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École des Ponts ParisTech

November 16, 2014
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Working out classical examples

Working out classical examples

We will work out classical examples in Stochastic Optimization

� the blood-testing problem
static, only risk

� the newsvendor problem
static, only risk

� as a startup for stock management problems
risk and time, with fixed information flow

� the secretary problem
risk and time, with handleable information flow

Michel DE LARA (École des Ponts ParisTech) JFRO, Paris, 17 November 2014 November 16, 2014 4 / 88



Working out classical examples The blood-testing problem
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Working out classical examples The blood-testing problem

The blood-testing problem (R. Dorfman)
is a static stochastic optimization problem

� A large number N of individuals are subject to a blood test

� The probability that the test is positive is p, the same for all people

� Individuals are stochastically independent

� The blood samples of k individuals are pooled and analyzed together

� If the test is negative, this one test suffices for the k people
� If the test is positive, each of the k persons must be tested separately,

and k + 1 tests are required, in all

� Find the value of k which minimizes the expected number of tests

� Find the minimal expected number of tests
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Working out classical examples The blood-testing problem

In army practice, R. Dorfman achieved savings up to 80%

� For the first pool {1, . . . , k}, the test is

� negative with probability (1− p)k (by independence) → 1 test
� positive with probability 1− (1− p)k → k + 1 tests

� When the pool size k is small compared to the number N of individuals, the
blood samples {1, . . . ,N} are split in approximately N/k groups, so that the
expected number of tests is

J(k) ≈ N

k
[(1− p)k + (k + 1)(1− (1− p)k)]

� For small p, the optimal solution is k⋆ ≈ 1/
√
p

� The minimal expected number of tests is about J⋆ ≈ 2N
√
p < N

� William Feller reports that, in army practice,
R. Dorfman achieved savings up to 80%, compared to making N tests
(take p = 1/100, giving k⋆ ≈ 10 and J⋆ ≈ N/5)
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Working out classical examples The newsvendor problem

The (single-period) newsvendor problem stands as
a classic in stochastic optimization

� Traditionally known under the terminology “newsboy problem”,
it is now coined the “newsvendor problem” ;-)

� Each morning, the newsvendor must decide how many copies
u ∈ U = {0, 1, . . .} of the day’s paper to order

� The newsvendor will meet an uncertain demand w ∈ W = {0, 1, . . .}
� The newsvendor faces an economic tradeoff

� she pays the unitary purchasing cost c per copy, when she orders stock
� she sells a copy at price p

� if she remains with an unsold copy, it is worthless (perishable good)

� Therefore, the newsvendor’s profit is uncertain,

Payoff(u,w) = − cu
︸︷︷︸

purchasing

+ pmin{u,w}
︸ ︷︷ ︸

selling

because it depends on the uncertain demand w
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Working out classical examples The newsvendor problem

For you, Nature is rather random or hostile?
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Working out classical examples The newsvendor problem

The newsvendor reveals her attitude towards risk
in how she aggregates profit with respect to uncertainty

We formulate a problem of profit maximization

� In the robust or pessimistic approach,
the newsvendor maximizes the worst payoff

max
u∈U

min
w∈W

Payoff(u,w)

︸ ︷︷ ︸

worst payoff

as if Nature were malevolent

� In the stochastic or expected approach, the newsvendor solves

max
u∈U

Ew [Payoff(u,w)]
︸ ︷︷ ︸

expected payoff

as if Nature played stochastically
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Working out classical examples The newsvendor problem

If the newsvendor maximizes the worse profit

� We suppose that

� the demand w belongs to a set W = [[w♭,w♯]]
� the newsvendor knows the set [[w♭,w♯]]

� The worse profit is

J(u) = min
w∈[[w♭,w♯]]

[−cu + pmin{u,w}] = −cu + pmin{u,w ♭}

� Show that the order u⋆ = w ♭ maximizes the above expression J(u)

� Once the newsvendor makes the optimal order u⋆ = w ♭,
the optimal profit is w 7→ (p − c)w ♭

which, here, is no longer uncertain
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Working out classical examples The newsvendor problem

If the newsvendor maximizes the expected profit

� We suppose that

� the demand w is a random variable
� the newsvendor knows the probability distribution P of w

π0 = P(w = 0), π1 = P(w = 1) . . .

� The expected profit is

J(u) = Ew [−cu + pmin{u,w}] = −cu + pE[min{u,w}]

� Find an order u⋆ which maximizes the above expression J(u)

� by calculating J(u + 1)− J(u)
� then using the decumulative distribution function d 7→ P(w > d)
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Working out classical examples The newsvendor problem

Here stand some steps of the computation

J(u) = −cu + pE[min{u,w}]
min{u,w} = u1u<w + w1u≥w

min{u + 1,w} = (u + 1)1u+1≤w + w1u+1>w

= (u + 1)1u<w + w1u≥w

min{u + 1,w} −min{u,w} = 1u<w

J(u + 1)− J(u) = −c + pE[1u<w ] = −c + pP(w > u) ↓ with u

� An optimal decision u⋆ satisfies

P(w > u⋆) ≈ c

p
=

cost

price

� Once the newsvendor makes the optimal order u⋆, the optimal profit is
the random variable w 7→ −cu⋆ + pmin{u⋆,w}
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Working out classical examples The newsvendor problem

Where do we stand after having worked out two examples?

� When you move from deterministic optimization to optimization
under uncertainty, you come accross the issue of risk attitudes

� Risk attitudes materialize in the a priori knowledge
on the uncertainties

� either probabilistic/stochastic

independence and Bernoulli distributions in the blood test example
uncertain demand faced by the newsvendor modeled as a random variable

� or set-membership

uncertain demand faced by the newsvendor modeled by a set
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Working out classical examples The newsvendor problem

Where do we stand after having worked out two examples?

� When you move from deterministic optimization to optimization
under uncertainty, you come accross the issue of risk attitudes

� Risk attitudes materialize in the a priori knowledge
on the uncertainties

� either probabilistic/stochastic

independence and Bernoulli distributions in the blood test example
uncertain demand faced by the newsvendor modeled as a random variable

� or set-membership

uncertain demand faced by the newsvendor modeled by a set

� In addition, when you make a succession of decisions, you need to specify
what you know (of the uncertainties) before each decision, and what
you know before each decision may depend or not on your previous actions

� Let us turn to the inventory problem
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Working out classical examples The inventory problem
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Working out classical examples The inventory problem

Inventory control dynamical model

Consider the control dynamical model

x(t + 1) = x(t) + u(t)− w(t)

where

� time t ∈ {t0, . . . ,T} is discrete (days, weeks or months, etc.)

� x(t) is the stock at the beginning of period t, belonging to
X = Z = {. . . ,−2,−1, 0, 1, 2, . . .}

� u(t) is the stock ordered at the beginning of period t, belonging to
U = N = {0, 1, 2, . . .}

� w(t) is the uncertain demand during the period t, belonging to W = N

(When x(t) < 0, this corresponds to a backlogged demand,
supposed to be filled immediately once inventory is again available)
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Working out classical examples The inventory problem

Inventory optimization criterion

� The costs incurred in period t are
� purchasing costs: cu(t)
� shortage costs: bmax{0,−

(
x(t) + u(t)− w(t)

)
}

� holding costs: hmax{0, x(t) + u(t)− w(t)}

� On the period from t0 to T , the costs sum up to

T−1∑

t=t0

[ cu(t)
︸ ︷︷ ︸

purchasing

+

Cost(x(t)+u(t)−w(t))
︷ ︸︸ ︷

bmax{0,−
(
x(t) + u(t)− w(t)

)
}

︸ ︷︷ ︸

shortage

+ hmax{0, x(t) + u(t)− w(t)}
︸ ︷︷ ︸

holding

]
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Working out classical examples The inventory problem

Probabilistic assumptions and risk neutral formulation of
the inventory stochastic optimization problem

� We suppose that the sequence of demands w(t0), . . . , w(T − 1)
is a stochastic process with distribution P

� We consider the inventory sochastic optimization problem

min
u(·)

E

T−1∑

t=t0

[cu(t) + Cost
(
x(t) + u(t) − w(t)

)
]
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Working out classical examples The inventory problem

Information flow and closed-loop formulation of
the inventory stochastic optimization problem

� Let u(·) = u(t0), . . . , u(T − 1) and consider

min
u(·)
︸︷︷︸

meaning what?

E

T−1∑

t=t0

[cu(t) + Cost
(
x(t) + u(t)− w(t)

)
]

� The decision u(t) at time t belongs to the control set U

� u(t) is a random variable, like are all demands w(t0), . . . , w(T − 1)

� and like are all states x(t) by the dynamics x(t + 1) = x(t) + u(t)− w(t)

We express that the decision u(t) at time t depends on the past w(t0), . . . , w(t)

u(t) is measurable w.r.t. (w(t0), . . . ,w(t))
︸ ︷︷ ︸

past
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Working out classical examples The inventory problem

Where do we stand?

� In addition to risk, we have to pay attention to the information flow

� When we make a succession of decisions, we need to specify
what we know (of the uncertainties) before each decision,
and this information may depend or not on our previous actions

� Let us now turn to the secretary problem
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Working out classical examples The secretary problem
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Working out classical examples The secretary problem

The secretary problem stands as a classic
optimal stopping problem

� A firm has opened a single secretarial position to fill
(or a princess will only accept one “fiancé”)

� Secretary applicants (Alice, Bob, Claire, etc.) can be compared by
their absolute rank, corresponding to his/her quality for the position
(Alice is 7, Bob is 15, Claire has top rank 1, etc.)

� The interviewer does not know the absolute rank

� The interviewer screens N applicants one-by-one in random order
(Bob, then Claire, then Alice, etc.)

� The interviewer is able to rank the applicants interviewed so far
(for the job, Claire is better than Alice, who is better than Bob, etc.)

� After each interview, the interviewer decides

� either to select the applicant (and the process stops)
� or to reject the applicant (and the process goes on), knowing that,

once rejected, an applicant cannot be recalled
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Working out classical examples The secretary problem

Here, a strategy is a stopping rule

� There are N applicants for the position

� The value of N is known

� A strategy provides the number ν ∈ {1, . . . ,N} of applicants interviewed,
as a fonction of the relative ranking of the applicants interviewed so far

� A stopping time is a random variable ν, such that, for any n = 1, . . . ,N ,
the event {ν = n} depends at most upon what happened before interview n

� The interviewer maximizes the probability to select the best applicant,
among all strategies
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Working out classical examples The secretary problem

Open-loop strategies yield a probability 1/N

� An open-loop strategy does not use the information
collected up to applicant n, except for the clock n

� Therefore, for any n = 1, . . . ,N , the event {ν = n} depends only on n,
and not on what happened before interview n

� Thus, an open-loop strategy is a deterministic stopping time ν

� For instance, ν = 1 (constant stopping time) is an open-loop strategy:
you select the first applicant

� If you adopt the strategy ν = 1,
the probability of selecting the best applicant is 1/N

� For a fixed k ∈ {1, . . . ,N}, the strategy ν = k also yields probability 1/N
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Working out classical examples The secretary problem

The best closed loop strategy yields a probability ≈ 1/e

� A candidate is an applicant who, when interviewed,
is better than all the applicants interviewed previously

� For a fixed k ∈ {1, . . . ,N}, consider the strategy νk :

� select the first candidate popping up after k applicants have been interviewed
� or select the last applicant N in case no candidate appears

� We will now show that, when the number N of applicants is large,
the best among the strategies νk , k = 1, . . . ,N , is achieved for

k⋆ ≈ N

e
, the so-called 37% rule

� The probability of selecting the best applicant is ≈ 1/e

1

e
︸︷︷︸

closed loop

>
1

N
︸︷︷︸

open loop
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Working out classical examples The secretary problem

Here stand some steps of the computation (1)

We denote p(k) the probability to select the best applicant with strategy νk

p(k) =
n∑

m=k

P( applicant m is selected | applicant m is the best )

×P( applicant m is the best )

=

n∑

m=k

P( applicant m is selected | applicant m is the best )× 1

n

� If applicant m is the best applicant, then m is selected if and only if the best
applicant among the first m− 1 applicants is among the first k − 1 applicants
that were rejected

� Deduce that, when m ≥ k ,

P( applicant m is selected | applicant m is the best ) =
k − 1

m − 1
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Working out classical examples The secretary problem

Here stand some steps of the computation (2)

� Sum over m ≥ k and obtain

p(k) =

n∑

m=k

k − 1

m− 1
× 1

n
=

k − 1

n

n∑

m=k

1

m − 1

� Compute the difference

n[p(k + 1)− p(k)] =

n∑

m=k+1

1

m − 1
− 1

=

n∑

m=k+1

1

m − 1
− 1

≈ log n − log k − 1

= log(
n

ke
)
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Working out classical examples The secretary problem

The optimal strategy is called the 37% rule

� What is the k⋆ that maximizes p(k)? The 37% rule:

k⋆ ≈ N

e
where log e = 1

� What is p(k⋆) when N runs to +∞?

p(k⋆) ≈ 1

e
≈ 37%
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Working out classical examples The secretary problem

Where do we stand after having worked out
the secretary problem?

� In a stopping time problem, as long as you do not stop,
you collect information

� This information is valuable for forthcoming decisions

� For Markov decision problems, information is condensed in a state

� Stochastic control problems display
trade-off between exploration and exploitation
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Working out classical examples The secretary problem

Many decision problems illustrate the trade-off
between exploration and exploitation

� deciding where to dig

� animal foraging

� job search

� devoting resources to research
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Working out classical examples The secretary problem

The interplay between information and decision makes
stochastic control problems especially tricky and difficult

� Decision → information → decision → information → · · ·
� Decisions generally induce a dual effect,

a terminology which tries to convey the idea that present decisions
have two, often conflicting, effects or objectives:

� directly contributing to optimizing the cost function,
on the one hand

� modifying the future information available for forthcoming decisions,
on the other hand

� Problems with dual effect are among the most difficult
decision-making problems
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Working out classical examples The secretary problem

Summary

� Stochastic optimization = risk + information

� Risk is in the eyes of the beholder ;-)

� Information can be either revealed progressively

� in a fixed way
� or depending on past decisions

� Now, we turn to the mathematical framing of
stochastic optimization problems
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Framing stochastic optimization problems Working out a toy example
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Framing stochastic optimization problems Working out a toy example

Let us work out a toy example of economic dispatch as a
cost-minimization problem under supply-demand balance

� Production: consider two energy production units

� a “cheap” limited one with which we can produce
quantity q0, with 0 ≤ q0 ≤ q

♯
0, at cost c0q0

� an “expensive” unlimited one with which we can produce
quantity q1, with 0 ≤ q1, at cost c1q1, with c1 > c0

� Consumption: the demand is D ≥ 0

� Balance: ensuring at least the demand

D ≤ q0 + q1

� Optimization: total costs minimization

min
q0,q1

c0q0 + c1q1
︸ ︷︷ ︸

total costs
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Framing stochastic optimization problems Working out a toy example

When the demand D is deterministic,
the optimization problem is well posed

� The deterministic demand D is a single number, and we consider

min
q0,q1

c0q0 + c1q1

under the constraints

0 ≤ q0 ≤ q
♯
0

0 ≤ q1
D ≤ q0 + q1

� The solution is q⋆0 = min{q♯0,D} , q⋆1 = [D − q
♯
0]+, that is,

� if the demand D is below the capacity q
♯
0 of the “cheap” energy source

D ≤ q
♯
0 ⇒ q

⋆
0 = D , q

⋆
1 = 0

� if the demand D is above the capacity q
♯
0 of the “cheap” energy source,

D > q
♯
0 ⇒ q

⋆
0 = q

♯
0 , q

⋆
1 = D − q

♯
0

� Now, what happens when the demand D is no longer deterministic?
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Framing stochastic optimization problems Working out a toy example

If we know the demand beforehand,
the optimization problem is deterministic

� We suppose that the demand is a random variable D : Ω → R+

� If we solve the problem for each possible value D(ω) of the random
variable D, when ω ∈ Ω, we obtain

q0(ω) = min{q♯0,D(ω)} , q1(ω) = [D(ω)− q
♯
0]+

and we face an informational issue

� Indeed, we treat the demand D as if it were
observed before making the decisions q0 and q1

� When the demand D is not observed, how can we do?
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Framing stochastic optimization problems Working out a toy example

What happens if we replace the uncertain value D of

the demand by its mean D in the deterministic solution?

� If we suppose that the demand D is a random variable D : Ω → R+,
with mathematical expectation E(D) = D

� and that we propose the “deterministic solution”

q
(D)
0 = min{q♯0,D} , q

(D)
1 = [D − q

♯
0]+

� we cannot assure the inequality

D(ω)
︸ ︷︷ ︸

uncertain

≤ q0 + q1
︸ ︷︷ ︸

deterministic

, ∀ω ∈ Ω

because maxω∈Ω D(ω) > D = q
(D)
0 + q

(D)
1

� Are there better solutions among the deterministic ones?
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Framing stochastic optimization problems Working out a toy example

When the demand D is bounded above,
the robust optimization problem has a solution

� In the robust optimization problem, we minimize

min
q0,q1

c0q0 + c1q1

under the constraints

0 ≤ q0 ≤ q
♯
0

0 ≤ q1
D(ω) ≤ q0 + q1 , ∀ω ∈ Ω

� When D♯ = maxω∈ΩD(ω) < +∞, the solution is

q⋆0 = min{q♯0,D♯} , q⋆1 = [D♯ − q
♯
0]+

� Now, the total cost c0q
⋆
0 + c1q

⋆
1 is an increasing function

of the upper bound D♯ of the demand

� Is it not too costly to optimize under the worst-case situation?
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Framing stochastic optimization problems Working out a toy example

Where do we stand?

� When the demand D is deterministic, the optimization problem is well posed

� If we know the demand beforehand, the optimization problem is deterministic

� If we replace the uncertain value D of the demand by its mean D

in the deterministic solution, we remain with a feasability issue

� When the demand D is bounded above, the robust optimization problem has
a solution, but it is costly
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Framing stochastic optimization problems Working out a toy example

Where do we stand?

� When the demand D is deterministic, the optimization problem is well posed

� If we know the demand beforehand, the optimization problem is deterministic

� If we replace the uncertain value D of the demand by its mean D

in the deterministic solution, we remain with a feasability issue

� When the demand D is bounded above, the robust optimization problem has
a solution, but it is costly

To overcome the above difficulties, we propose to introduce stages

D(ω)
︸ ︷︷ ︸

uncertain

≤ q0
︸︷︷︸

deterministic

+ q1(ω)
︸ ︷︷ ︸

uncertain

, ∀ω ∈ Ω

� the decision q0 is made before observing the demand D(ω)

� the decision q1(ω) is made after observing the demand D(ω)
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Framing stochastic optimization problems Working out a toy example

To overcome the above difficulties,
we turn to stochastic optimization

� We suppose that the demand D is a random variable, and minimize

min
q0,q1

E[c0q0 + c1q1]

under the constraints

0 ≤ q0 ≤ q
♯
0

0 ≤ q1
D ≤ q0 + q1
q1 depends upon D

and we emphasize two issues, new with respect to the deterministic case

� expliciting online information issue:
the decision q1 depends upon the random variable D

� expliciting risk attitudes:
we aggregate the total costs with respect to all possible values
by taking the expectation E[c0q0 + c1q1]
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Framing stochastic optimization problems Working out a toy example

Turning to stochastic optimization
forces one to specify online information

� We suppose that the demand D is a random variable, and minimize

min
q0,q1

E[c0q0 + c1q1]

under the constraints

0 ≤ q0 ≤ q
♯
0

0 ≤ q1
D ≤ q0 + q1
q1 depends upon D

� specifying that the decision q1 depends upon the random variable D,
whereas q0 does not, forces to consider two stages
and a so-called non-anticipativity constraint (more on that later)

� first stage: q0 does not depend upon the random variable D

� second stage: q1 depends upon the random variable D
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Framing stochastic optimization problems Working out a toy example

Turning to stochastic optimization
forces one to specify risk attitudes

� We suppose that the demand D is a random variable, and minimize

min
q0,q1

E[c0q0 + c1q1]

under the constraints

0 ≤ q0 ≤ q
♯
0

0 ≤ q1
D ≤ q0 + q1
q1 depends upon D

� Now that q1 depends upon the random variable D,
it is also a random variable, and so is the total cost c0q0 + c1q1;
therefore, we have to aggregate the total costs with respect to all possible
values, and we chose to do it by taking the expectation E[c0q0 + c1q1]

Michel DE LARA (École des Ponts ParisTech) JFRO, Paris, 17 November 2014 November 16, 2014 44 / 88



Framing stochastic optimization problems Working out a toy example

In the uncertain framework,
two additional questions must be answered

with respect to the deterministic case

Question (expliciting risk attitudes)

How are the uncertainties taken into account
in the payoff criterion and in the constraints?

Question (expliciting available online information)

Upon which online information are decisions made?
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Framing stochastic optimization problems Scenarios are temporal sequence of uncertainties

Outline of the presentation

1 Working out classical examples
The blood-testing problem
The newsvendor problem
The inventory problem
The secretary problem

2 Framing stochastic optimization problems
Working out a toy example
Scenarios are temporal sequence of uncertainties
Expliciting risk attitudes
Handling online information
Discussing framing and resolution methods

3 Optimization with finite scenario space

4 Solving stochastic optimization problems by decomposition methods
A bird’s eye view of decomposition methods
Progressive Hedging
Dynamic Programming
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Framing stochastic optimization problems Scenarios are temporal sequence of uncertainties

Water inflows historical scenarios
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Framing stochastic optimization problems Scenarios are temporal sequence of uncertainties

We call scenario a temporal sequence of uncertainties

Scenarios are special cases of “states of Nature”

A scenario (pathway, chronicle) is a sequence of uncertainties

w(·) :=
(
w(t0), . . . ,w(T − 1)

)
∈ Ω := W

T−t0

HHH

HHC

HCH

HCC

CHH

CHC

CCH

CCC

El tiempo se bifurca perpetuamente hacia innumerables futuros

(Jorge Luis Borges, El jard́ın de senderos que se bifurcan)

Michel DE LARA (École des Ponts ParisTech) JFRO, Paris, 17 November 2014 November 16, 2014 48 / 88



Framing stochastic optimization problems Scenarios are temporal sequence of uncertainties

Beware! Scenario holds a different meaning
in other scientific communities

� In practice, what modelers call a
“scenario” is a mixture of

� a sequence of uncertain variables
(also called a pathway, a
chronicle)

� a policy Pol

� and even a static or dynamical
model

� In what follows

scenario = pathway = chronicle
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Framing stochastic optimization problems Expliciting risk attitudes

Outline of the presentation

1 Working out classical examples
The blood-testing problem
The newsvendor problem
The inventory problem
The secretary problem

2 Framing stochastic optimization problems
Working out a toy example
Scenarios are temporal sequence of uncertainties
Expliciting risk attitudes
Handling online information
Discussing framing and resolution methods

3 Optimization with finite scenario space

4 Solving stochastic optimization problems by decomposition methods
A bird’s eye view of decomposition methods
Progressive Hedging
Dynamic Programming
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Framing stochastic optimization problems Expliciting risk attitudes

The output of a stochastic optimization problem
is a random variable. How can we rank random variables?
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Framing stochastic optimization problems Expliciting risk attitudes

How are the uncertainties taken into account
in the payoff criterion and in the constraints?

In a probabilistic setting, where uncertainties are random variables,
a classical answer is

� to take the mathematical expectation of the payoff (risk-neutral approach)

E(payoff)

� and to satisfy all (physical) constrainsts almost surely that is, practically,
for all possible issues of the uncertainties (robust approach)

P(constrainsts) = 1

But there are many other ways to handle risk: robust, worst case, risk measures,
in probability, almost surely, by penalization, etc.
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Framing stochastic optimization problems Expliciting risk attitudes

A policy and a criterion yield a real-valued payoff

Given an admissible policy Pol ∈ U
ad and a scenario w(·) ∈ Ω,

we obtain a payoff
Payoff

(
Pol,w(·)

)

Policies/Scenarios wA(·) ∈ Ω wB(·) ∈ Ω . . .

Pol1 ∈ U
ad Payoff

(
Pol1,w

A(·)
)

Payoff
(
Pol1,w

B(·)
)

. . .

Pol2 ∈ U
ad Payoff

(
Pol2,w

A(·)
)

Payoff
(
Pol2,w

B(·)
)

. . .
. . . . . . . . . . . .
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Framing stochastic optimization problems Expliciting risk attitudes

In the robust or pessimistic approach,
Nature is supposed to be malevolent,

and the DM aims at protection against all odds
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Framing stochastic optimization problems Expliciting risk attitudes

In the robust or pessimistic approach,
Nature is supposed to be malevolent

� In the robust approach, the DM considers the worst payoff

min
w(·)∈Ω

Payoff
(
Pol,w(·)

)

︸ ︷︷ ︸

worst payoff

� Nature is supposed to be malevolent,
and specifically selects the worst scenario:
the DM plays after Nature has played, and maximizes the worst payoff

max
Pol∈Uad

min
w(·)∈Ω

Payoff
(
Pol,w(·)

)

� Robust, pessimistic, worst-case, maximin, minimax (for costs)

Guaranteed energy production

In a dam, the minimal energy production in a given period, corresponding to the
worst water inflow scenario
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Framing stochastic optimization problems Expliciting risk attitudes

The robust approach can be softened
with plausibility weighting

� Let Θ : Ω → R ∪ {−∞} be a a plausibility function.

� The higher, the more plausible:
totally implausible scenarios are those for which Θ

(
w(·)

)
= −∞

� Nature is malevolent, and specifically selects the worst scenario,
but weighs it according to the plausibility function Θ

� The DM plays after Nature has played, and solves

max
Pol∈Uad




 min
w(·)∈Ω




Payoff

(
Pol,w(·)

)
− Θ

(
w(·)

)

︸ ︷︷ ︸

plausibility











Michel DE LARA (École des Ponts ParisTech) JFRO, Paris, 17 November 2014 November 16, 2014 56 / 88



Framing stochastic optimization problems Expliciting risk attitudes

In the optimistic approach,
Nature is supposed to benevolent

Future. That period of time in which our affairs prosper,

our friends are true and our happiness is assured.

Ambrose Bierce

� Instead of maximizing the worst payoff as in a robust approach,
the optimistic focuses on the most favorable payoff

max
w(·)∈Ω

Payoff
(
Pol,w(·)

)

︸ ︷︷ ︸

best payoff

� Nature is supposed to benevolent, and specifically selects the best scenario:
the DM plays after Nature has played, and solves

max
Pol∈Uad

max
w(·)∈Ω

Payoff
(
Pol,w(·)

)
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Framing stochastic optimization problems Expliciting risk attitudes

The Hurwicz criterion reflects an intermediate attitude
between optimistic and pessimistic approaches

A proportion α ∈ [0, 1] graduates the level of prudence

max
Pol∈Uad

{

α

pessimistic
︷ ︸︸ ︷

min
w(·)∈Ω

Payoff
(
Pol,w(·)

)
+(1− α) max

w(·)∈Ω
Payoff

(
Pol,w(·)

)

︸ ︷︷ ︸

optimistic

}
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Framing stochastic optimization problems Expliciting risk attitudes

In the stochastic or expected approach,
Nature is supposed to play stochastically
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Framing stochastic optimization problems Expliciting risk attitudes

In the stochastic or expected approach,
Nature is supposed to play stochastically

� The expected payoff is

mean payoff
︷ ︸︸ ︷

E

[

Payoff
(
Pol,w(·)

)
]

=
∑

w(·)∈Ω

P{w(·)}Payoff
(
Pol,w(·)

)

� Nature is supposed to play stochastically, according to distribution P:
the DM plays after Nature has played, and solves

max
Pol∈Uad

E

[

Payoff
(
Pol,w(·)

)
]

� The discounted expected utility is the special case

E

[+∞∑

t=t0

δt−t0L
(
x(t), u(t),w(t)

)
]
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Framing stochastic optimization problems Expliciting risk attitudes

The expected utility approach distorts payoffs
before taking the expectation

� We consider a utility function L to assess the utility of the payoffs
(for instance a CARA exponential utility function)

� The expected utility is

E

[

L

(

Payoff
(
Pol,w(·)

)
)]

︸ ︷︷ ︸

expected utility

=
∑

w(·)∈Ω

P{w(·)}L
(

Payoff
(
Pol,w(·)

)
)

� The expected utility maximizer solves

max
Pol∈Uad

E

[

L

(

Payoff
(
Pol,w(·)

)
)]
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Framing stochastic optimization problems Expliciting risk attitudes

The ambiguity or multi-prior approach
combines robust and expected criterion

� Different probabilities P, termed as beliefs or priors
and belonging to a set P of admissible probabilities on Ω

� The multi-prior approach combines robust and expected criterion
by taking the worst beliefs in terms of expected payoff

max
Pol∈Uad

min
P∈P

mean payoff
︷ ︸︸ ︷

E
P

[

Payoff
(
Pol,w(·)

)
]

︸ ︷︷ ︸

pessimistic over probabilities
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Framing stochastic optimization problems Expliciting risk attitudes

Convex risk measures cover a wide range of risk criteria

� Different probabilities P, termed as beliefs or priors
and belonging to a set P of admissible probabilities on Ω

� To each probability P is attached a plausibility Θ(P)

max
Pol∈Uad

min
P∈P

mean payoff
︷ ︸︸ ︷

E
P

[

Payoff
(
Pol,w(·)

)
]

−
plausibility
︷ ︸︸ ︷

Θ(P)

︸ ︷︷ ︸

pessimistic over probabilities
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Framing stochastic optimization problems Expliciting risk attitudes

Non convex risk measures can lead to non diversification

How to gamble if you must,
L.E. Dubbins and L.J. Savage,
1965

Imagine yourself at a casino with

$1,000. For some reason, you

desperately need $10,000 by morning;

anything less is worth nothing for your

purpose.

The only thing possible is to gamble

away your last cent, if need be, in an

attempt to reach the target sum of

$10,000.

� The question is how to play, not whether.
What ought you do? How should you play?

� Diversify, by playing 1 $ at a time?
� Play boldly and concentrate,

by playing 10,000 $ only one time?

� What is your decision criterion?
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Framing stochastic optimization problems Expliciting risk attitudes

Savage’s minimal regret criterion... “Had I known”

min
Pol∈Uad

{

worst regret
︷ ︸︸ ︷

max
w(·)∈Ω

[

max
anticipative policies Pol

Payoff
(
Pol,w(·)

)
− Payoff

(
Pol,w(·)

)

︸ ︷︷ ︸

regret

]}

� If the DM knows the future in advance, she solves
maxanticipative policies Pol

Payoff
(
Pol,w(·)

)
, for each scenario w(·) ∈ Ω

� The regret attached to a non-anticipative policy Pol ∈ U
ad

is the loss due to not being visionary

� The best a non-visionary DM can do with respect to regret is minimizing it
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Framing stochastic optimization problems Handling online information

Outline of the presentation

1 Working out classical examples
The blood-testing problem
The newsvendor problem
The inventory problem
The secretary problem

2 Framing stochastic optimization problems
Working out a toy example
Scenarios are temporal sequence of uncertainties
Expliciting risk attitudes
Handling online information
Discussing framing and resolution methods

3 Optimization with finite scenario space

4 Solving stochastic optimization problems by decomposition methods
A bird’s eye view of decomposition methods
Progressive Hedging
Dynamic Programming
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Framing stochastic optimization problems Handling online information

Upon which online information
are decisions made?

We navigate between two stumbling blocks: rigidity and wizardry

� On the one hand, it is suboptimal to restrict oneself,
as in the deterministic case,
to open-loop controls depending only upon time, thereby
ignoring the available information at the moment of making a decision

� On the other hand, it is impossible to suppose that we know in advance
what will happen for all times:
clairvoyance is impossible as well as look-ahead solutions

The in-between is non-anticipativity constraint
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Framing stochastic optimization problems Handling online information

There are two ways to express
the non-anticipativity constraint

Denote the uncertainties at time t by w(t), and the control by u(t)

� Functional approach
The control u(t) may be looked after under the form

u(t) = φt
(
w(t0), . . . ,w(t−1)
︸ ︷︷ ︸

past

)

where φt is a function, called policy, strategy or decision rule

� Algebraic approach
When uncertainties are considered as random variables (measurable
mappings), the above formula for u(t) expresses the measurability of the
control variable u(t) with respect to the past uncertainties, also written as

σ(u(t))
︸ ︷︷ ︸

σ-algebra

⊂ σ
(
w(t0), . . . ,w(t−1)
︸ ︷︷ ︸

past

)
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Framing stochastic optimization problems Handling online information

What is a solution at time t?

� In deterministic control, the solution u(t) at time t is a single vector

� In stochastic control, the solution u(t) at time t is a random variable
expressed

� either as u(t) = φt

(
w(t0), . . . ,w(t−1)

)
, where φt : W

t−t0 → R

� or as u(t) : Ω → R with measurability constraint
σ(u(t)) ⊂ σ

(
w(t0), . . . ,w(t−1)

)
or

u(t) = E

(

u(t)

∣
∣
∣
∣
w(t0), . . . ,w(t−1)

)

� Now, as time t goes on, the domain of the function φt expands,
and so do the conditions σ(u(t)) ⊂ σ

(
w(t0), . . . ,w(t−1)

)

� Therefore, for numerical reasons,
the information

(
w(t0), . . . ,w(t−1)

)
has to be compressed or approximated
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Framing stochastic optimization problems Handling online information

Scenarios can be organized like a comb or like a tree

t�✁ t�✂ t�✄ t�☎ t�✆ t�✁ t�✂ t�✄ t�☎ t�✆

◆ ✝✞✟✠✡☛☞✌✝ ❙✞✟✠✡☛☞✌✝ ✍☛✟✟
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Framing stochastic optimization problems Handling online information

There are two classical ways to compress information

� State-based functional approach
In the special case of the Markovian framework with

(
w(t0), . . . ,w(T )

)

white noise, there is no loss of optimality to look for solutions as

u(t) = ψt

(
x(t)

)

︸ ︷︷ ︸

state

where x(t) ∈ X
︸ ︷︷ ︸

fixed space

, x(t + 1) = Ft(x(t), u(t),w(t))
︸ ︷︷ ︸

dynamical equation

� Scenario-based measurability approach
Scenarios are approximated by a finite family

(
w s(t0), . . . ,w

s(T )
)
, s ∈ S

� Either solutions us(t) are indexed by s ∈ S with the constraint that

(
w

s(t0), . . . ,w
s′(t − 1)

)
=

(
w

s′(t0), . . . ,w
s′(t − 1)

)
⇒ u

s(t) = u
s′(t)

� Or — in the case of the scenario tree approach, where
the scenarios

(
w s(t0), . . . ,w

s(T )
)
, s ∈ S , are organized in a tree —

solutions un(t) are indexed by nodes n on the tree
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Framing stochastic optimization problems Handling online information

More on what is a solution at time t

State-based approach u(t) = ψt(x(t))

� The mapping ψt can be computed in advance (that is, at initial time t0)
and evaluated at time t on the available online information at that time t

� either exactly (for example, by dynamic programming)
� or approximately (for example, among linear decision rules) because the

computational burden of finding any function is heavy

� The value u(t) = ψt(x(t)) can be computed at time t

� either exactly by solving a proper optimization problem,
which raises issues of dynamic consistency

� or approximately
(for example, by assuming that controls from time t on are open-loop)
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Framing stochastic optimization problems Handling online information

More on what is a solution at time t

Scenario-based approach

� An optimal “solution” can be computed scenario by scenario,
with the problem that we obtain solutions such that

(
w s(t0), . . . ,w

s(t − 1)
)
=

(
w s′(t0), . . . ,w

s′(t − 1)
)
and us(t) 6= us

′

(t)

� Optimal solutions can be computed scenario by scenario and then merged
(for example, by Progressive Hedging) to be forced to satisfy

(
w s(t0), . . . ,w

s(t − 1)
)
=

(
w s′(t0), . . . ,w

s′(t − 1)
)
⇒ us(t) = us

′

(t)

� The value u(t) can be computed at time t depending on
(
w s(t0), . . . ,w

s(t − 1)
)

� either exactly by solving a proper optimization problem,
which raises issues of dynamic consistency

� or approximately (for example, by a sequence of two-stages problems)
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Framing stochastic optimization problems Discussing framing and resolution methods

Outline of the presentation

1 Working out classical examples
The blood-testing problem
The newsvendor problem
The inventory problem
The secretary problem

2 Framing stochastic optimization problems
Working out a toy example
Scenarios are temporal sequence of uncertainties
Expliciting risk attitudes
Handling online information
Discussing framing and resolution methods

3 Optimization with finite scenario space

4 Solving stochastic optimization problems by decomposition methods
A bird’s eye view of decomposition methods
Progressive Hedging
Dynamic Programming
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Framing stochastic optimization problems Discussing framing and resolution methods

Where do we stand?

� How one frames the non-anticipativity constraint
impacts numerical resolution methods

� On a finite scenario space, one obtains
large (deterministic) optimization problems
either on a tree or on a comb

� Else, one resorts to state-based formulations,
with solutions as policies (dynamic programming)
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Framing stochastic optimization problems Discussing framing and resolution methods

Optimization approaches to attack complexity

Linear programming

� linear equations and
inequalities

� no curse of dimension

Stochastic programming

� no special treatment of
time and uncertainties

� no independence
assumption

� decisions are indexed by a
scenario tree

� what if information is not a
node in the tree?

State-based dynamic optimization

� nonlinear equations and inequalities

� curse of dimensionality

� independence assumption on uncertainties

� special treatment of time (dynamic
programming equation)

� decisions are indexed by an information
state (feedback synthesis)

� an information state summarizes past
controls and uncertainties

� decomposition-coordination methods to
overcome the curse of dimensionality?
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Framing stochastic optimization problems Discussing framing and resolution methods

Summary

� Stochastic optimization highlights risk attitudes tackling

� Stochastic dynamic optimization emphasizes
the handling of online information

� Many issues are raised, because

� many ways to represent risk (criterion, constraints)
� many information structures
� tremendous numerical obstacles to overcome

� Each method has its numerical wall

� in dynamic programming, the bottleneck is the dimension of the state
(no more than 3)

� in stochastic programming, the bottleneck is the number of stages
(no more than 2)
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Optimization with finite scenario space

Outline of the presentation

1 Working out classical examples

2 Framing stochastic optimization problems

3 Optimization with finite scenario space

4 Solving stochastic optimization problems by decomposition methods
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Optimization with finite scenario space

From linear to stochastic programming

� The linear program
min 〈c , x〉

x ≥ 0
Ax + b ≥ 0

� becomes a stochastic program

minE(〈c(ξ) , x〉)
x ≥ 0

A(ξ)x + b(ξ) ≥ 0

where ξ : Ω → Ξ is a finite random variable

� so that there are as many inequalities as there are possible values for ξ

A
(
ξ(ω)

)
x + b

(
ξ(ω)

)
≥ 0 , ∀ω ∈ Ω

and these inequality constraints may define an empty domain for optimization
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Optimization with finite scenario space

Recourse variables need be introduced for feasability issues

� We denote by ξ ∈ Ξ any possible value of the random variable ξ

� and we introduce a recourse variable y = (y(ξ), ξ ∈ Ξ) and the program

min
∑

ξ∈Ξ

P{ξ}
(

〈c(ξ) , x〉+ 〈p(ξ) , y(ξ)〉
)

x ≥ 0
y(ξ) ≥ 0 , ∀ξ ∈ Ξ

A(ξ)x + b(ξ)− y(ξ) ≥ 0 , ∀ξ ∈ Ξ

� so that the inequality A(ξ)x + b(ξ)− y(ξ) ≥ 0 is now possible,
at (unitary recourse) price vector p = (p(ξ), ξ ∈ Ξ)

� As there are as many inequalities A(ξ)x + b(ξ)− y(ξ) ≥ 0
as there are possible values for ξ,
hence stochastic programs are huge problems, but can remain linear
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Optimization with finite scenario space

Two-step stochastic programs with recourse can
become deterministic non-smooth convex problems

� Define
Q(ξ, x) = min{〈p(ξ) , y〉 ,A(ξ)x + b(ξ)− y ≥ 0}

which is a convex function of x , non-smooth

� so that the original two-step stochastic program with recourse

min
∑

ξ∈Ξ

P{ξ}〈c(ξ) , x〉+ 〈p(ξ) , y(ξ)〉

x ≥ 0
y(ξ) ≥ 0 , ∀ξ ∈ Ξ

A(ξ)x + b(ξ)− y(ξ) ≥ 0 , ∀ξ ∈ Ξ

� now becomes the deterministic non-smooth convex problem

min 〈c , x〉+
∑

ξ∈Ξ

P{ξ}Q(ξ, x)

x ≥ 0
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Optimization with finite scenario space

Roger Wets example

http://cermics.enpc.fr/~delara/ENSEIGNEMENT/

CEA-EDF-INRIA_2012/Roger_Wets1.pdf
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Optimization with finite scenario space

Solutions of multi-stage stochastic optimization problems,
without dual effect, can be indexed by a tree

✵ ✷ ✸✶
t

� Conditional probabilities given on
the arcs, probabilities on the leafs

� Solutions indexed by the nodes of
the tree
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Optimization with finite scenario space
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Solving stochastic optimization problems by decomposition methods

1 Working out classical examples

2 Framing stochastic optimization problems

3 Optimization with finite scenario space

4 Solving stochastic optimization problems by decomposition methods
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Solving stochastic optimization problems by decomposition methods A bird’s eye view of decomposition methods

Outline of the presentation

1 Working out classical examples
The blood-testing problem
The newsvendor problem
The inventory problem
The secretary problem

2 Framing stochastic optimization problems
Working out a toy example
Scenarios are temporal sequence of uncertainties
Expliciting risk attitudes
Handling online information
Discussing framing and resolution methods

3 Optimization with finite scenario space

4 Solving stochastic optimization problems by decomposition methods
A bird’s eye view of decomposition methods
Progressive Hedging
Dynamic Programming
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Solving stochastic optimization problems by decomposition methods Progressive Hedging

Outline of the presentation

1 Working out classical examples
The blood-testing problem
The newsvendor problem
The inventory problem
The secretary problem

2 Framing stochastic optimization problems
Working out a toy example
Scenarios are temporal sequence of uncertainties
Expliciting risk attitudes
Handling online information
Discussing framing and resolution methods

3 Optimization with finite scenario space

4 Solving stochastic optimization problems by decomposition methods
A bird’s eye view of decomposition methods
Progressive Hedging
Dynamic Programming
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Solving stochastic optimization problems by decomposition methods Dynamic Programming

Outline of the presentation

1 Working out classical examples
The blood-testing problem
The newsvendor problem
The inventory problem
The secretary problem

2 Framing stochastic optimization problems
Working out a toy example
Scenarios are temporal sequence of uncertainties
Expliciting risk attitudes
Handling online information
Discussing framing and resolution methods

3 Optimization with finite scenario space

4 Solving stochastic optimization problems by decomposition methods
A bird’s eye view of decomposition methods
Progressive Hedging
Dynamic Programming
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