DADP as a decision-rule approach in the dual

max
λ

min
u

L
(
λ,u

)
 max

λt�yt
min

u
L
(
λ,u

)
� DADP as a constraint relaxation

n∑
i=1

θit
(
ui
t

)
= 0  E

( n∑
i=1

θit
(
ui
t

) ∣∣∣∣ yt

)
= 0
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Dual approximate dynamic programming (DADP) DADP principle and implementation

A bunch of practical questions remains open

? How to choose the information variables yit?

� Perfect memory: yi
t =

(
w0, . . . ,wt

)
� Minimal information: yi

t ≡ cste

� Static information: yi
t = hi

t

(
wt

)
� Dynamic information: yi

t+1 = hi
t

(
yi
t ,wt+1

)
? How to obtain a feasible solution from the relaxed problem?

� Use an appropriate heuristic!

? How to accelerate the gradient algorithm?

� Augmented Lagrangian

� More sophisticated gradient methods

? How to handle more complex structures than the flower model?
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M. De Lara (École des Ponts ParisTech) UNI, Lima 3 November 2014 36 / 58



Dual approximate dynamic programming (DADP) Numerical results on a small size problem

We consider 3 dams in a row, amenable to DP

DECOMPOSITION
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Dual approximate dynamic programming (DADP) Numerical results on a small size problem

Problem specification

� We consider a 3 dam problem, over 12 time steps

� We relax each constraint with a given information process yi

� All random variable are discrete (noise, control, state)

� We test the following information processes

Constant information: equivalent to replace the a.s. constraint
by an expected constraint

Part of noise: the information process is the inflow of the above dam
Yi

t = wi−1
t

Phantom state: the information process mimicks the
optimal trajectory of the state of the first dam
(by statistical regression over the known optimal
trajectory in this case)
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Dual approximate dynamic programming (DADP) Numerical results on a small size problem

Numerical results are encouraging

DADP - E DADP - wi−1 DADP - dyn. DP

Nb of it. 165 170 25 1

Time (min) 2 3 67 41

Lower Bound −1.386× 106 −1.379× 106 −1.373× 106

Final Value −1.335× 106 −1.321× 106 −1.344× 106 −1.366× 106

Loss −2.3% −3.3% −1.6% ref.

 PhD thesis of J.-C. Alais
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Dual approximate dynamic programming (DADP) Numerical results on a small size problem

Summing up DADP

� Choose an information process y following yt+1 = f̃t
(
yt ,wt+1

)
� Relax the almost sure coupling constraint

into a conditional expectation

� Then apply a price decomposition scheme to the relaxed problem

� The subproblems can be solved by dynamic programming
with the modest state

(
xit , yt

)
� In the theoretical part, we give

� a consistency result (family of information process)
� a convergence result (fixed information process)
� conditions for the existence of multiplier
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Theoretical questions

What are the issues to consider?

� We treat the coupling constraints in a stochastic optimization
problem by duality methods

� Uzawa algorithm is a dual method which is naturally described in an
Hilbert space, but we cannot guarantee the existence of an optimal
multiplier in the space L2

(
Ω,F ,P;Rn

)
!

� Consequently, we extend the algorithm to the non-reflexive Banach
space L∞

(
Ω,F ,P;Rn

)
, by giving a set of conditions ensuring the

existence of a L1
(
Ω,F ,P;Rn

)
optimal multiplier,

and by providing a convergence result of the algorithm

� We also have to deal with the approximation induced by the
information variable: we give an epi-convergence result related to
such an approximation

 PhD thesis of V. Leclère
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Theoretical questions

Abstract formulation of the problem

We consider the following abstract optimization problem(
P
)

min
u∈Uad

J(u) s.t. Θ(u) ∈ −C

where U and V are two Banach spaces, and

� J : U → R is the objective function

� Uad is the admissible set

� Θ : U → V is the constraint function to be dualized

� C ⊂ V is the cone of constraint

Let UΘ =
{

u ∈ U , Θ(u)∈−C
}

be the associated constraint set

Here, U is a space of random variables, and J is defined by

J(u) = E
(

j(u,w)
)

The relationship with Problem (1) is almost straightforward. . .
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Theoretical questions Existence of a saddle point

Standard duality in L2 spaces (I)

Assume that U = L2
(
Ω,F ,P;Rn

)
and V = L2

(
Ω,F ,P;Rm

)
The standard sufficient constraint qualification condition

0 ∈ ri
(

Θ
(
Uad ∩ dom(J)

)
+ C

)
is scarcely satisfied in such a stochastic setting

Proposition 1

If the σ-algebra F is not finite modulo P,a

then for any subset Uad ⊂ Rn that is not an affine subspace, the set

Uad =
{

u ∈ Lp
(
Ω,F ,P;Rn

)
| u ∈ Uad P− a.s.

}
has an empty relative interior in Lp, for any p < +∞

aIf the σ-algebra is finite modulo P, U and V are finite dimensional spaces
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Theoretical questions Existence of a saddle point

Standard duality in L2 spaces (II)

Consider the following optimization problem:

inf
u0,u1

u2
0 + E

(
(u1 + α)2

)
s.t. u0 ≥ a

u1 ≥ 0

u0 − u1 ≥ w to be dualized

where w is a random variable uniform on [1, 2]

For a < 2, we can construct a maximizing sequence of multipliers for the
dual problem that does not converge in L2.
(We are in the so-called non relatively complete recourse case, that is, the
case where the constraints on u1 induce a stronger constraint on u0)

An optimal multiplier is available in
(
L∞
)?

. . .
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Theoretical questions Existence of a saddle point

Constraint qualification in
(
L∞,L1

)
From now on, we assume that

U = L∞
(
Ω,F ,P;Rn

)
V = L∞

(
Ω,F ,P;Rm

)
C = {0}

where the σ-algebra F is not finite modulo P

We consider the pairing
(
L∞,L1

)
with the following topologies:

� σ
(
L∞,L1

)
: weak? topology on L∞ (coarsest topology

such that all the L1-linear forms are continuous),

� τ
(
L∞,L1

)
: Mackey-topology on L∞ (finest topology

such that the continuous linear forms are only the L1-linear forms)
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Theoretical questions Existence of a saddle point

Weak? closedness of linear subspaces of L∞

Proposition 2

Let Θ : L∞
(
Ω,F ,P;Rn

)
→ L∞

(
Ω,F ,P;Rm

)
be a linear operator, and

assume that there exists a linear operator
Θ† : L1

(
Ω,F ,P;Rm

)
→ L1

(
Ω,F ,P;Rn

)
such that:〈

v ,Θ(u)
〉

=
〈
Θ†(v) ,u

〉
, ∀u, ∀v

Then the linear operator Θ is weak? continuous

Applications

� Θ(u) = u− E
(
u
∣∣ B): non-anticipativity constraints,

� Θ(u) = Au with A ∈Mm,n(R): finite number of constraints
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Theoretical questions Existence of a saddle point

A duality theorem

(
P
)

min
u∈U

J(u) s.t. Θ(u) = 0

with J(u) = E
(

j(u,w)
)

Theorem 1

Assume that j is a convex normal integrand, that J is continuous in the
Mackey topology at some point u0 such that Θ(u0) = 0, and that Θ is
weak? continuous on L∞

(
Ω,F ,P;Rn

)
Then, u? ∈ U is an optimal solution of Problem

(
P
)

if and only if there
exists λ? ∈ L1

(
Ω,F ,P;Rm

)
such that

� u? ∈ arg min
u∈U

E
(

j(u,w) + λ? ·Θ(u)
)

� Θ(u?) = 0

Extension of a result given by R. Wets for non-anticipativity constraints
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Theoretical questions Convergence of the Uzawa algorithm

Uzawa algorithm

(
P
)

min
u∈U

J(u) s.t. Θ(u) = 0

with J(u) = E
(

j(u,w)
)

The standard Uzawa algorithm

u(k+1) ∈ arg min
u∈Uad

J(u) +
〈
λ(k) ,Θ(u)

〉
λ(k+1) = λ(k) + ρ Θ

(
u(k+1)

)
makes sense with in the L∞ setting, that is, the minimization problem is
well-posed and the update formula is valid one

Note that all the multipliers λ(k) belong to L∞
(
Ω,F ,P;Rm

)
,

as soon as the initial multiplier λ(0) ∈ L∞
(
Ω,F ,P;Rm

)
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Theoretical questions Convergence of the Uzawa algorithm

Convergence result

Theorem 2

Assume that

1 J : U → R is proper, weak? l.s.c., differentiable and a-convex

2 Θ : U → V is affine, weak? continuous and κ-Lipschitz

3 Uad is weak? closed and convex,

4 an admissible u0 ∈ dom J ∩Θ−1(0) ∩ Uad exists

5 an optimal L1-multiplier to the constraint Θ
(
u
)

= 0 exists

6 the step ρ is such that 0 < ρ < 2a
κ

Then, there exists a subsequence
{

u(nk )
}
k∈N of the sequence generated by

the Uzawa algorithm converging in L∞ toward the optimal solution u? of
the primal problem
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Theoretical questions Convergence of the Uzawa algorithm

Remarks about these results

� The result is not as good as expected (global convergence)

� Improvements and extensions (inequality constraint) needed

� The Mackey-continuity assumption forbids the use of bounds

� In order to deal with almost sure bound constraints, we can turn
towards the work of R.T. Rockafellar and R. J-B Wets

� In a series of 4 papers (stochastic convex programming), they have
detailed the duality theory on two-stage and multistage problems,
with the focus on non-anticipativity constraints

� These papers require

a strict feasability assumption
a relatively complete recourse assumption
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Theoretical questions Convergence w.r.t. information

Relaxed problems

Following the interpretation of DADP in terms of a relaxation of the
original problem, and given a sequence {Fn}n∈N of subfields
of the σ-field F , we replace the abstract problem(

P
)

min
u∈U

J(u) s.t. Θ(u) = 0

by the sequence of approximated problems:(
Pn
)

min
u∈U

J(u) s.t. E
(
Θ(u)

∣∣ Fn

)
= 0

We assume the Kudo convergence of {Fn}n∈N toward F :

Fn −→ F ⇐⇒ ∀x ∈ L1(Ω,F ,P;R), E
(
x
∣∣ Fn

) L1

−→ E
(
x
∣∣ F)
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Theoretical questions Convergence w.r.t. information

Convergence result

Theorem 3

Assume that

� U is a topological space

� V = Lp(Ω,F ,P;Rm) with p ∈ [1,+∞)

� J and Θ are continuous operators

� {Fn}n∈N Kudo converges toward F
Then the sequence {J̃n}n∈N epi-converges toward J̃, with

J̃n =

{
J(u) if u satisfies the constraints of

(
Pn

)
+∞ otherwise
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Conclusion

Conclusion

� DADP method allows to tackle
large-scale stochastic optimal control problems,
such as those found in energy management

� A host of theoretical and practical questions remains open

� We would like to test DADP on (smart) grids, extending the works
on “flower models” (Unit Commitment problem) and
on “chained models” (hydraulic valley management)
to “network models” (grids)
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