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Notation

◮ Multicriteria optimization problem:

min
x∈X

[f1(x), . . . , fm(x)]⊤

with fi : X → R, i = 1, . . . , m objectives
m ∈ N, m ≥ 2 number of objectives
X ⊆ Rn feasible set

◮ Formulation in the image space Z := f (X):

min
z∈Z

[z1, . . . , zm]⊤

◮ In this talk Z discrete, finite
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Concepts of optimality

Definition (Efficiency, Nondominance)

x̄ ∈ X efficient (Pareto-optimal), f (x̄ ) nondominated

:⇔ ∄ x ∈ X : f (x) ≤ f (x̄), i.e. fi(x) ≤ fi(x̄) for all i = 1, . . . , m and
fj(x) < fj(x̄ ) for at least one j ∈ {1, . . . , m}

Geometrically:

(

{f (x̄)} − Rm
≧

)

∩ Z = {f (x̄)}

with

Rm
≧ := {z ∈ Rm : zi ≥ 0, i = 1, . . . , m}

ZN set of nondominated points, XE set of efficient solutions
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Concepts of optimality (cont.)

Definition (Weak efficiency, weak nondominance)

x̄ ∈ X weakly efficient, f (x̄) weakly nondominated

:⇔ ∄ x ∈ X : fi (x) < fi (x̄) for all i = 1, . . . , m

Geometrically:

({f (x̄)} − Rm
>) ∩ Z = ∅

with

Rm
> := {z ∈ Rm : zi > 0, i = 1, . . . , m}
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Bounds on the nondominated set

f1

f2

Z

ZN
zN

z I

zU

◮ Ideal point z I ∈ Rm:

z I
i : = min

x∈XE

fi(x)

= min
x∈X

fi(x) ∀ i = 1, . . . , m

◮ Utopian point zU ∈ Rm:

zU ∈
(

{z I} − Rm
>

)

◮ Nadir point zN ∈ Rm:

zN
i := max

x∈XE

fi(x) ∀ i = 1, . . . , m

(difficult to compute for m ≥ 3!)
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Solution concepts

Scalarization

Convert vector-valued into scalar-valued problem

Classic scalarization methods:

1. Weighted Sum Method

2. ε-constraint method

3. Weighted Tchebycheff method

Kerstin Dächert On the computation of the nondominated set by scalarizations with adaptive parameter selection 7 / 33



Introduction
Systematic, redundancy-free decomposition of the search region

Numerical results
Conclusion

Notation and definitions
Scalarizations
Adaptive parametric algorithm
Bicriteria case

Weighted Sum Method

Formulation (Gass & Saaty, 1955):

min
x∈X

m
∑

i=1

λi fi(x) (WS)

with

λi ≥ 0, i = 1, . . . , m,
m

∑

i=1

λi = 1
f1

f2

Z

Properties:

◮ Every optimal solution of (WS) is weakly efficient, for λ ∈ Rm
>

efficient

◮ For every nondominated point f (x) ∈ ∂conv(Z ) exists λ ∈ Rm
≧

such

that x optimal solution of (WS)

⇒ (WS) not suited for non-convex and discrete problems

Kerstin Dächert On the computation of the nondominated set by scalarizations with adaptive parameter selection 8 / 33



Introduction
Systematic, redundancy-free decomposition of the search region

Numerical results
Conclusion

Notation and definitions
Scalarizations
Adaptive parametric algorithm
Bicriteria case

Weighted Sum Method

Formulation (Gass & Saaty, 1955):

min
x∈X

m
∑

i=1

λi fi(x) (WS)

with

λi ≥ 0, i = 1, . . . , m,
m

∑

i=1

λi = 1
f1

f2

Z

Properties:

◮ Every optimal solution of (WS) is weakly efficient, for λ ∈ Rm
>

efficient

◮ For every nondominated point f (x) ∈ ∂conv(Z ) exists λ ∈ Rm
≧

such

that x optimal solution of (WS)

⇒ (WS) not suited for non-convex and discrete problems

Kerstin Dächert On the computation of the nondominated set by scalarizations with adaptive parameter selection 8 / 33



Introduction
Systematic, redundancy-free decomposition of the search region

Numerical results
Conclusion

Notation and definitions
Scalarizations
Adaptive parametric algorithm
Bicriteria case

Weighted Sum Method

Formulation (Gass & Saaty, 1955):

min
x∈X

m
∑

i=1

λi fi(x) (WS)

with

λi ≥ 0, i = 1, . . . , m,
m

∑

i=1

λi = 1
f1

f2

conv(Z )

Properties:

◮ Every optimal solution of (WS) is weakly efficient, for λ ∈ Rm
>

efficient

◮ For every nondominated point f (x) ∈ ∂conv(Z ) exists λ ∈ Rm
≧

such

that x optimal solution of (WS)

⇒ (WS) not suited for non-convex and discrete problems

Kerstin Dächert On the computation of the nondominated set by scalarizations with adaptive parameter selection 8 / 33



Introduction
Systematic, redundancy-free decomposition of the search region

Numerical results
Conclusion

Notation and definitions
Scalarizations
Adaptive parametric algorithm
Bicriteria case

Weighted Sum Method

Formulation (Gass & Saaty, 1955):

min
x∈X

m
∑

i=1

λi fi(x) (WS)

with

λi ≥ 0, i = 1, . . . , m,
m

∑

i=1

λi = 1
f1

f2

conv(Z )

Properties:

◮ Every optimal solution of (WS) is weakly efficient, for λ ∈ Rm
>

efficient

◮ For every nondominated point f (x) ∈ ∂conv(Z ) exists λ ∈ Rm
≧

such

that x optimal solution of (WS)

⇒ (WS) not suited for non-convex and discrete problems

Kerstin Dächert On the computation of the nondominated set by scalarizations with adaptive parameter selection 8 / 33



Introduction
Systematic, redundancy-free decomposition of the search region

Numerical results
Conclusion

Notation and definitions
Scalarizations
Adaptive parametric algorithm
Bicriteria case

ε-Constraint Method

Formulation (Haimes et al., 1971):

min fi(x)
s.t. fk(x) ≤ εk ∀ k 6= i

x ∈ X
(EC)

with ε ∈ Rm, i ∈ {1, . . . , m} arbitrary
f1

f2

Z

ε1

Properties:

◮ Every optimal solution of (EC) is weakly efficient

◮ For every nondominated point f (x) exists ε ∈ Rm such that x
optimal solution of (EC)
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Weighted Tchebycheff Method

Formulation (Bowman, 1976):

min
x∈X

max
i=1,...,m

{

wi |fi (x) − zU
i |

}

(WT)

with
wi > 0, i = 1, . . . , m,

m
∑

i=1

wi = 1,

zU utopian point
f1

f2

Z

zU

Properties:

◮ Every optimal solution of (WT) is weakly efficient

◮ For every nondominated point f (x) exists w ∈ Rm
> such that x

optimal solution of (WT)
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Subproblem and Parametric Algorithm

◮ One scalarized problem yields (at
most) one nondominated point

◮ Vary parameters in a systematic
way in order to obtain ZN (or a
subset of it)

f1

f2

Z

We use the following definitions:

Definition (Subproblem)

= Scalarized problem with a certain parameter choice

Definition (Parametric algorithm)

= Iterative solution of subproblems with different parameter choices

Kerstin Dächert On the computation of the nondominated set by scalarizations with adaptive parameter selection 11 / 33



Introduction
Systematic, redundancy-free decomposition of the search region

Numerical results
Conclusion

Notation and definitions
Scalarizations
Adaptive parametric algorithm
Bicriteria case

Subproblem and Parametric Algorithm

◮ One scalarized problem yields (at
most) one nondominated point

◮ Vary parameters in a systematic
way in order to obtain ZN (or a
subset of it)

f1

f2

Z

We use the following definitions:

Definition (Subproblem)

= Scalarized problem with a certain parameter choice

Definition (Parametric algorithm)

= Iterative solution of subproblems with different parameter choices

Kerstin Dächert On the computation of the nondominated set by scalarizations with adaptive parameter selection 11 / 33



Introduction
Systematic, redundancy-free decomposition of the search region

Numerical results
Conclusion

Notation and definitions
Scalarizations
Adaptive parametric algorithm
Bicriteria case

Subproblem and Parametric Algorithm

◮ One scalarized problem yields (at
most) one nondominated point

◮ Vary parameters in a systematic
way in order to obtain ZN (or a
subset of it)

f1

f2

Z

We use the following definitions:

Definition (Subproblem)

= Scalarized problem with a certain parameter choice

Definition (Parametric algorithm)

= Iterative solution of subproblems with different parameter choices

Kerstin Dächert On the computation of the nondominated set by scalarizations with adaptive parameter selection 11 / 33



Introduction
Systematic, redundancy-free decomposition of the search region

Numerical results
Conclusion

Notation and definitions
Scalarizations
Adaptive parametric algorithm
Bicriteria case

Subproblem and Parametric Algorithm

◮ One scalarized problem yields (at
most) one nondominated point

◮ Vary parameters in a systematic
way in order to obtain ZN (or a
subset of it)

f1

f2

Z

We use the following definitions:

Definition (Subproblem)

= Scalarized problem with a certain parameter choice

Definition (Parametric algorithm)

= Iterative solution of subproblems with different parameter choices

Kerstin Dächert On the computation of the nondominated set by scalarizations with adaptive parameter selection 11 / 33



Introduction
Systematic, redundancy-free decomposition of the search region

Numerical results
Conclusion

Notation and definitions
Scalarizations
Adaptive parametric algorithm
Bicriteria case

Adaptive Parametric Algorithm

◮ determine parameters during parametric algorithm

◮ dependent on nondominated points that are already known

Parametric algorithm in the discrete, bicriteria case (well-known):

z1

z2

Example with four nondominated
points
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Compute lexicographic minima,
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Adaptive Parametric Algorithm

◮ determine parameters during parametric algorithm

◮ dependent on nondominated points that are already known

Parametric algorithm in the discrete, bicriteria case (well-known):

z1

z2

z I

zN

Initial search region
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Adaptive Parametric Algorithm

◮ determine parameters during parametric algorithm

◮ dependent on nondominated points that are already known

Parametric algorithm in the discrete, bicriteria case (well-known):

z1

z2

z I

zN

Select rectangle, given by its (local)
upper bound

Kerstin Dächert On the computation of the nondominated set by scalarizations with adaptive parameter selection 12 / 33



Introduction
Systematic, redundancy-free decomposition of the search region

Numerical results
Conclusion

Notation and definitions
Scalarizations
Adaptive parametric algorithm
Bicriteria case

Adaptive Parametric Algorithm

◮ determine parameters during parametric algorithm

◮ dependent on nondominated points that are already known

Parametric algorithm in the discrete, bicriteria case (well-known):

z1

z2

z I

zN

Solve subproblem
(e.g. augmented weighted Tcheby-
cheff problem with z I as reference
point)

Kerstin Dächert On the computation of the nondominated set by scalarizations with adaptive parameter selection 12 / 33



Introduction
Systematic, redundancy-free decomposition of the search region

Numerical results
Conclusion

Notation and definitions
Scalarizations
Adaptive parametric algorithm
Bicriteria case

Adaptive Parametric Algorithm

◮ determine parameters during parametric algorithm

◮ dependent on nondominated points that are already known

Parametric algorithm in the discrete, bicriteria case (well-known):

z1

z2

z I

zN

Solve subproblem
(e.g. augmented weighted Tcheby-
cheff problem with z I as reference
point)

Kerstin Dächert On the computation of the nondominated set by scalarizations with adaptive parameter selection 12 / 33



Introduction
Systematic, redundancy-free decomposition of the search region

Numerical results
Conclusion

Notation and definitions
Scalarizations
Adaptive parametric algorithm
Bicriteria case

Adaptive Parametric Algorithm

◮ determine parameters during parametric algorithm

◮ dependent on nondominated points that are already known

Parametric algorithm in the discrete, bicriteria case (well-known):

z1

z2

z I

zN

Solve subproblem
(e.g. augmented weighted Tcheby-
cheff problem with z I as reference
point)

Kerstin Dächert On the computation of the nondominated set by scalarizations with adaptive parameter selection 12 / 33



Introduction
Systematic, redundancy-free decomposition of the search region

Numerical results
Conclusion

Notation and definitions
Scalarizations
Adaptive parametric algorithm
Bicriteria case

Adaptive Parametric Algorithm

◮ determine parameters during parametric algorithm

◮ dependent on nondominated points that are already known

Parametric algorithm in the discrete, bicriteria case (well-known):

z1

z2

z I

zN

New nondominated point
found
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Adaptive Parametric Algorithm

◮ determine parameters during parametric algorithm

◮ dependent on nondominated points that are already known

Parametric algorithm in the discrete, bicriteria case (well-known):

z1

z2

z I

zN

Exclude sets that cannot contain fur-
ther nondominated points
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Adaptive Parametric Algorithm

◮ determine parameters during parametric algorithm

◮ dependent on nondominated points that are already known

Parametric algorithm in the discrete, bicriteria case (well-known):

z1

z2

z I

zN

Reduce search region
(split former rectangle into two new
rectangles)
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Adaptive Parametric Algorithm

◮ determine parameters during parametric algorithm

◮ dependent on nondominated points that are already known

Parametric algorithm in the discrete, bicriteria case (well-known):

z1

z2

z I

zN

New iteration:
select rectangle
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◮ determine parameters during parametric algorithm

◮ dependent on nondominated points that are already known

Parametric algorithm in the discrete, bicriteria case (well-known):

z1

z2

z I

zN

Solve subproblem
(no new nondominated point
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◮ determine parameters during parametric algorithm

◮ dependent on nondominated points that are already known

Parametric algorithm in the discrete, bicriteria case (well-known):
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Adaptive Parametric Algorithm

◮ determine parameters during parametric algorithm

◮ dependent on nondominated points that are already known

Parametric algorithm in the discrete, bicriteria case (well-known):

z1

z2

z I

zN

Particular interest in the discrete
case: How many subproblems do we
have to solve?

N + (N − 1) = 2N − 1

(independent of scalarization!)
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Literature

Reference Scalarization Subproblems

m = 2 Aneja & Nair (1979) WS

Chalmet et al. (1986) EC 2N − 1

Ralphs et al. (2006) WT/AWT

m ≥ 2 Laumanns et al. (2006)

EC O(Nm−1)Özlen & Azizoğlu (2009)

Lokman & Köksalan (2013)

Ozlen et al. (2014)

Kirlik & Sayın (2014)
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Case m = 3

◮ Best known worst-case bound on number of subproblems: O(N2)

◮ All algorithms use ε-constraint method as scalarization

◮ Numerical studies in the literature suggest that less than
O(N2) subproblems are needed

◮ Open question: Linear worst-case bound?

Contribution:

New adaptive parametric algorithm

◮ O(N) subproblems for m = 3

◮ independent of particular scalarization
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Generic decomposition of the search region
A new split criterion in the tricriteria case
Linear bound on the number of subproblems in the tricriteria case

Decomposition of search region for m ≥ 2

z1

z2

z3

z I

u(B0)

Initial search region (box)

B0 := {z ∈ Rm : z I ≦ z < u}

with ui := maxx∈X {fi (x)} + δ, i = 1, . . . , m, δ > 0
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Decomposition of search region for m ≥ 2

z1

z2

z3

z I

u(B0)

Initial search region (box)

B0 := {z ∈ Rm : z I ≦ z < u}

 Note: Every box B characterized by u(B)
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Decomposition of search region for m ≥ 2

z1

z2

z3

z1

u(B0)

Solve subproblem in B0  z1 ∈ ZN ∩ B0

Insertion of z1 into B0
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Decomposition of search region for m ≥ 2

S(z1)

z1

z2

z3

z1

u(B0)

By definition of nondominance:

ZN ∩ S(z1) = {z1} with S(z1) := {z ∈ B0 : z ≧ z1}

⇒ All z ∈ ZN\{z1} contained in B0\S(z1)
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Decomposition of search region for m ≥ 2

z1

z2

z3

z1

u(B0)

Representation of B0\S(z1) by
⋃m

i=1 B1,i with

B1,i := {z ∈ B0 : zi < z1
i }, i = 1, . . . , m,

i.e. ui(B1,i) := z1
i , uj(B1,i) := uj(B0) ∀ j 6= i
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Decomposition of search region for m ≥ 2

z1

z2

z3

z1

u(B11)

u(B12)

u(B13)

⇒ Decomposition of B0\S(z1) into m (non-disjoint) subboxes

(see Dhaenens et al. (2010), Przybylski et al. (2010))
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Redundancy for m ≥ 3

z1

z2

z3

z1
z2

u(B11)

u(B12)

u(B13)

Let z2 ∈ (B11 ∩ B12)

⇒ Split B11 and B12 into 3 new boxes, resp.
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Redundancy for m ≥ 3

z2

u(B11)

B21, B22, B23

z2

u(B12)

B′
21, B′

22, B′
23

Split of B11 and B12 wrt. z2
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u(B21)
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u(B′
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B′
21

, B′
22, B′

23

Split wrt. i = 1:
B′
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Generic decomposition of the search region
A new split criterion in the tricriteria case
Linear bound on the number of subproblems in the tricriteria case

Redundancy

Generic split produces redundant boxes

◮ Example: already in 2nd iteration, two of the six new boxes
redundant

◮ if redundant boxes are kept in decomposition
◮ additional, unnecessary subproblems are solved
◮ increases running time of algorithm

⇒ avoid redundant boxes

Identifying redundant boxes:

1. compare upper bounds u(B) pairwise, remove redundant ones
(Przybylski et al. (2010))

2. detect redundant boxes before their creation, i.e. only generate
non-redundant boxes
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(Przybylski et al. (2010))

2. detect redundant boxes before their creation, i.e. only generate
non-redundant boxes
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Individual subsets

Observation:

B non-redundant ⇐⇒ B contains non-empty subset which is not part of
any other box of the decomposition

Definition (Individual subsets)

For every B̄ ∈ Bs , the set

V (B̄) := B̄ \





⋃

B∈Bs \{B̄}

B





is called individual subset of B̄.
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u(B11)
u(B12)

u(B13)

V (B11)

V (B12)
V (B13)

z1
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Individual subsets

◮ Maintaining non-redundant boxes ⇐⇒ maintaining boxes with
non-empty individual subset

u(B′
22)u(B22)

u(B21)

u(B′
21)

◮ Goal: Derive explicit representation of V (B) ( split criterion)

Preliminary technical assumption

For all z, z̄ ∈ ZN , z 6= z̄, let zi 6= z̄i for all i = 1, . . . , m
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Representation of V (B)

◮ Individual subsets are determined by other boxes

◮ Idea: For each component exists exactly one box that limits V (B)

u(B13)

u(B21)

u(B′
22)

u(B′
23)

u(B23)

z1

z2

z3
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Lemma (Existence of unique neighbor for m = 3)

For every B̄ ∈ Bs and for every i ∈ {1, 2, 3} with
ui(B̄) > minB∈Bs

{ui(B)} there exists a unique B̂ ∈ Bs such that

ui(B̂) < ui(B̄)

uj(B̂) > uj(B̄) for some j 6= i

uk(B̂) = uk(B̄) for k 6= i , j

and ui(B̂) maximal with these properties.

Remark: This result can be generalized to higher dimensions.
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Representation of V (B) for m = 3

The individual subsets V (B), B ∈ Bs , can be represented by

V (B) = {z ∈ B : v(B) ≦ z}

with

vi (B) :=

{

ui(Bs
i (B)), if Bs

i (B) 6= ∅
z I

i , otherwise
, i ∈ {1, 2, 3}

and Bs
i (B) denoting the neighbor of B wrt. i in iteration s

u(B11)

u(B12)

u(B13)
v(B11)

v(B12)

v(B13)

For example

v(B12) =





u1(B11)
z I

2

u3(B13)




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The v -split-criterion to avoid redundancy

Recall:

Split box B wrt component i ⇐⇒ V (Bi ) 6= ∅

Lemma

Let zs ∈ B, i.e. zs < u(B), and let Bi be the box obtained from B by a
split wrt component i ∈ {1, 2, 3}.

Then Bi is non-redundant ⇐⇒ zs
i ≥ vi(B).
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Example revisited

Generic split: Two redundant boxes

◮ B22 (Split of B11 wrt. i = 2)

◮ B′
21 (Split of B12 wrt. i = 1)

u(B′
22)u(B22)

u(B21)

u(B′
21)
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Example revisited

v -Split in B11:
z2

1 > v1(B11) X

z2
2 < v2(B11)

z2
3 > v3(B11) X

⇒ Split B11 wrt. i = 1 and i = 3 (Redundant box B22 not generated!)

u(B11)

u(B12)

u(B13)
v(B11)

z2

z1

z2
z3

u(B′
22)u(B22)
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Example revisited

v -Split in B12:
z2

1 < v1(B12)
z2

2 > v2(B12) X

z2
3 > v3(B12) X

⇒ Split B12 wrt. i = 2 and i = 3 (Redundant box B′
21 not generated!)

u(B11)

u(B12)

u(B13)

v(B12)

z2

z1

z2
z3

u(B21)

u(B′
21)
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Use v -split to derive worst-case linear bound
Observation from example:

◮ Initialization: one box

◮ After 1st iteration: 3 boxes (+2)

◮ After 2nd iteration: 5 boxes (+2)

◮ . . . ?

z1

z2

z3

z I

u(B0)
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Linear bound on the number of subproblems

Lemma

In every iteration s ≥ 1 of the v-split algorithm, in which a new
nondominated point zs is found, the number of boxes in the
decomposition increases by at most two.

Sketch of proof.

Case 1: one box is split ⇒ 3 boxes replace one (−1 + 3 = 2 X)

Case 2: more than one box split:
◮ every box split wrt. at most 2 components
◮ no pair of boxes split wrt. to the same 2 components

⇒ at most 2 · 3 − 3 = 3 additional boxes
◮ if 3 boxes split wrt. 2 components

⇒ exists box which is split wrt. no component (3 − 1 = 2 X)
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Theorem

For ZN finite (N = |ZN |) and given appropriate initial search region with
lb = z I , the v-split algorithm requires at most 3N − 2 subproblems in
order to generate the entire nondominated set.

Sketch of proof.

◮ in every iteration one subproblem solved
⇒ number of subproblems equals number of iterations

◮ for every nondominated point generated
⇒ number of boxes increases by at most two (previous Lemma)

◮ every nondominated point is generated exactly once,
every empty box is investigated exactly once
⇒ at most 3N boxes explored

◮ plus initial box ⇒ 3N + 1

◮ if zs
i = z I

i for i ∈ {1, 2, 3}, no box created wrt. i ⇒ 3N − 2
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Remark

Linear bound in line with results from the field of computational
geometry:

1. Boissonnat et al. (1998) show that
◮ for a set of n points in Rm the maximum complexity of the union of

n axis-parallel hypercubes in Rm is O(n⌈m/2⌉)
◮ If all hypercubes have the same size, the complexity can be improved

to O(n⌊m/2⌋) for m ≥ 2. It remains O(n) for m = 1.

2. Bringmann (2013) shows that
◮ an instance in which all boxes share one common vertex (z I !) can be

transformed into an instance in which all boxes have the same size

However, no algorithm is indicated in Boissonnat et al. (1998) or
Bringmann (2013)
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The ε-constraint scalarization as a special case

Number of subproblems in v -split algorithm can be improved further:

◮ Assume we minimize wrt first component

◮ Having obtained z1, we can additionally exclude {z ∈ B : z1 < z1
1 },

which equals the set obtained by a split of B wrt the first component

S(z1)

z1

z2

z3

z1

u(B0)

◮ one box per iteration can be
saved if B is selected in an
appropriate way

◮ only 2N − 1 subproblems are
required
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Numerical results
Matlab-Implementation of the v -split-algorithm with 3D-visualization
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Figure: Example with 21 nondominated points
(Illustration of the individual subsets of all boxes at the end of the algorithm)
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Validation of linear worst-case bound

Setting

◮ Multidimensional, tricriteria knapsack problem

◮ Test problem from Laumanns et al. (2006)

◮ Original data

◮ Scalarizations: Weighted Tchebycheff (WT) and ε-Constraint (EC),
both in variants Two-stage (TS) and Augmented (A)

◮ IBM ILOG CPLEX Optimization Studio Version 12.5 (no
parallelization)

◮ MATLAB R2013a

◮ 4x Intel Xeon E7540 CPUs (2.0 GHz), 128 GB memory
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Validation of linear worst-case bound

Computational experiments (1)

Validation of theoretical upper bounds 3N − 2 (WT) and 2N − 1 (EC)

n N
WT EC

CPU #SP CPU #SP

10 9
TS 10.03

25
7.97

17
A 7.81 6.09

20 61
TS 56.42

181
43.29

121
A 42.72 30.02

30 195
TS 213.31

583
163.15

389
A 163.29 114.39

40 389
TS 464.47

1165
361.74

777
A 361.01 257.64

50 1048
TS 1552.56

3142
1369.89

2095
A 1174.90 1012.15
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Conclusion

1. New adaptive parametric algorithm for multicriteria, particularly
tricriteria optimization problems

2. New split criterion for tricriteria problems avoids redundant boxes

3. Linear worst-case bound on number of subproblems

Ongoing research:

1. Explicit use of neighborhood structure for any number of criteria

2. Generation of representative subsets with quality criteria

Thank you! Questions?
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